准考证号	姓名	
性/5 川 5	姓	٠

(在此卷上答题无效)

2021年3月福州市高中毕业班质量检测

数学试题

注意事项:

- 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的"准考证号、姓名"与考生本人准考证号、姓名是否一致.
- 2. 第 I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号. 第 II 卷用 0.5 毫米黑色签字笔在答题卡上书写作答. 在试题卷上作答,答案无效.
- 3. 考试结束,考生必须将试题卷和答题卡一并交回.

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

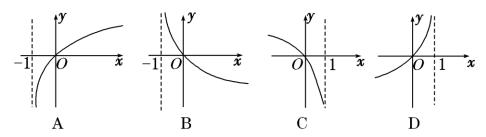
A. $\{1,3\}$ B. $\{2,4\}$ C. $\{3,5\}$ D. $\{1,3,5\}$

2.	设复数 $z = a + bi$ ($a \in \mathbb{Z}, b \in \mathbb{Z}$) ,则满足 $ z - 1 \le 1$ 的复数 z 有				
	A . 7个	B . 5 个	C . 4个	D . 3个	
3.	. " <i>m</i> ≤5"是" <i>m</i> ² -4 <i>m</i> -5≤0"的				

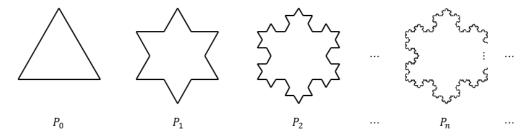
1. 已知集合 $A = \{1, 2, 3, 4, 5\}$, $B = \{x | x = 2k + 1, k \in A\}$, 则 $A \cap B = \{x | x = 2k + 1, k \in A\}$

A. 充分而不必要条件

B. 必要而不充分条件


C. 充分必要条件

D. 既不充分也不必要条件


4. 若抛物线 $y = mx^2$ 上一点 (t,2) 到其焦点的距离等于3,则

A. $m = \frac{1}{4}$ B. $m = \frac{1}{2}$ C. m = 2 D. m = 4

5. 已知函数 $f(x) = \ln x$,则函数 $y = f(\frac{1}{1-x})$ 的图象大致为

- 6. 在 $\triangle ABC$ 中,E为AB 边的中点,D为AC 边上的点,BD,CE 交于点 F . 若 $\overrightarrow{AF} = \frac{3}{7}\overrightarrow{AB} + \frac{1}{7}\overrightarrow{AC}$,则 $\frac{AC}{AD}$ 的值为
 - A . 2
- B . 3
- C . 4
- D . 5
- 7. 分形几何学是一门以不规则几何形态为研究对象的几何学. 如图,有一列曲线 P_0 , P_1 ,…, P_n ,…. 已知 P_0 是边长为 1 的等边三角形, P_{k+1} 是对 P_k 进行如下操作而得到: 将 P_k 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k=0,1,2,…). 记 P_n 的周长为 L_n 、所围成的面积为 S_n . 对于 $\forall n \in \mathbb{N}$,下列结论正确的是

A. $\left\{\frac{S_n}{L_n}\right\}$ 为等差数列

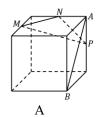
B. $\left\{\frac{S_n}{L_n}\right\}$ 为等比数列

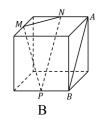
C. $\exists M > 0$, 使 $L_n < M$

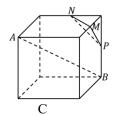
- D. $\exists M > 0$, 使 $S_n < M$
- 8. 已知函数 $f(x) = 2\sin(\omega x + \varphi)$ ($\omega > 0, |\varphi| < \frac{\pi}{2}$) 的图象过点 (0,1), 在区间 $\left(\frac{\pi}{12}, \frac{\pi}{3}\right)$ 上为单调函数,把 f(x) 的图象向右平移 π 个单位长度后与原来的图象重合. 设 $x_1, x_2 \in \left(\frac{\pi}{2}, \frac{5\pi}{6}\right)$ 且 $x_1 \neq x_2$,若 $f(x_1) = f(x_2)$,则 $f(x_1 + x_2)$ 的值为
 - A. $-\sqrt{3}$
- B . -1
- C = 1
- D. $\sqrt{3}$

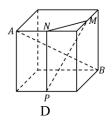
- 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
- 9. "一粥一饭,当思来之不易",道理虽简单,但每年我国还是有 2 000 多亿元的餐桌浪费,被倒掉的食物相当于 2 亿多人一年的口粮.为营造"节约光荣,浪费可耻"的氛围,某市发起了"光盘行动".某机构为调研民众对"光盘行动"的

认可情况,在某大型餐厅中随机调查了90位来店就餐的客


人,制成如右所示的列联表,通过计算得到 K^2 的观测值为


	认可	不认可
40 岁以下	20	20
40 岁以上 (含 40 岁)	40	10


9. 己知 $P(K^2 \ge 6.635) = 0.010$, $P(K^2 \ge 10.828) = 0.001$,


则下列判断正确的是

- A. 在该餐厅用餐的客人中大约有66.7%的客人认可"光盘行动"
- B. 在该餐厅用餐的客人中大约有99%的客人认可"光盘行动"
- C. 有99%的把握认为"光盘行动"的认可情况与年龄有关
- D. 在犯错误的概率不超过 0.001 的前提下,认为"光盘行动"的认可情况与年龄有关
- 10. 如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,P为所在棱的中点,则在这四个正方体中,直线 AB // 平面 MNP 的是

11. 已知 P 是双曲线 $E: \frac{x^2}{4} - \frac{y^2}{5} = 1$ 在第一象限上一点, F_1 , F_2 分别是 E 的左、右焦点,

 $\triangle PF_1F_2$ 的面积为 $\frac{15}{2}$.则以下结论正确的是

- A . 点 P 的横坐标为 $\frac{5}{2}$
- B . $\frac{\pi}{3} < \angle F_1 P F_2 < \frac{\pi}{2}$
- C. $\triangle PF_1F_2$ 的内切圆半径为1
- D. $\angle F_1 P F_2$ 平分线所在的直线方程为 3x 2y 4 = 0

- 12. 在数学中,双曲函数是一类与三角函数类似的函数. 最基本的双曲函数是双曲正弦函数 $\sinh x = \frac{e^x e^{-x}}{2}$ 和双曲余弦函数 $\cosh x = \frac{e^x + e^{-x}}{2}$ 等. 双曲函数在物理及生活中有着某些重要的应用,譬如达 芬奇苦苦思索的悬链线(例如固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线即为悬链线)问题,可以用双曲余弦型函数来刻画. 则下列结论正确的是
 - A $\cosh^2 x + \sinh^2 x = 1$
 - $B \cdot y = \cosh x$ 为偶函数,且存在最小值
 - C . $\forall x_0 > 0$, $\sinh(\sinh x_0) > \sinh x_0$
 - D. $\forall x_1, x_2 \in \mathbf{R}, \exists x_1 \neq x_2, \frac{\sinh x_1 \sinh x_2}{x_1 x_2} > 1$

第Ⅱ卷

注意事项:

用0.5毫米黑色签字笔在答题卡上书写作答:在试题卷上作答,答案无效:

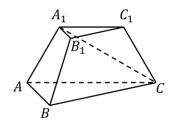
- 三、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分. 把答案填在题中的横线上.
- 13. 设 x, y 满足约束条件 $\begin{cases} x+y-4 \leq 0, \\ 2x+y-6 \geq 0, \\ y \geq 0, \end{cases}$ 的取值范围为_____.
- 14. $\left(x + \frac{1}{\sqrt{x}}\right)^5$ 的展开式中, $\frac{1}{x}$ 的系数为______.
- 15. 在三棱锥 P-ABC 中,侧面 PAC 与底面 ABC 垂直, $\angle BAC = 90^{\circ}$, $\angle PCA = 30^{\circ}$, AB = 3, PA = 2 . 则三棱锥 P-ABC 的外接球的表面积为______.
- 16. 已知圆 C 的方程为 $(x-2)^2 + (y-1)^2 = 4$,过点 M(2,0) 的直线与圆 C 交于 P,Q 两点(点Q 在第四象限). 若 $\angle QMO = 2\angle QPO$,则点 P 的纵坐标为______.

四、解答题: 本大题共 6 小题, 共 70 分. 解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分 10 分)

在① $S_n = 2a_n + 1$; ② $a_1 = -1, \log_2(a_n a_{n+1}) = 2n - 1$; ③ $a_{n+1}^2 = a_n a_{n+2}$, $S_2 = -3$, $a_3 = -4$ 这 三个条件中任选一个,补充在下面问题的横线上,并解答.

问题: 已知单调数列 $\{a_n\}$ 的前n项和为 S_n ,且满足_____


- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\{-na_n\}$ 的前n项和 T_n .
- 18. (本小题满分 12 分)

在 $\triangle ABC$ 中,内角 A, B, C 所对的边分别为 a, b, c, $a+b=c\cos B-b\cos C$.

- (1) 求角C的大小;
- (2) 设 CD 是 $\triangle ABC$ 的角平分线,求证: $\frac{1}{CA} + \frac{1}{CB} = \frac{1}{CD}$.
- 19. (本小题满分12分)

如图,在三棱台 $ABC - A_iB_iC_i$ 中, $AA_i = A_iC_i = CC_i = 1$, AC = 2, $A_iC \perp AB$.

- (1) 求证: 平面 *ACC*₁*A*₁ 上 平面 *ABB*₁*A*₁;
- (2) 若 $\angle BAC = 90^{\circ}$, AB = 1, 求二面角 $A BB_1 C$ 的正弦值.

20. (本小题满分 12 分)

已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右顶点分别为 $A_1\left(-\sqrt{2},0\right), A_2\left(\sqrt{2},0\right)$,上、下顶点分别为 B_1 , B_2 , 四边形 $A_1B_2A_2B_1$ 的周长为 $4\sqrt{3}$.

- (1) 求 E 的方程:
- (2)设P为E上异于 A_1 , A_2 的动点,直线 A_1P 与y轴交于点C,过 A_1 作 A_1D // PA_2 ,交y轴于点D. 试探究在x轴上是否存在一定点Q,使得 $\overrightarrow{QC} \cdot \overrightarrow{QD} = 3$,若存在,求出点Q坐标:若不存在,说明理由.
- 21. (本小题满分 12 分)

数学试题 (第5页 共6页)

从 2021 年 1 月 1 日起某商业银行推出四种存款产品,包括协定存款、七天通知存款、结构性存款及大额存单.协定存款年利率为 1.68%,有效期一年,服务期间客户帐户余额须不少于 50 万元,多出的资金可随时支取;七天通知存款年利率为 1.8%,存期须超过 7 天,支取需要提前七天建立通知;结构性存款存期一年,年利率为 3.6%;大额存单,年利率为 3.84%,起点金额 1 000 万元.(注:月利率为年利率的十二分之一)

己知某公司现有 2020 年底结余资金 1 050 万元.

- (1) 若该公司有 5 个股东,他们将通过投票的方式确定投资一种存款产品,每个股东只能选择一种产品目不能弃权,求恰有 3 个股东选择同一种产品的概率:
- (2)公司决定将 550 万元作协定存款,于 2021年1月1日存入该银行账户,规定从 2月份起,每月首日支取 50 万元作为公司的日常开销.将余下 500 万元中的 x 万元作七天通知存款,准备投资高新项目,剩余(500-x)万元作结构性存款.
 - ①求 2021 年全年该公司从协定存款中所得的利息;
- ②假设该公司于 2021 年 7 月 1 日将七天通知存款全部取出,本金x万元用于投资高新项目,据专业机构评估,该笔投资到 2021 年底将有 60%的概率获得 $-\frac{x^3}{30\,000}$ + $0.02x^2$ + 0.135x 万元的收益,有 20%的概率亏损 0.27x 万元,有 20%的概率保本。问:x 为何值时,该公司 2021 年存款利息和投资高新项目所得的总收益的期望最大,并求最大值。
- 22. (本小题满分 12 分)

己知
$$f(x) = x^2 e^x - 1$$
.

- (1) 判断 f(x) 的零点个数,并说明理由;
- (2) 若 $f(x) \ge a(2\ln x + x)$, 求实数 a 的取值范围.