重庆市第八中学 2021 届高考适应性月考卷(五) 数学参考答案

一、选择题(本大题共8小题,每小题5分,共40分)

题号	1	2	3	4	5	6	7	8
答案	A	С	В	D	С	С	A	В

【解析】

- 1. $z = \frac{2-i}{1+2i} + 1 = 1-i \Rightarrow \overline{z} = 1+i$, 故共轭复数 \overline{z} 对应的点在第一象限, 故选 A.
- 2. "若 $\neg p$,则q"即"若 $x \le 2$,则x < 3"是真命题,故选C.
- 3. $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \lambda \overrightarrow{AC} = \frac{2}{3}\overrightarrow{AD} + \lambda \overrightarrow{AC}$, 又 G 为线段 CD 上一点,则 $\frac{2}{3} + \lambda = 1 \Rightarrow \lambda = \frac{1}{3}$,故选 B.
- 4. 设第 n 个单音的频率为 a_n ,因为每一个单音与前一个单音频率比为 $\sqrt[4]{2}$,所以 $\frac{a_n}{a_{n-1}} = \sqrt[4]{2}$ $(n \geq 2, n \in \mathbb{N}^*)$,又 $a_1 = f$,故数列 $\{a_n\}$ 是首项为 f ,公比为 $\sqrt[4]{2}$ 的等比数列,则 $a_5 = a_1 q^4 = f(\sqrt[4]{2})^4 = 2^{\frac{1}{3}} f$,故选 D.
- 5. $\therefore AP \perp BP$, $\therefore \angle APO = 45^{\circ}$,又 $AO = \sqrt{2}$, $\therefore PO = 2$,即 P 在以 O(0, 0) 为圆心,以 2 为半径的圆上,又点 P 在直线 y = kx + 4 上, $\therefore \frac{|4|}{\sqrt{k^2 + 1}} \le 2$,解得 $k \ge \sqrt{3}$ ($k \in \mathbf{R}^+$),即实数 k 的最小值为 $\sqrt{3}$,故选 C.
- 6. 从 1, 2, 3, 5, 6, 7 中任取三个不同数字形成三位数个数 $A_6^3 = 120$,将 6 个数分成 3 组, 1 与 7, 2 与 6, 3 与 5,则可以与剩下的三个数字所形成的某个三位数之和为 888 的三位数的个数为 $C_2^1 \cdot C_2^1 \cdot C_2^1 \cdot A_3^3 = 48$,故所求概率为 $\frac{48}{120} = \frac{2}{5}$,故选 C.
- 7. $\sin 10^\circ + \frac{\sqrt{3}}{4} \tan 10^\circ = \frac{2\sin 20^\circ + \sqrt{3}\sin 10^\circ}{4\cos 10^\circ} = \frac{2\sin(30^\circ 10^\circ) + \sqrt{3}\sin 10^\circ}{4\cos 10^\circ} = \frac{\cos 10^\circ}{4\cos 10^\circ} = \frac{1}{4}$, 故选 A.
- 8. 由 f(1+x) = f(1-x) , 得 f(-x) = f(2+x) ① ; 由 f(2+x) = -f(2-x) , 得 f(-x) = -f(4+x) ② . 所以 f(2+x) = -f(4+x) ,即 f(x+2) = -f(x) ③ ,从而 f(x+4) = -f(x+2)

=f(x) ④,所以 f'(x+4)=f'(x),故 f'(x) 是周期函数,周期为 4. 又由①④,得 f(-x)=f(2+x)=-f(x),所以 f(x)=-f(-x), f'(x)=-[f(-x)]'=f'(-x),故 f'(x) 是偶函数,故选 B.

二、选择题(本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分)

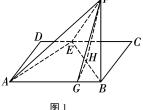
题号	9	10	11	12	
答案	AC	ВС	ABC	BCD	

【解析】

- 9. 由图得高一年级每天的平均体育锻炼时间从小到大依次为 30, 35, 55, 65, 70, 70, 72, 高二年级每天的平均体育锻炼时间从小到大依次为 30, 30, 35, 65, 83, 88, 90, 故 A 正确, B. 错误, 应为 65; C. 正确, D. 错误, 故选 AC.
- 10. 由于 S_n 是等差数列 $\{a_n\}$ 的前 n 项和, $S_{2019} > S_{2021} > S_{2020}$,所以 $S_{2021} S_{2020} = a_{2021} > 0$, $S_{2021} S_{2020} = a_{2021} > 0$, $S_{2021} S_{2019} = a_{2021} + a_{2020} < 0$, 即 $-a_{2020} > a_{2021} > 0$ ①, 故 $|a_{2020}| > |a_{2021}|$, 故 A 错误;又 $a_{2019} + a_{2022} = a_{2020} + a_{2021} < 0$, 所以 $-a_{2019} > a_{2022} > 0$ ②, 由不等式性质知①×②得 $a_{2019} a_{2020} > a_{2021} a_{2022}$,故 B 正确;由题 $\frac{1}{b_n} = \frac{1}{a_n a_{n+1} a_{n+2}}$,则显然 d > 0,即数列 $\{a_n\}$ 单调递 增,且满足 $a_1 < 0$, $a_2 < 0$, …, $a_{2020} < 0$, $a_{2021} > 0$, … , $\frac{1}{b_1}$, $\frac{1}{b_2}$, … , $\frac{1}{b_{2018}}$ 都是负数; $\frac{1}{b_{2019}} > 0$, $\frac{1}{b_{2020}} < 0$; $\frac{1}{b_{2021}}$, …都是正数,且 $\frac{1}{b_{2019}} + \frac{1}{b_{2020}} < 0$, $\frac{1}{a_{n+1} a_{n+2}}$, $\frac{1}{a_{n+1} a_{n+2}}$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_{n+1} a_{n+2}} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_1 a_2} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_1 a_2} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{1}{a_1 a_2} \right)$, $T_n = \frac{1}{2d} \left(\frac{1}{a_1 a_2} \frac{$
- 而 $\frac{1}{a_{2020}a_{2021}}$ < 0, $\therefore T_{2019} = \frac{1}{2d} \left(\frac{1}{a_1a_2} \frac{1}{a_{2020}a_{2021}} \right) > \frac{1}{2da_1a_2}$,故 D 选项错误,故选 BC.
- 11. 对选项 A, $g(x) = \ln 2x = \ln x + \ln 2 = f(x) + \ln 2$, 所以 g(x) 的图象可由 f(x) 的图象向上平移 $\ln 2$ 个单位得到; 对于选项 B, $g(x) = 2e^x = e^{x + \ln 2} = f(x + \ln 2)$, 所以 g(x) 的图象可由 f(x) 的图象向左平移 $\ln 2$ 个单位得到; 对于选项 C, $g(x) = \cos 2x = \sin \left(2x + \frac{\pi}{2}\right) = \sin 2\left(x + \frac{\pi}{4}\right) = f\left(x + \frac{\pi}{4}\right)$, 所以 g(x) 的图象可由 f(x) 的图象向左平移 $\frac{\pi}{4}$ 个单位得到; 对于

选项 D, $g(x) = \sin 2x$ 的图象只能由 $f(x) = \sin x$ 的图象通过变换"纵坐标不变,横坐标压缩为原来的 $\frac{1}{2}$ "得到,不能通过平移变换实现,故选 ABC.

12. 如图 1, 对 A: 若 BF \bot 平面 AEF, 则有 BF \bot AF , 在 $Rt \triangle AFB$ 中, 易知 $BG=t=\frac{1}{2}$; 故 A 错误; 对 B: 若 AF \bot 平面 BEF,则



有 $AF \perp FB$, $AF \perp FE$, 在 $Rt\triangle AFB$ 中, $AF = \sqrt{3}$, 在 $Rt\triangle AEF$ 中, 由勾股定理知: $AF^2 + EF^2 = AE^2$,即 $(\sqrt{3})^2 + s^2 = (2-s)^2 + 1^2$,解得 $s = \frac{1}{2}$,故 B 正确; 对 C: 若平面 $BEF \perp$ 平面 ABED,过 F 作 $FH \perp EB$,垂足为 H ,连接 HG ,易知 $FH \perp$ 平面 ABED, \therefore $FH \perp AB$, 又 $AB \perp FG$, \therefore $AB \perp$ 平面 FHG , \therefore $AB \perp HG$. \therefore s = 1 , \therefore 在等腰 $Rt\triangle FEB$ 中, $BH = \frac{\sqrt{2}}{2}$, 在 $Rt\triangle BGH$ 中, $BG = t = \frac{1}{2}$,故 C 正确; 对 D: 若平面 $AFB \perp$ 平面 ABED , $BE \perp$ 平面 ABED 中连接 $BE \perp$, $BE \perp$ 中面 $BE \perp$

三、填空题(本大题共4小题,每小题5分,共20分)

题号	13	14	15	16
答案	$\frac{8\sqrt{3}}{3}$	$2\sqrt{3}$	$\frac{5}{2}$	$\left(1,\frac{\sqrt{5}}{2}\right]$

【解析】

- 13. 设圆锥的母线长为 l,底面半径为 r,因为圆锥的侧面展开图的扇形的弧长等于圆锥底面周长,所以 $\frac{1}{2} \times 2\pi \cdot l = 2\pi r$,解得 l = 2r,所以圆锥的高为 $h = \sqrt{l^2 r^2} = \sqrt{(2r)^2 r^2} = \sqrt{3}r$,因为圆锥的侧面积为 8π ,则 $\pi r l = 2\pi r^2 = 8\pi$,解得 r = 2,所以该圆锥的体积为 $\frac{1}{3}\pi r^2 \cdot h = \frac{1}{3}\pi 2^2 \cdot 2\sqrt{3} = \frac{8\sqrt{3}}{3}$.
- 14 . $\tan A + \tan C + \sqrt{3} \tan A \cdot \tan C = \sqrt{3} \Rightarrow \tan A + \tan C = \sqrt{3}(1 \tan A \cdot \tan C)$, $\tan(A + C) = \frac{\tan A + \tan C}{1 \tan A \cdot \tan C} = \sqrt{3}$, $0 < A + C < \pi \Rightarrow A + C = \frac{\pi}{3}$, X

$$\begin{cases} \sin A \cdot \cos C = \frac{\sqrt{3}}{4}, \\ \sin(A+C) = \sin A \cdot \cos C + \cos A \cdot \sin C = \frac{\sqrt{3}}{2}, \end{cases} \quad \text{id} \quad \cos A \cdot \sin C = \frac{\sqrt{3}}{4}, \quad \text{id} \quad \sin(A-C) = 0 \Rightarrow$$

$$A = C = \frac{\pi}{6}$$
, $\forall a = c = 2$, $b = \sqrt{a^2 + c^2 + ac} = 2\sqrt{3}$.

- 15. 由 $\frac{1}{2a} + \frac{1}{b} = \frac{1}{ab}$,得 2a + b = 2,所以 $ab = \frac{1}{2} \cdot 2ab \leqslant \frac{1}{2} \cdot \left(\frac{2a + b}{2}\right)^2 = \frac{1}{2}$,当且仅当 $a = \frac{1}{2}$,b = 1时,等号成立.从从而 $4a^2 + ab + b^2 = (2a + b)^2 3ab = 4 3ab \geqslant \frac{5}{2}$,故 $4a^2 + ab + b^2$ 的最小值为 $\frac{5}{2}$.
- 16. 设 $P(x_0, y_0)$, 设 $y = -\frac{b}{a}x + d$ 是过点 P 且与渐近线 $y = -\frac{b}{a}x$ 平行的直线,交 y 轴于点 D(0, d) , 与 渐 近 线 $y = \frac{b}{a}x$ 交 于 $M(x_1, y_1)$, 则 $d = \frac{bx_0 + ay_0}{a}$, $x_1 = \frac{bx_0 + ay_0}{2b}$, $\therefore S_{\triangle DOM} = \frac{1}{2}|x_1 \cdot d|$, 平 行 四 边 形 OMPN 的 面 积 $S_{aOMPN} = |x_0 \cdot d| |x_1 \cdot d| = |x_0 x_1| \cdot d = \left| \frac{(bx_0 ay_0)(bx_0 + ay_0)}{2ab} \right| = \frac{a^2b^2}{2ab} = \frac{ab}{2}$, $\therefore \triangle OMN$ 的面积 $S = \frac{ab}{4} \geqslant \frac{b^2}{2}$, 解得 $\frac{b}{a} \leqslant \frac{1}{2}$, 所以离
- 四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)
- 17. (本小题满分 10 分)

解:由条件,知 $\cos x \neq 1$,所以 $x \neq 2k\pi$, $k \in \mathbb{Z}$.

$$f(x) = \frac{\cos 2x - 2\cos x + 1}{\cos x - 1}$$

$$=\frac{2\cos^2 x - 2\cos x}{\cos x - 1}$$

 $=2\cos x. \tag{3 }$

(1) 因为 $\cos x \in [-1, 1)$, 所以 f(x) 的值域为[-2, 2).

......(5 分)

(2)
$$y = f\left(\frac{\pi}{3} - 2x\right) = 2\cos\left(\frac{\pi}{3} - 2x\right) = 2\cos\left(2x - \frac{\pi}{3}\right).$$

$$\diamondsuit 2k\pi - \pi < 2x - \frac{\pi}{3} < 2k\pi , \quad k \in \mathbf{Z} .$$

得
$$k\pi - \frac{\pi}{3} < x < k\pi + \frac{\pi}{6}$$
 , $k \in \mathbb{Z}$.

又因为
$$-\frac{\pi}{2} \le x \le 0$$
,所以 $-\frac{\pi}{3} < x \le 0$.

故
$$y = f\left(\frac{\pi}{3} - 2x\right)$$
在 $\left[-\frac{\pi}{2}, -\frac{\pi}{3}\right]$ 上单调递减,在 $\left(-\frac{\pi}{3}, 0\right]$ 上单调递增.

......(10分)

18. (本小题满分 12 分)

解: (1) 由题:
$$a_{n+1} - a_n = a_{n+2} - a_{n+1}$$
, 因为 $a_1 = 3$, $a_2 = 7$, $a_2 - a_1 = 4$,

所以 $a_{n+1}-a_n=4$,则数列 $\{a_n\}$ 是以3为首项,4为公差的等差数列,

则
$$a_n = 3 + 4(n-1) = 4n-1$$
,

又因为
$$S_n = 2b_n - 1$$
且 $S_{n-1} = 2b_{n-1} - 1$ ($n \ge 2$),则 $b_n = 2b_{n-1}$,且 $b_1 = 1$,

所以数列 $\{b_n\}$ 是以1为首项,2为公比的等比数列,则 $b_n=2^{n-1}$.

(2) 由 (1), 设数列 $\{c_n\}$ 的前 50 项中有 m 项来源于 $\{b_n\}$, 有 n 项来源于 $\{a_n\}$,

$$\text{for } \begin{cases} b_m < a_n < b_{m+1}, \\ m+n=50, \end{cases} \quad \text{for } \begin{cases} 2^{m-1} < 4n-1 < 2^m, \\ m+n=50, \end{cases}$$

解得m=8, n=42,

故
$$c_1 + c_2 + \dots + c_{50} = (a_1 + a_2 + \dots + a_{42}) + (b_1 + b_2 + \dots + b_8)$$

$$=42\times3+\frac{42\times41}{2}\times4+\frac{1\times(1-2^8)}{1-2}=3825.$$

······ (12 分)

19. (本小题满分 12 分)

解: (1) 事件 *AB* 包含 6 种情况: 甲同学第 1, 2, 4 天 6: 30 之前到校; 甲同学第 1, 2, 5 天 6: 30 之前到校; 甲同学第 2, 3, 5 天 6: 30 之前到校; 甲同学第 1, 3, 4 天 6: 30 之前到校; 甲同学第 1, 4, 5 天 6: 30 之前到校; 甲同学第 2, 4, 5 天 6: 30 之前到校,

故
$$P(AB) = 6\left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^2 = \frac{16}{81}$$
.

$$\mathbb{X} P(A) = C_5^3 \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^2 = \frac{80}{243},$$

所以
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{3}{5}$$
. (4分)

或
$$P(B|A) = \frac{6}{C_5^3} = \frac{3}{5}$$
. (4分)

(2) 对于每一天甲乙同学同时在 6: 30 之前到校的概率为 $\frac{1}{2}$,

(3) 随机变量 Y的所有可能的取值为 2, 3, 4, 5,

$$\text{If } P(Y=2) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}, \quad P(Y=3) = 3\left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^4 = \frac{9}{16},$$

$$P(Y=4) = 4\left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^5 = \frac{9}{32}, \quad P(Y=5) = \left(\frac{1}{2}\right)^5 = \frac{1}{32},$$

因此, 随机变量 Y 的分布列为

Y	2	3	4	5
P	$\frac{1}{8}$	9 16	$\frac{9}{32}$	$\frac{1}{32}$

则
$$E(Y) = \frac{1}{4} + \frac{27}{16} + \frac{9}{8} + \frac{5}{32} = \frac{103}{32}$$
. (12分)

20. (本小题满分 12 分)

解: (1) 由离心率为
$$\frac{1}{2}$$
, 得 $\frac{c^2}{a^2} = \frac{1}{4} = \frac{a^2 - b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = \frac{3}{4}$,

 $\nabla N(4, 0)$,

直线 PN: $y = -\frac{1}{2}x + 2$ 与椭圆联立得到: $x^2 - 2x + 4 - 3\lambda = 0$,

由直线 PN 与椭圆 C 有且只有一个公共点(相切)得 $\Delta = 4 - 4(4 - 3\lambda) = 0 \Rightarrow \lambda = 1$,

椭圆
$$C$$
 的方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$. (5 分)

(2)
$$P(1, \frac{3}{2})$$
, $Q(-1, -\frac{3}{2})$, 注意到 $Q \ni P$ 均在椭圆上,

设
$$M(x_0, y_0)$$
,则 $k_{MP} \cdot k_{MQ} = \frac{y_0 - \frac{3}{2}}{x_0 - 1} \cdot \frac{y_0 + \frac{3}{2}}{x_0 + 1} = \frac{y_0^2 - \frac{9}{4}}{x_0^2 - 1} = \frac{3 - \frac{3}{4}x_0^2 - \frac{9}{4}}{x_0^2 - 1} = -\frac{3}{4}$

设直线 PM:
$$y = k(x-1) + \frac{3}{2}$$
, QM: $y = -\frac{3}{4k}(x+1) - \frac{3}{2}$,

得
$$A\left(4, 3k + \frac{3}{2}\right), B\left(4, -\frac{15}{4k} - \frac{3}{2}\right) \Rightarrow |AB| = \left|3k + \frac{15}{4k} + 3\right| \left(k \neq -\frac{1}{2}, \frac{3}{2}\right),$$

$$3k + \frac{15}{4k} \ge 3\sqrt{5}(k > 0)$$
 或 $3k + \frac{15}{4k} \le -3\sqrt{5}(k < 0)$,

$$A\left(4, \ 3k + \frac{3}{2}\right), \quad B\left(4, \ -\frac{15}{4k} - \frac{3}{2}\right) \Rightarrow |AB| = \left|3k + \frac{15}{4k} + 3\right|_{min} = |3\sqrt{5} - 3|,$$

当且仅当
$$\begin{cases} 3k = \frac{15}{4k}, \Rightarrow k = -\frac{\sqrt{5}}{2} \text{ 时}, \\ k < 0 \end{cases}$$

$$|AB|_{\min} = 3\sqrt{5} - 3$$
. (12 $\%$)

21. (本小题满分 12 分)

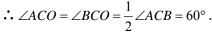
(1) 证明: 如图 2, 连接 OC, 交 AB 于点 D,

O 为 $\triangle ABC$ 的外心,

$$AC = BC = 1$$
, $OA = OB = OC$,

故 $\triangle OAC \cong \triangle OBC$,

$$\therefore \angle ACO = \angle BCO = \frac{1}{2} \angle ACB = 60^{\circ}.$$



故 $\triangle OAC$ 和 $\triangle OBC$ 都是等边三角形,

故平行四边形 ACBO 为菱形,

故 OB 与 AC 平行且相等.

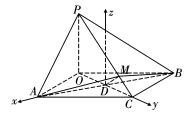


图 2

再由 $AC \subset$ 平面 PAC,OB 不在平面 PAC 内,可得 BO// 平面 PAC.

因为BO到平面PAC的距离即为点O到平面PAC的距离d,

:
$$V_{P-OAC} = V_{O-PAC}$$
, $\mathbb{E} \frac{1}{3} \times \frac{\sqrt{3}}{4} \times \frac{\sqrt{6}}{2} = \frac{1}{3} \times \frac{3}{4} \times d$,

(2) 解: BC//平面POA, $BC \subset$ 平面PBC,

平面 $PAO \cap$ 平面 PBC = l , $\therefore BC//l$,

以点
$$D$$
 为原点建系如图,易得 $\overrightarrow{BC} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$,

设 $\overrightarrow{PM} = \lambda \overrightarrow{PC}$,

$$\therefore \overrightarrow{BM} = \overrightarrow{BP} + \overrightarrow{PM} = \left(\frac{\sqrt{3}}{2}, \ \lambda - \frac{1}{2}, \ \frac{\sqrt{6}}{2}(1 - \lambda)\right), \quad \overrightarrow{BA} = (\sqrt{3}, \ 0, \ 0),$$

设 $\overline{n_1} = (x_1, y_1, z_1)$ 为平面 ABM 的法向量,

$$\therefore \begin{cases} x_1 = 0, \\ \left(\frac{2\lambda - 1}{2}\right) y_1 + \frac{\sqrt{6}}{2} (1 - \lambda) z_1 = 0, \end{cases} \quad \text{All } \vec{n}_1 = \left(0, 2, \frac{\sqrt{6}}{3} \left(\frac{1 - 2\lambda}{1 - \lambda}\right)\right),$$

此时 $\overrightarrow{n_1} = (0, 2, 0)$, $M\left(0, 0, \frac{\sqrt{6}}{4}\right)$,易得平面BMO的法向量 $\overrightarrow{n_2} = (\sqrt{2}, \sqrt{6}, -2)$,

$$\therefore \cos \theta = \frac{\sqrt{2}}{2}, \quad \sin \theta = \frac{\sqrt{2}}{2}. \tag{12 }$$

22. (本小题满分 12 分)

- (1) \Re : $f'(x) = ae^{ax} 1$,
- ①当 $a \le 0$ 时,f'(x) < 0,f(x)在**R**上单减,不存在极值,舍去;

②当
$$a>0$$
时,令 $f'(x)=0$,得 $x=-\frac{1}{a}\ln a$,又由 $f'(x)$ 在**R**上单增知,

当
$$x \in \left(-\infty, -\frac{1}{a}\ln a\right)$$
时, $f'(x) < 0$, $f(x)$ 单减;

数学参考答案 • 第 8 页 (共 9 页)

 $\therefore f(x)$ 在 $x = -\frac{1}{a} \ln a$ 处取极小值,符合题意.

(2) 证明: 由(1)知, 当a=1时, f(x)在x=0处取极小值 f(0)=0,

故有 $f(x) = e^x - x - 1 \ge 0$, 当且仅当 x = 0 时等号成立, 即 $e^x > 1 + x(x \ne 0)$,

取
$$x = -\frac{k}{n+m}$$
 , 有 $1 - \frac{k}{n+m} < e^{\frac{-k}{n+m}}$, 即 $\left(1 - \frac{k}{n+m}\right)^{n+m} < e^{-k} = \frac{1}{e^k}$ 成立;

其中 $(k, n, m \in \mathbb{N}_+, k \in \{1, 2, \dots, m\}),$

对两边求和有
$$\sum_{k=1}^{m} \left(1 - \frac{k}{n+m}\right)^{n+m} < \sum_{k=1}^{m} \frac{1}{e^k}$$
,

即有
$$\sum_{k=1}^{m} \left(\frac{n+m-k}{n+m} \right)^{n+m} < \frac{\frac{1}{e} \left(1 - \frac{1}{e^m} \right)}{1 - \frac{1}{e}} = \frac{1}{e-1} - \frac{1}{e-1} \cdot \frac{1}{e^m} < \frac{1}{e-1}$$
成立,

$$\mathbb{E} \prod_{k=1}^{m} (n+m-k)^{n+m} < \frac{(n+m)^{n+m}}{e-1},$$

也即
$$n^{n+m} + (n+1)^{n+m} + \dots + (n+m-1)^{n+m} < \frac{(n+m)^{n+m}}{e-1}$$
成立.

......(12 分)