绝密★本科目考试启用前

2019年普通高等学校招生全国统一考试

数 学(文)(北京卷)

本试卷共 5 页, 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上, 在试卷上 作答无效。考试结束后,将本试卷和答题卡一并交回。

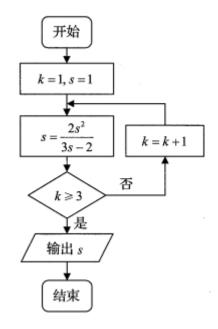
第一部分(选择题 共40分)

- 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目 要求的一项。
- (1) 已知集合 *A*={*x*|−1<*x*<2}, *B*={*x*|*x*>1}, 则 *A*∪*B*=
- (A) (-1, 1) (B) (1, 2) (C) $(-1, +\infty)$ (D) $(1, +\infty)$

- (2) 已知复数 z=2+i,则 $z \cdot \overline{z} =$
 - (A) $\sqrt{3}$ (B) $\sqrt{5}$ (C) 3 (D) 5

- (3) 下列函数中,在区间(0,+∞)上单调递增的是
- (A) $y = x^{\frac{1}{2}}$ (B) $y = 2^{-x}$ (C) $y = \log_{\frac{1}{2}} x$ (D) $y = \frac{1}{x}$

(4) 执行如图所示的程序框图,输出的 s 值为



(A) 1

(B) 2

(C) 3

(D) 4

(5) 已知双曲线 $\frac{x^2}{a^2} - y^2 = 1$ (a>0) 的离心率是 $\sqrt{5}$,则 a=

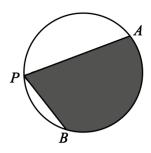
- (6) 设函数 $f(x) = \cos x + b \sin x$ (b 为常数) ,则 "b=0" 是 "f(x) 为偶函数"的
 - (A) 充分而不必要条件(B) 必要而不充分条件
 - (c) 充分必要条件

- (D) 既不充分也不必要条件
- (7) 在天文学中,天体的明暗程度可以用星等或亮度来描述. 两颗星的星等与亮度满足

 $m_2 - m_1 = \frac{5}{2} \lg \frac{E_1}{E_2}$, 其中星等为 m_k 的星的亮度为 E_k (k=1,2). 已知太阳的星等是

- 26.7, 天狼星的星等是-1.45, 则太阳与天狼星的亮度的比值为

- $(A) 10^{10.1}$
- (B) 10.1
- (C) $\lg 10.1$ (D) $10^{-10.1}$
- (8) 如图, A, B 是半径为 2 的圆周上的定点, P 为圆周上的动点, $\angle APB$ 是锐角, 大小为 β.图中阴影区域的面积的最大值为



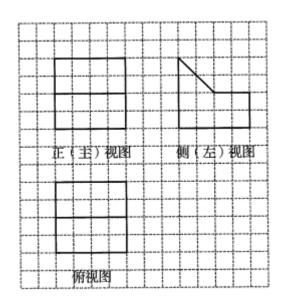
- (A) $4\theta + 4\cos\theta$
- (B) $4\theta + 4\sin\theta$
- (C) $2\theta + 2\cos\theta$ (D) $2\theta + 2\sin\theta$

第二部分(非选择题 共110分)

- 二、填空题共6小题,每小题5分,共30分。
- (9) 已知向量a = (-4, 3), b = (6, m), 且 $a \perp b$, 则 $m = ____$.

(10) 若 x, y 满足 $\begin{cases} x \le 2, \\ y \ge -1, \\ 4x - 3y + 1 \ge 0, \end{cases}$ 则 y - x的最小值为______, 最大值为

- (11) 设抛物线 $y^2=4x$ 的焦点为 F,准线为 I. 则以 F 为圆心,且与 I 相切的圆的方程为
- (12) 某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示. 如果网格纸上小 正方形的边长为1,那么该几何体的体积为.



- (13) 已知 I, m 是平面 α 外的两条不同直线. 给出下列三个论断:
 - $(1)I \perp m$; $(2)m//\alpha$; $(3)I \perp \alpha$.

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:

- (14) 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为 60 元/盒、65 元/盒、80 元/盒、90 元/盒. 为增加销量,李明对这四种水果进行促销: 一次购买水果的总价达到 120 元,顾客就少付 x 元. 每笔订单顾客网上支付成功后,李明会得到支付款的 80%.
 - ①当 x=10 时,顾客一次购买草莓和西瓜各 1 盒,需要支付______元;
 - ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.
- 三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
- (15) (本小题 13分)

在 $\triangle ABC$ 中, α =3,b-c=2, $\cos B=-\frac{1}{2}$.

- (I) 求 b, c 的值;
- (II) 求 sin (B+C) 的值.
- (16) (本小题 13 分)

设 $\{a_n\}$ 是等差数列, a_1 = - 10,且 a_2 +10, a_3 +8, a_4 +6 成等比数列.

- (I) 求{ a_n }的通项公式;
- (II) 记 $\{a_n\}$ 的前 n 项和为 S_n ,求 S_n 的最小值.

(17) (本小题 12 分)

改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月 A,B 两种移动支付方式的使用情况,从全校所有的 1000 名学生中随机抽取了 100 人,发现样本中 A,B 两种支付方式都不使用的有 5 人,样本中仅使用 A 和仅使用 B 的学生的支付金额分布情况如下:

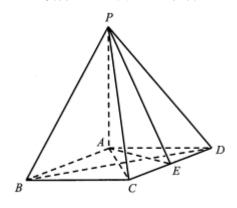
支付金额	不大于 2 000 元	大于 2 000 元		
支付方式				
仅使用 A	27 人	3 人		
仅使用 B	24 人	1 人		

- (I) 估计该校学生中上个月 A, B 两种支付方式都使用的人数;
- (II)从样本仅使用 B 的学生中随机抽取 1 人,求该学生上个月支付金额大于 2 000 元 的概率;
- (III) 已知上个月样本学生的支付方式在本月没有变化. 现从样本仅使用 B 的学生中随机抽查 1 人,发现他本月的支付金额大于 2 000 元. 结合(II)的结果,能否认为样本仅使用 B 的学生中本月支付金额大于 2 000 元的人数有变化? 说明理由.

(18) (本小题 14 分)

如图,在四棱锥 P-ABCD 中, PA 上平面 ABCD,底部 ABCD 为菱形, E 为 CD 的中点.

- (I) 求证: BD 上平面 PAC;
- (Ⅱ)若∠ABC=60°, 求证: 平面 PAB 上平面 PAE;
- (III) 棱 PB 上是否存在点 F, 使得 CF // 平面 PAE? 说明理由.



(19) (本小题 14 分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的右焦点为(1,0),且经过点A(0,1).

(I) 求椭圆c的方程;

(II)设O为原点,直线 $l: y = kx + t(t \neq \pm 1)$ 与椭圆C交于两个不同点P, Q, 直线AP与x轴交于点M, 直线AQ与x轴交于点N, 若|OM|•|ON|=2,求证:直线I经过定点.

(20) (本小题 14 分)

已知函数
$$f(x) = \frac{1}{4}x^3 - x^2 + x$$
.

- (I) 求曲线 y = f(x) 的斜率为 1 的切线方程;
- (II) 当 $x \in [-2,4]$ 时,求证: $x-6 \le f(x) \le x$;
- (III) 设 $F(x) = |f(x) (x+a)| (a \in \mathbf{R})$,记 F(x) 在区间 [-2,4] 上的最大值为 M(a) ,当 M(a) 最小时,求 a 的值.

(考生务必将答案答在答题卡上,在试卷上作答无效)

绝密★启用前

2019 年普通高等学校招生全国统一考试

数学(文)(北京卷)参考答案

一、选择题(共8小题,每小题5分,共40分)

- (1) C
- (2) D
- (3) A
- (4) B

- (5) D
- (6) C
- (7) A
- (8) B

二、填空题(共6小题,每小题5分,共30分)

(9) 8

(10) -3 1

(11) $(x-1)^2 + y^2 = 4$

(12) 40

(13) 若 $l \perp m, l \perp \alpha$,则 $m \parallel \alpha$. (答案不唯一)

- (14) 130 15
- 三、解答题(共6小题,共80分)
- (15) (共13分)

解: (I) 由余弦定理 $b^2 = a^2 + c^2 - 2ac \cos B$, 得

$$b^2 = 3^2 + c^2 - 2 \times 3 \times c \times \left(-\frac{1}{2}\right).$$

因为b=c+2,

所以
$$(c+2)^2 = 3^2 + c^2 - 2 \times 3 \times c \times \left(-\frac{1}{2}\right)$$
.

解得c=5.

所以b=7.

(II) 曲
$$\cos B = -\frac{1}{2}$$
 得 $\sin B = \frac{\sqrt{3}}{2}$.

由正弦定理得 $\sin A = \frac{a}{b} \sin B = \frac{3\sqrt{3}}{14}$.

在 $\triangle ABC$ 中, $B+C=\pi-A$.

所以
$$\sin(B+C) = \sin A = \frac{3\sqrt{3}}{14}$$
.

(16) (共13分)

解: (I)设 $\{a_n\}$ 的公差为d.

因为 $a_1 = -10$,

所以
$$a_2 = -10 + d$$
, $a_3 = -10 + 2d$, $a_4 = -10 + 3d$.

因为 a_2+10 , a_3+8 , a_4+6 成等比数列,

所以
$$(a_3+8)^2=(a_2+10)(a_4+6)$$
.

所以
$$(-2+2d)^2 = d(-4+3d)$$
.

解得d=2.

所以
$$a_n = a_1 + (n-1) d = 2n-12$$
.

(II) 由(I)知, $a_n = 2n-12$.

所以, 当 $n \ge 7$ 时, $a_n > 0$; 当 $n \le 6$ 时, $a_n \le 0$.

所以, S_n 的最小值为 $S_6 = -30$.

(17) (共12分)

解: (I)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.

故样本中A,B两种支付方式都使用的学生有100-30-25-5=40人.

估计该校学生中上个月A,B两种支付方式都使用的人数为 $\frac{40}{100}$ ×1000 = 400.

- (II) 记事件C为"从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于 2000元",则 $P(C) = \frac{1}{25} = 0.04$.
- (III) 记事件E为"从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2000元".

假设样本仅使用B的学生中,本月支付金额大于2000元的人数没有变化,则由(II)知,P(E) =0.04.

答案示例1: 可以认为有变化. 理由如下:

P(*E*) 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2000元的人数发生了变化. 所以可以认为有变化.

答案示例2: 无法确定有没有变化. 理由如下:

事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的. 所以无法确定有没有变化.

(18) (共14分)

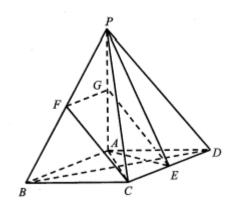
解: (I) 因为 PA 上平面ABCD,

所以 $PA \perp BD$.

又因为底面ABCD为菱形,

所以 $BD \perp AC$.

所以BD 上平面PAC.



(II) 因为PA 上平面ABCD,AE 二平面ABCD,

所以PALAE.

因为底面ABCD为菱形, ∠ABC=60°, 且E为CD的中点,

所以AE上CD.

所以AB_AE.

所以AE 上平面PAB.

所以平面PAB上平面PAE.

(Ⅲ) 棱PB上存在点F, 使得CF//平面PAE.

取F为PB的中点,取G为PA的中点,连结CF,FG,EG.

则FG//AB,且 $FG=\frac{1}{2}AB$.

因为底面ABCD为菱形,且E为CD的中点,

所以CE//AB,且 $CE=\frac{1}{2}AB$.

所以FG//CE, 且FG=CE.

所以四边形CEGF为平行四边形.

所以CF//EG.

因为CF⊄平面PAE, EG⊂平面PAE,

所以CF//平面PAE.

(19) (共14分)

解: (I) 由题意得, b2=1, c=1.

所以 $a^2=b^2+c^2=2$.

所以椭圆C的方程为 $\frac{x^2}{2} + y^2 = 1$.

(II) $\partial P(x_1, y_1)$, Q(x₂, y₂),

则直线AP的方程为 $y = \frac{y_1 - 1}{x_1}x + 1$.

令y=0,得点M的横坐标 $x_M = -\frac{x_1}{y_1-1}$.

又
$$y_1 = kx_1 + t$$
 , 从而 $|OM| = |x_M| = |\frac{x_1}{kx_1 + t - 1}|$.

同理,
$$|ON| = |\frac{x_2}{kx_2 + t - 1}|$$
.

则
$$x_1 + x_2 = -\frac{4kt}{1 + 2k^2}$$
 , $x_1 x_2 = \frac{2t^2 - 2}{1 + 2k^2}$

所以
$$|OM| \cdot |ON| = |\frac{x_1}{kx_1 + t - 1}| \cdot |\frac{x_2}{kx_2 + t - 1}|$$

$$= \left| \frac{x_1 x_2}{k^2 x_1 x_2 + k(t-1)(x_1 + x_2) + (t-1)^2} \right|$$

$$= \left| \frac{\frac{2t^2 - 2}{1 + 2k^2}}{k^2 \cdot \frac{2t^2 - 2}{1 + 2k^2} + k(t - 1) \cdot \left(-\frac{4kt}{1 + 2k^2} \right) + (t - 1)^2} \right|$$

$$= 2\left| \frac{1 + t}{1 - t} \right|.$$

 $\mathbb{Z}|OM|\cdot|ON|=2$,

所以
$$2|\frac{1+t}{1-t}|=2$$
.

解得t=0,所以直线I经过定点(0,0).

(20) (共14分)

解: (I) 由
$$f(x) = \frac{1}{4}x^3 - x^2 + x$$
 得 $f'(x) = \frac{3}{4}x^2 - 2x + 1$.
令 $f'(x) = 1$, 即 $\frac{3}{4}x^2 - 2x + 1 = 1$, 得 $x = 0$ 或 $x = \frac{8}{3}$.
又 $f(0) = 0$, $f(\frac{8}{3}) = \frac{8}{27}$,

所以曲线 y = f(x) 的斜率为 1 的切线方程是 $y = x 与 y - \frac{8}{27} = x - \frac{8}{3}$,

(II)
$$\Rightarrow g(x) = f(x) - x, x \in [-2, 4]$$
.

$$\Leftrightarrow g'(x) = 0 \ \text{#} \ x = 0 \ \text{#} \ x = \frac{8}{3}.$$

g'(x), g(x)的情况如下:

x	-2	(-2,0)	0	$(0,\frac{8}{3})$	$\frac{8}{3}$	$(\frac{8}{3},4)$	4
g'(x)		+		Ι		+	
g(x)	-6	7	0	7	$-\frac{64}{27}$	7	0

所以g(x)的最小值为-6,最大值为0.

故
$$-6 \le g(x) \le 0$$
, 即 $x-6 \le f(x) \le x$.

(Ⅲ) 由(Ⅱ)知,

当a<-3时, $M(a)\geq F(0)=|g(0)-a|=-a>3$;

当a > -3时, $M(a) \ge F(-2) = |g(-2) - a| = 6 + a > 3$;

综上, 当M(a)最小时, a = -3.