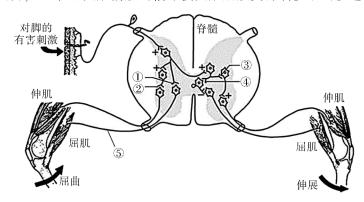

山东省普通高中学业水平等级考试模拟试题(二)

生物

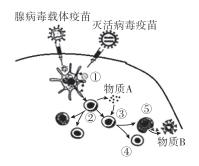
2021.5

注意事项:

- 1. 答题前,考生先将自己的姓名、考生号、座号填写在相应位置,认真核对条形码上的 姓名、考生号和座号,并将条形码粘贴在指定位置上。
- 2. 选择题答案必须使用 2B 铅笔(按填涂样例)正确填涂;非选择题答案必须使用 0.5 毫米黑色签字笔书写,绘图时,可用 2B 铅笔作答,字体工整、笔迹清楚。
- 3. 请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。保持卡面清洁,不折叠、不破损。
- 一、选择题:本题共 15 小题,每小题 2 分,共 30 分。每小题给出的四个选项中,只有一个选项是最符合题目要求的。
- 1.研究发现,细菌中的天然蛋白质分子伴侣 GroEL 具双层笼状结构,可作为携带疏水药物的纳米机器,肿瘤微环境中的高浓度 ATP 可以激发 GroEL 改变构象,蛋白构象的变化导致其内部由疏水微环境变成亲水性环境,进而主动释放携带的药物来杀伤肿瘤细胞,实现药物的精准可控释放。下列叙述不合理的是
 - A.分子伴侣 GroEL 的合成需要多种细胞器共同参与
 - B.高浓度 ATP 的形成可能是由于不利因素引起细胞内 ATP 释放
 - C.高浓度 ATP 激发 GroEL 蛋白构象改变时, 肽键不发生断裂
 - D.肿瘤细胞无限增殖是由于多个基因发生突变引起的
- 2.内质网上的跨膜蛋白 TMCO1 可以"感知"内质网中[Ca^{2+}]变化。当内质网中[Ca^{2+}]过高时,TMCO1 会形成四聚体离子通道转运出 Ca^{2+} ;当内质网与细胞质基质中[Ca^{2+}]接近时,四聚体离子通道解体失去转运活性。下列分析错误的是
 - A.内质网中[Ca2+]失衡可能会影响脂质的合成
 - B. TMCO1 蛋白感知到[Ca2+]变化后会改变自身的空间结构
 - C. Ca²⁺以协助扩散的方式由内质网释放到细胞质基质中
 - D. 敲除 TMCO1 的基因会导致内质网中[Ca^{2+}]下降
- 3.某实验小组以干酪素(蛋白质)为底物探究不同 pH 对大菱鲆消化道中蛋白酶活性的影响,其他条件相同且适宜,实验结果如图所示。下列叙述正确的是
 - A.本实验可采用双缩脲试剂来检测干酪素的水解 情况
 - B.在 pH=8 条件下,胃蛋白酶的活性会比肠蛋白酶的高
 - C.适当升高温度,三种蛋白酶水解干酪素的速率均 将降低


D.相同 pH 条件下, 幽门盲囊蛋白酶比肠蛋白酶提供活化能的作用更显著

4.在无氧条件下,酿酒酵母可将木糖转化为乙醇。大致过程如下:


科学家利用蛋白质工程对相关酶进行改造,乙醇产量显著提高。下列说法正确的是

- A.上述过程中利用 NAD⁺的部位主要在细胞质基质和线粒体基质
- B.产生木酮糖时,NAD+变为 NADH,NADH 进一步与 O。结合生成水
- C.科学家利用蛋白质工程对酶改造通过直接改变蛋白质结构来完成
- D.木糖转化为乙醇过程中释放能量,其中有少部分用于合成 ATP
- 5.生命科学史中蕴含着丰富的科学思维和科学方法,下列说法错误的是
 - A.鲁宾和卡门利用同位素标记法证明了光合作用释放的氧气只来自于水
 - B.格里菲斯通过肺炎双球菌转化实验发现加热杀死的 S 型菌 DNA 可将 R 型菌变为 S 型菌
 - C.利用同位素标记和离心技术,验证了沃森和克里克提出的 DNA 半保留复制假说
 - D.林德曼运用定量分析的方法,得出了赛达伯格湖的能量流动模型
- 6.果蝇正常翅(Ct)对缺刻翅(ct)显性,红眼(W)对白眼(w)显性,两对基因均位于 X 染色体的 A 片段上。用"+"表示 A 片段存在,"-"表示 A 片段缺失。染色体组成为 $X^{+}X^{-}$ 的红眼缺刻翅雌果蝇与染色体组成为 $X^{+}Y$ 的白眼正常翅雄果蝇杂交, F_{1} 中雌雄比为 2:1,且白眼全是雌果蝇,雄果蝇全是红眼。下列分析错误的是
 - A. Ct/ct、W/w 两对基因的遗传不遵循自由组合定律
 - B. A 片段缺失的 X-Y 个体表现为缺失纯合致死现象
 - C. F, 中红眼正常翅雌果蝇与红眼缺刻翅雄果蝇的比例为 1:1
 - D. F. 雌雄果蝇相互交配, F. 中红眼缺刻翅雌果蝇占 1/7
- 7.果蝇的 P 元件是一段 DNA 序列,根据是否含有 P 元件,果蝇可分为 M 型品系(野生型)和 P 型品系(含 P 元件)。P 元件仅可在生殖细胞中发生易位而导致子代性腺不发育,但子代体细胞组织正常;P 元件在细胞质中的翻译产物是一种蛋白因子,可抑制 P 元件易位。下列叙述错误的是
 - A. P 元件促进同源染色体的非姐妹染色单体间发生交叉互换
 - B.体细胞组织正常是由于 P 元件表达的蛋白因子抑制了易位
 - C.生殖细胞中是否发生了 P 元件易位可通过显微镜观察判断
 - D.P 型母本与 M 型父本杂交,产生的子代均可育
- 8.线虫的 npr-1 基因编码一种 G 蛋白偶联受体,该基因突变为 NPR-1,其编码的蛋白质第 215 位氨基酸残基由缬氨酸变为苯丙氨酸,导致线虫觅食行为由"独立觅食"变为"聚集觅食"。在食物匮乏时,"聚集觅食"使线虫活动范围受限,能量消耗减少,有利于交配,对线虫生存有利。下列分析正确的是
 - A.食物匮乏诱发 npr-1 基因突变,使线虫觅食行为发生改变
 - B. npr-1 基因发生的突变可能是由于碱基对的增添或缺失引起的
 - C.食物匮乏直接作用于线虫觅食行为引起 NPR-1 的频率提高
 - D. G 蛋白偶联受体的结构变化是决定线虫觅食行为改变的根本原因

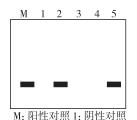
9.某人脚不小心踩到钉子时,马上引起同侧腿屈曲和对侧腿伸展,以避开损伤性刺激,又不会跌倒。该过程的反射弧结构示意图如下,其中①~④为突触,"+"表示突触前膜的信号使突触后膜受抑制。下列叙述正确的是


- A.①处突触前膜的信号使突触后膜兴奋,③处突触前膜的信号使突触后膜受抑制
- B.兴奋性递质使突触后膜的膜电位变为内正外负,抑制性递质不引起突触后膜电位变化
- C.屈腿反射属于非条件反射,完成屈腿反射的过程中共需要 5 个神经元参与
- D. 若刺激⑤处, 该侧腿屈曲但神经节处检测不到动作电位, 说明反射弧的传出神经受损
- 10.新冠病毒肆虐给人类生活带来极大影响,研发疫苗是防控新冠肺炎的有效措施。腺病毒载体疫苗属于基因工程疫苗,它只需搭载新冠病毒核酸片段,而传统的"灭活病毒疫苗"需要灭活使病毒失去致病能力。如图是注射两类疫苗引发人体产生免疫效应的部分过程示意图,图中①~⑤代表不同细胞。下列说法正确的是

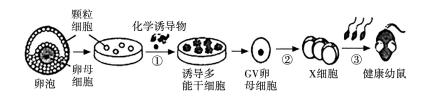
- A.图中物质 A 为淋巴因子,能特异性识别抗原的细胞有①、②、③、④
- B.感染过腺病毒的人群接种腺病毒载体疫苗,会提高疫苗免疫预防效果
- C.新冠病毒感染免疫预防人群时,会直接刺激②和③迅速发生二次免疫反应
- D.腺病毒载体疫苗不存在"灭活",但需要新冠病毒核酸片段表达才能发挥作用
- 11.中科院康乐院士团队通过分析飞蝗的体表和粪便挥发物,发现了飞蝗群聚信息素—4-乙烯基苯甲醚(4VA),4VA能够响应蝗虫种群密度的变化,并随着种群密度增加而增加;利用基因编辑技术获得飞蝗OR35缺失突变体,发现其对4VA的响应行为丧失。下列叙述错误的是

生物试题 第 3页(共10页)

- A.可利用标志重捕法调查蝗虫的种群密度
- B.利用人工合成的 4VA 诱杀蝗虫属于化学防治
- C.4VA 通过正反馈调节的方式调节蝗虫种群密度
- D.合成的 OR35 蛋白可能为信息素 4VA 的受体
- 12.某农场的能量流动示意图如下,其中 a_2 和 b_2 分别为第二、三营养级从上一营养级同化的能量, d_1 和 d_2 为投入饲料含有的能量。下列叙述错误的是


- A.能量作为动力,使碳在生物群落和无机环境之间往复循环
- B.流经该农场的总能量为第一营养级同化的总能量
- C.图中第二营养级粪便中的能量属于 a3+d1的一部分
- D.第一和第二营养级之间的能量传递效率为 a₂/(a₁+a₂+a₃)×100%
- 13.啤酒生产的简要流程如图所示,制麦时用赤霉素溶液浸泡大麦种子,糖化主要将麦芽中的淀粉等有机物水解为小分子。下列说法错误的是

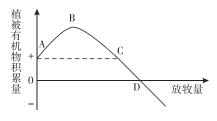
- A.在整个发酵过程中,要始终保持严格的无菌、厌氧环境
- B.用赤霉素溶液浸泡大麦种子,目的是促进 α-淀粉酶合成
- C.在接种酵母菌前进行冷却处理,是为了避免杀死酵母菌种
- D.为了长期保存酵母菌种,常用甘油管藏法将菌种置于-20℃冷冻箱中
- 14. 滁菊为菊科多年生草本植物,长期营养繁殖易造成病毒积累,导致滁菊花色劣变。某科研小组比较了3种脱毒方法对滁菊体内菊花B病毒(CVB)和菊花矮化类病毒(CSVd)脱除的效果,结果见表;如图是对不同试管苗利用CVB基因序列引物进行逆转录PCR(RT-PCR)后的电泳示意图。下列叙述正确的是


不同脱毒方法对滁菊茎尖脱毒率的影响

以主子小	样本存	脱除 CSVd	脱除 CVB	脱除(CSVd+CVB)
脱毒方法	活数	率(%)	率(%)	率(%)
茎尖分生组织培养	77	20.78	44.16	16.88
热处理结合茎尖培养	71	36.62	63.38	35.21
病毒唑结合茎尖培养	71	46.48	49.30	36.62

生物试题 第 4页(共10页)

- A. 热处理、病毒唑处理对试管苗的存活率均有显著提高
- B. 只脱除 CVB 病毒的最佳选择是热处理和病毒唑结合茎尖组织培养
- C. RT-PCR 中用到的酶有逆转录酶、热稳定 DNA 聚合酶
- D.试管苗 2、5 尚未脱毒成功,3、4 已成功脱去 CSVd 和 CVB 病毒
- 15.我国科学家成功将小鼠卵泡中卵母细胞周围的细胞——颗粒细胞转化为 GV 卵母细胞, 进而恢复减数分裂并顺利培育出健康后代。下列叙述错误的是



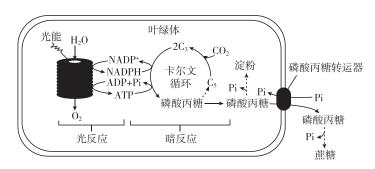
- A.过程①类似于脱分化,其实质是基因选择性表达
- B.采集的精子可直接与 X 细胞结合完成受精作用
- C. X 细胞受精后会继续完成减数第二次分裂,再释放一个极体
- D.上述过程中涉及体外受精、早期胚胎培养及胚胎移植技术
- 二、选择题:本题共 5 小题,每小题 3 分,共 15 分。每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 3 分,选对但不全的得 1 分,有选错的得 0 分。
- 16.某些肿瘤细胞中 MDR 基因表达产物是 P-gp 转运蛋白,该蛋白有 ATP 依赖性跨膜转运活性,可将药物转运至细胞外,MDR 基因高度表达后使癌细胞耐药性增强。在 P-gp 转运蛋白低水平表达的癌细胞内,某些化疗药物的浓度明显升高。下列叙述错误的是
 - A.MDR 基因高度表达的肿瘤细胞中核糖体数量较多
 - B. P-gp 转运蛋白转运物质的跨膜运输方式为主动运输
 - C.P-gp 转运蛋白能转运各种化疗药物,不具有特异性
 - D.提高癌细胞 P-gp 转运蛋白的活性为癌症治疗开辟了新途径
- 17.果蝇的小眼和正常眼、翻翅和正常翅分别由基因 A、a 和 E、e 控制,两对基因独立遗传且均不位于 Y 染色体上。任何基因无致死效应,但基因 A 的外显率为 b (即若 b=3/4,则含 A 基因的个体中,只有 3/4 个体眼型为显性性状,其余 1/4 均为隐性性状; $b \neq 3/5$)。利用正常翅小眼雌果蝇与翻翅小眼雄果蝇杂交, F_1 表现型及比例为翻翅小眼 Q :正常翅小眼 B : 正常翅正常眼 B : 一种,
 - A. 翅型基因在常染色体上, 眼型基因在 X 染色体上
 - B.小眼对正常眼为显性,翻翅对正常翅为显性,两亲本均为杂合子
 - C.由 F₁ 的表现型及比例可推测基因 A 的外显率为 2/5
 - D.F. 中翻翅与正常翅果蝇自由交配,后代正常翅雌果蝇所占比例为 1/4

18.为研究细胞分裂素对植物生长的影响,研究人员将长势相同的杨树苗随机均分为甲、 乙、丙、丁四组,分别培养在不同浓度的细胞分裂素溶液中,一段时间后,得到如下结果。 下列分析错误的是

	实验处理	实验结果		
组别	细胞分裂素浓度	叶绿素总量	吐妈妻 /1	净光合速率
	(mg/L)	/L) (mg/g) 叶绿素 a/b	叫	$(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1})$
甲	0	1.637	2.083	7.40
乙	0.5	1.816	1.703	7.50
丙	1.0	2.259	1.611	8.24
丁	3.0	2.438	1.532	7.97

- 注:叶绿素 a/b 表示叶绿素 a 含量与叶绿素 b 含量之比
- A.由表分析可知,细胞分裂素对提高杨树的净光合速率具有两重性
- B.四组实验中杨树幼苗的叶绿素总量越高,植株的净光合速率越大
- C.在一定范围内,随细胞分裂素浓度升高,其对叶绿素 b 合成的促进作用逐渐增强
- D.在 0.5~1.0mg/L 范围内,缩小浓度梯度可进一步测定细胞分裂素的最适浓度
- 19.适度放牧可刺激牧草分蘖,去除植物的衰老组织,且动物会将种子踩入土壤中,排泄粪 尿起到均匀施肥的作用。下图为有蹄类放牧量与植被有机物积累量之间的关系,A点 表示在不放牧时,草原保持健康稳定状态的植被有机物积累量。下列叙述错误的是
 - A.食草动物对不同牧草选择采食形成镶嵌的大小斑 块属于群落的水平结构
 - B. 适度放牧刺激牧草分蘖、均匀施肥提高土壤肥效 是 AB 段形成的重要原因
 - C.D 点所对应的放牧量为保护该草原处于稳定的最 大控制放牧量

- D.与适度放牧相比,过度放牧和停止放牧都会降低草原生态系统的抵抗力稳定性
- 20.为了检测药物 X X 和 Z 的抗癌效果,在细胞培养板的每个孔中加入相同数量的肺癌细 胞,使其贴壁生长。实验组分别加入等体积相同浓度的溶于二甲基亚矾(溶剂)的药物 X、Y或Z,培养过程及结果如图所示。下列叙述正确的是


			头短结果
対照 対照 対照	细胞培养 72小时 细胞计数,并计算 平均值	组别	细胞个数(个/孔)
		对照	7.8×10^{6}
		药物X	6.7×10^{4}
YYY		药物Y	5.3×10^{5}
(z)(z)(z)		药物Z	8.0×10^{6}
	'		

- A.细胞培养液中通常需要加入一定量的抗生素防止病毒污染
- B. 计数时用胃蛋白酶处理贴壁细胞, 使肺癌细胞脱落下来
- C.对照组中应加入等体积的二甲基亚矾溶剂排除体积和溶剂等无关因素的影响
- D.根据实验结果,药物 X 的抗癌效果比 Y 好,药物 Z 没有抗癌作用

三、非选择题:本题包括5小题,共55分。

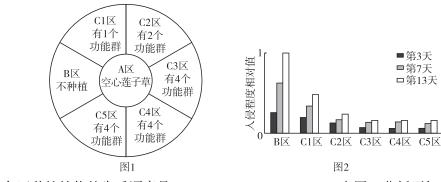
21.(12分)

光合作用是唯一能够捕获和转化光能的生物学途径,是"地球上最重要的化学反应", 它是一切生命生存和发展的基础。下图是棉花叶肉细胞的光合作用过程示意图,磷酸丙糖 转运器的活性受光的调节,适宜光照条件下,其活性较高。

- (1)棉花叶片中光合色素有____。在光照开始一段时间后,棉花叶肉细胞中光合作用的光反应和暗反应两个阶段能够同时、快速、稳定进行的原因是。
- (2)由图分析可知,C₃被还原为磷酸丙糖后,下一步利用的去向是____。通常情况下,Pi与磷酸丙糖通过磷酸丙糖转运器严格按照1:1反向交换方式进行转运。在环境条件由适宜光照转为较强光照时,短时间内磷酸丙糖的转运速率会_____(填"升高"或"降低"),则更有利于 (填"淀粉"或"蔗糖")的合成,原因是 。
- (3)为探究 CO_2 浓度对棉花幼苗光合速率的影响,研究人员将棉花幼苗分别进行不同实验处理: 甲组提供大气 CO_2 浓度(375 μ mol·mol⁻¹); 乙组先在 CO_2 浓度倍增环境(750 μ mol·mol⁻¹)中培养 60d,然后在测定前一周恢复为大气 CO_2 浓度,其他条件相同且适宜。在晴天上午测定各组的光合速率,结果乙组光合速率比甲组低,原因可能是长期高浓度 CO_2 环境会降低 RuBP 羧化酶(固定 CO_2 的酶)的活性。设计实验加以验证这一推测。

材料用具:甲、乙两组棉花叶肉细胞 RuBP 羧化酶提取液,一定浓度的 C_5 溶液,饱和 CO_5 溶液,试管等。

实验思路:	
预测结果:	
22.(9分)	


糖尿病患者长期处于高血糖状态下,机体会产生活性氧抑制胰岛 B 细胞、神经元等多种组织细胞增殖,甚至使细胞凋亡,同时诱发冠状动脉硬化、白内障、失明、尿毒症等并发症,而低剂量的电离辐射具有抗氧化和抑制细胞凋亡的作用;链脲佐菌紫(STZ)对胰岛 B 细胞具有损伤作用,常用 STZ 诱导大鼠建立糖尿病动物模型研究人类糖尿病的病理、危害与治疗等;与胰岛素治疗相比,胰岛移植能起到稳定血糖、避免低血糖发作的作用,但在胰岛(外周主要为胰岛 A 细胞,内部主要为胰岛 B 细胞)分离时,容易造成外周细胞的损伤或丢失。

(1)大鼠经 STZ 处理后,与正常大鼠相比,糖尿病模型大鼠的尿量(填"增多"						
或"减少"),抗利尿激素含量(填"上升"或"下降")。饲喂一段时间后,糖尿病						
模型大鼠的体重小于对照组,原因是。						
(2)	为研究胰岛	岛 A 细胞缺少	卡对移植胰岛功能的 景	/响,进行了一系	列相关实验。研究表	
明,分离	纯化的胰岛	B 细胞在体	外培养只能短期存活	,而与胰岛 A 细胞	胞混合培养时存活时	
间明显延	长,这表明	月	。有	人提出,该现象是	是由胰岛 A 细胞分泌	
胰高血糖	素引起的	,试简要写出	验证该假设的实验思	路:	o	
(3)	为探究低剂	剂量电离辐射	对高血糖大鼠海马神	经元凋亡的影响	,研究人员在25mGy、	
50mGy \7	5mGy 三科	中低剂量 X 射	线照射下饲养糖尿病	模型大鼠一段时	间后,取出大脑组织	
海马神经	细胞进行	培养,测定各	组细胞培养液中凋亡	标志物的含量。	本实验应设置的对照	
组是		。如果	,则支	持"低剂量电离等	福射能有效地减轻高	
血糖对大	、鼠海马神	经元的损伤"	的假设。			
23.(14分)					
果蝇	的性别决	定方式为 XY	型,其部分相对性状如	如表所示。果蝇的	内毛型由基因 D、d 控	
制;翅型	由两对基因	国控制,基因型	型为 A_bb 表现为完整	翅,其余基因型均	的为残翅;眼色的棕色	
和朱红色	分别受基	因 M、N 控制	,暗红色是棕色与朱红	工色叠加的结果。	品系甲为白眼隐性	
纯合突变	体。					
		翅型	眼色	毛型	翅长	
	野生型	完整翅	暗红色	直毛	长翅	
	突变型	残翅	棕色、朱红色、白色	分叉毛	短翅	
(1)	据表分析,	果蝇适合做油	遗传学研究材料的原因	因是。	。残翅由完整翅突变	
			翅或短翅,这是因为_			
(2)	研究人员月	用品系甲与野	5 生型果蝇乙进行正反	交实验,所得 F	均为暗红眼。将 F ₁	
中雄蝇与	i品系甲进	行杂交,所得	F ₂ 为暗红眼:白眼=1	:1;将 F ₁ 中雌蝇	与品系甲进行杂交,	
所得 F ₂	为暗红眼:	棕色眼:朱红	眼:白眼=41:9:9:41。	根据杂交结果,	准测这两对基因的位	
置关系为	t; 出	吕现暗红眼:构	宗色眼:朱红眼:白眼=	41:9:9:41 的原因	因可能是。	
(3)	已知野生	型果蝇乙及品	系甲均为 ST ⁺ 基因纯个	合子。研究发现	,某只 F ₁ 雄蝇中一个	
ST ⁺ 基因	突变为 ST	基因,ST 基因	国编码 W 蛋白,W 蛋白	可与特定 DNA 序	序列 d 结合,导致精子	
不育。现将该只 F ₁ 雄蝇与品系甲杂交,所得 F ₂ 全为暗红眼,由此推测特定的 DNA 序列 d						
位于 ;任选 F, 中雄果蝇与品系甲雌果蝇杂交, 所得后代全为暗红眼, 可推测 ST						
基因与 M/m、N/n 基因在染色体上的位置关系为。						
(4)在饲养果蝇过程中,偶尔出现一只分叉毛残翅雄果蝇,让其与某只直毛完整翅雌果						
蝇杂交,F,中雌雄果蝇均为直毛残翅:直毛完整翅=1:1,选取F,中直毛完整翅雌雄果蝇交						
配,得到 F_2 为直毛完整翅 \mathcal{G} :直毛残翅 \mathcal{G} :直毛完整翅 \mathcal{G} :分叉毛完整翅 \mathcal{G} :直毛残翅 \mathcal{G} :分						
叉毛残翅		心	毛残嬎♀:且毛元整翅	0:分义毛元登第	塑δ: 直毛残翅δ:分	

可能是	。若推测成立,则 F ₁ 中雌雄个体相互交配,后代中直毛完整翅雌果蝇
所占比例为	
24.(10分)	

鄱阳湖候鸟保护区由湖池、蚌湖等 9 个湖泊及周围湖滩湿地组成,湿地兼有水、陆特征,具有特殊的生态功能和宝贵的自然资源价值。近年来,外来入侵植物如裸柱菊、野胡萝卜、野老鹳草、空心莲子草等对鄱阳湖湿地危害较为严重,截止到 2020 年 6 月,我国已发现 660 多种外来入侵物种,成为全球遭受外来入侵物种危害最严重的国家之一。

- (3)多种多样的植物在生态系统中各自发挥着不同的功能,构成不同的功能群,同一功能群中的植物具有相似的结构或功能。为研究某生态系统的植物功能群对空心莲子草入侵的影响,科研人员将一个圆形样地划分为 A 区、B 区和 C1~C5 区,除 A 区外,其余各区大小相同。各区种植情况如图 1 所示,其中 C3~C5 区中植物功能群数目相同但物种数目分别为 4、8、16 种。第 3、7、13 天测定 B、C 区空心莲子草入侵状况,得到图 2 所示结果。

各区种植植物的先后顺序是_____。由图 2 分析可知, C 区空心莲子草入侵程度均低于 B 区, 说明____。对比分析 C1~C5 区的入侵程度可得出的结论是

25.(10分)

生物柴油作为新型能源已经成为世界上应用最广泛、发展迅猛的可再生能源之一。研究人员利用基因工程的方法,将油料作物紫苏的产油基因 DGAT1 与含有氨苄青霉素抗性基因的 pMD 克隆质粒构建 pMD-DGAT1 重组质粒,然后导入大肠杆菌扩大培养;再提取出扩增的 pMD-DGAT1 克隆质粒,与 pBI121 空载体同时用 Xbal、BamH I 两种酶酶切,构建 pBI121-DGAT1 表达载体;最后将表达载体导入四尾栅藻获得产油微藻,利用地热废水培养产油微藻不仅能生产生物柴油,还能治理地热废水。

	(1)提取紫苏组织细胞 RN	A 经过	导到 cDNA,再利用	PCR 技术扩增得到	
DG.	AT1 基因。在 PCR 扩增之前	,需要对 DGAT1 基	因进行一次预变性	的目的是;	
在打	广增 DGAT1 基因时,需要根据	¦设计	特异性引物序列。		
	(2)在配制培养大肠杆菌的	培养基时,要在培养	序基灭菌并冷却到:	30℃左右后,加入用	į
无菌	菌水配制的适宜浓度的氨苄青	雷素溶液,氨苄青氧	霉素不能与培养基-	一同灭菌的原因可能	i
是_	o				
	(3)将 DGAT1 基因插入到 p	BI121 空载体的启动	动子与终止子之间的	的目的是	
	。若用 DGAT1 基因探针	佥测产油微藻 ,能检	测到细胞中的	;判断	
产剂	由微藻细胞中 DGAT1 基因是	否成功表达,需要加	人	检测。	
	(4)为检测产油微藻对地热	废水的去污能力,研	f究人员设计实验并	并得到相应实验结果	
如一	下表。				
	指标	总氮(mg/L)	总磷(mg/L)	氟化物(mg/L)	
	废水培养基	23.2	4.32	4.56	
	培养转基因产油微藻 11 天后	1.9	0.45	0.84	

该实验不能说明产油微藻显著提高了去污能力。请进一步完善实验设计:____。

山东省普通高中学业水平等级考试模拟试题(二)

生物试题参考答案及评分标准

2021.5

- 一、选择题:本题共15小题,每小题2分,共30分。
- 1.A 2.D 3.C 4.D 5.B 6.D 7.A 8.C 9.C 10.D 11.B 12.B 13.A 14.C 15.B
- 二、选择题:本题共 5 小题,每小题 3 分,共 15 分。全部选对的得 3 分,选对但不全的得 1 分,有选错的得 0 分。
 - 16.CD 17.BD 18.ABD 19.C 20.CD
- 三、非选择题:本题共 5 小题,共 55 分。考生答出其他合理答案亦得分。
 - 21.(除注明外,每空1分,共12分)
- (1)叶绿素、类胡萝卜素(或胡萝卜素和叶黄素) NADP⁺与 NADPH 之间、ADP 和 Pi 与 ATP 之间不断迅速转化,且处于动态平衡中(2分)
- (2)转化为 C_5 ,或合成淀粉和蔗糖(2分) 降低 淀粉 一方面,叶绿体内磷酸丙糖积累使浓度升高,从而促进淀粉合成;另一方面,由细胞质基质转入叶绿体的Pi减少,促进磷酸丙糖向产生Pi和淀粉的方向进行(答出第一方面即可)(2分)
- (3)实验思路:取两支试管编号 $A \setminus B$,各加入等量的一定浓度的 C_5 溶液和等量的饱和 CO_2 溶液,再分别加入等量的甲组、乙组棉花叶肉细胞 RuBP 羧化酶提取液,一段时间后,检测并比较 $A \setminus B$ 两组溶液中 C_5 的含量(2分)

预期结果: A 组中 C3的含量高于 B 组

(提醒:实验思路和预期结果中A、B与甲、乙要对应好)

- 22.(除注明外,每空1分,共9分)
- (1)增多 上升 糖尿病模型大鼠组织细胞对葡萄糖的吸收利用出现障碍,对脂肪和蛋白质的分解加快
- (2)胰岛 A 细胞(或胰高血糖素)能抑制胰岛 B 细胞凋亡 用等量的生理盐水和适宜浓度的胰高血糖素溶液分别处理胰岛 B 细胞,培养一段时间,观察比较细胞存活时间长短(2分)
- (3) 无 X 射线照射的糖尿病模型大鼠 三种低电离辐射处理的糖尿病模型大鼠组与 无 X 射线处理的糖尿病模型大鼠组相比,海马神经元培养液中细胞凋亡标志物减少(2分) 23.(除注明外,每空 1分,共 14分)
- (1)具有多对易于区分的相对性状 基因突变只能产生相对性状,而完整翅与长翅(或短翅)不属于相对性状(2分)
 - (2) 两对基因位于一对同源染色体上,且 M、N 位于同一条染色体上(2分) F, 中雌

生物试题答案 第 1 页(共2页)

蝇在产生配子时,同源染色体的非姐妹染色单体间眼色基因片段发生交叉互换(2分)

- (3)与 m、n 基因位于同一条染色体上 ST 基因与 M、N 基因位于同一条染色体上(2分)
 - (4) AabbX^DX^D和 aabbX^dY(2分) 完整翅个体纯合致死 1/5
 - 24.(除注明外,每空1分,共10分)
- (1)物种组成 不同区域分布着不同种群体现了群落的水平结构,而丰富度是指群落中物种数目的多少(2分)
 - (2)野老鹳草生活的环境中气候条件适宜,空间条件充足,缺乏天敌 食物和栖息空间
- (3) 先同时种植 C1~C5 区, 再种植 A 区(2分) 本地植物与空心莲子草竞争能减缓 入侵 植物功能群丰富的群落不易被入侵; 功能群数相同时物种数变化对入侵程度没有显著影响(2分)
 - 25.(除注明外,每空1分,共10分)
 - (1)逆转录 提高 DGAT1 基因的变性概率 DGAT1 基因两端核苷酸(或碱基)序列
 - (2)高温会破坏氨苄青霉素的结构而导致失效
- (3) 保证 DGAT1 基因能在产油微藻细胞中表达 DGAT1 基因及其转录出的 mRNA(2分) DGAT1 抗体
- (4)添加用地热废水培养四尾栅藻的对照组,11天后检测总氮、总磷和氟化物的含量(2分)