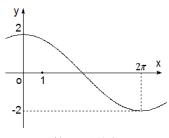
珠海市 2020-2021 学年度第一学期高三 摸底测试 数学 2020.9

— ,	选择题:	本题共8小题,	每小题 5分,	共40分。	在每小题给出的四个选项中,	只有一
	项是符合	6 题目要求的。				

1. 设集合 $A = \{x \mid x^2 > 4\}$, $B = \{x \mid x^2 - x < 30\}$, 则 $A \cap B =$

C. $(-\infty, -5) \bigcup (6, +\infty)$ D. $(-\infty, -2) \bigcup (2, +\infty)$

A. $(-5,-2) \cup (2,6)$ B. (-2,2)


2. $\frac{(1-i)^2}{i^7}$ =

	A. 1	B. 2	Сі	D2i					
3.	8 名医生去甲、	乙、丙三个的	单位做核酸检	测,甲、乙	两个单位各需三名医生	,丙需两名			
	医生,其中医生	上 a 不能去甲四	E院,则不同	的选派方式	共有				
	A. 280 种	B. 35	50 种	C. 70种	D. 80 种				
4.	一球0内接一圆	圆锥,圆锥的 车	曲截面为正三	.角形 ABC,	过 C 作与球 O 相切的	平面 $lpha$,则			
	直线 AC 与平面	$\mathbf{a} \alpha$ 所成的角	勺						
	A. 30°	B. 45	5° (C. 15°	D. 60°				
5.	现有8位同学参	\$加音乐节演出	出,每位同学	会拉小提琴頭	或会吹长笛,已知 5 人名	会拉小提琴,			
	5 人会吹长笛,现从这 8 人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学								
	的概率是								
	A. $\frac{1}{4}$	B. $\frac{1}{2}$		C. $\frac{3}{8}$	D. $\frac{5}{8}$				
6.	若定义在 R 上的	内奇函数 $f(x)$ 在	〔(0,+∞)单调	围递增,且 f	(-5) = 0, 则满足 xf(x))<0的解集			
是									
	A. $(-\infty, -5)$	(5,+∞)	В. ($-\infty, -5) \bigcup (0, 0)$,5)				
	C. $(-5,0) \cup (5,0)$,+∞)	D. ($(-5,0) \cup (0,5)$	5)				
7.	己知 P 是边长为	为1的正方形。	ABCD 边上或	文 正方形内的	一点,则 $\overrightarrow{AP} \cdot \overrightarrow{BP}$ 的最为	大值是			
	A. $\frac{1}{4}$	B. 2	C. 1	D. $\frac{1}{2}$					

- 8. 直线 l: y = kx + b 是曲线 $f(x) = \ln(x+1)$ 和曲线 $g(x) = \ln(e^2x)$ 的公切线,则 b = 1
 - A. 2

- B. $\frac{1}{2}$ C. $\ln \frac{e}{2}$ D. $\ln(2e)$
- 二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合 题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。
- 9. 已知双曲线 E 的中心在原点,对称轴为坐标轴,渐近线方程为 $y = \pm 2x$,则双曲线 E 的 离心率为

- A. $\frac{\sqrt{5}}{2}$ B. $\sqrt{5}$ C. $\frac{5\sqrt{3}}{2}$ D. $\frac{3\sqrt{5}}{5}$
- 10. 如图是函数 $f(x) = A\sin(\omega x + \varphi)$ ($\omega > 0$) 的部分图象,则

(第10题图)

A.
$$f(x) = 2\sin(\frac{1}{2}x + \frac{\pi}{4})$$

B. $f(x) = 2\sin(\frac{1}{2}x + \frac{\pi}{2})$
C. $f(x) = -2\sin(\frac{1}{2}x - \frac{\pi}{2})$
D. $f(x) = 2\cos(\frac{1}{2}x)$

B.
$$f(x) = 2\sin(\frac{1}{2}x + \frac{\pi}{2})$$

C.
$$f(x) = -2\sin(\frac{1}{2}x - \frac{\pi}{2})$$

$$D. \quad f(x) = 2\cos(\frac{1}{2}x)$$

11. 己知ab < 0,则

$$A. \quad a^2 + b^2 \ge 2ab$$

$$B. \quad a^2 + b^2 < 2ab$$

C.
$$a(a-b) > 0$$

A.
$$a^2 + b^2 \ge 2ab$$
 B. $a^2 + b^2 < 2ab$ C. $a(a-b) > 0$ D. $\left| \frac{b}{a} + \frac{a}{b} \right| \ge 2$

12. 已知随机变量 X 的取值为不大于 $n(n \in N^*)$ 的非负整数,它的概率分布列为

X	0	1	2	3	•••	n
p	p_0	$p_{_1}$	p_2	p_3	•••	$p_{_{n}}$

其中 $p_i(i=0,1,2,3,\cdots,n)$ 满足 $p_i\in[0,1]$,且 $p_0+p_1+p_2+\cdots+p_n=1$. 定义由 X 生成的 函数 $f(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3 + \dots + p_i x^i + \dots + p_n x^n$, g(x) 为函数 f(x) 的导函数, E(X) 为随机变量 X 的期望. 现有一枚质地均匀的正四面体型骰子, 四个面分别标有 1, 2,

3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X,此时由X生成的函数为 $f_1(x)$,

则

A.
$$E(X) = g(2)$$
 B. $f_1(2) = \frac{15}{2}$ C. $E(X) = g(1)$ D. $f_1(2) = \frac{225}{4}$

- 三、填空题:本题共4小题,每小题5分,共20分。
- 13. 椭圆 $E: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点分别为 F_1 、 F_2 ,过原点的直线l与E交于 A,B 两
- 点, AF_1 、 BF_2 都与x轴垂直,则|AB|=_____.
- 14. 将数列 $\{2^n\}$ 与 $\{2n\}$ 的公共项从小到大排列得到数列 $\{a_n\}$,则 $\{a_n\}$ 的前 10 项和为______(用数字作答).
- 15. 已知 α 、 β 为锐角三角形的两个内角, $\sin\alpha = \frac{4\sqrt{3}}{7}$, $\sin(\alpha + \beta) = \frac{5\sqrt{3}}{14}$,则 $\cos 2\beta = \underline{\qquad}$.
- 16. 一半径为R的球的表面积为 64π ,球一内接长方体的过球心的对角截面为正方形,则该长方体体积的最大值为______.
- 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (10分)

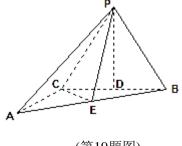
在①
$$\cos B = \frac{1}{2}$$
, ② $\cos C = \frac{1}{2}$, ③ $\cos C = \frac{\sqrt{2}}{2}$

这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值,若问题中的三角形不存在,说明理由.

问题: 是否存在非直角 $\triangle ABC$, 它的内角 A,B,C 的对边分别为 a,b,c,

 $\underline{\exists} \sin B(1+2\cos C) = 2\sin A\cos C + \cos A\sin C, \quad b=1, \quad \underline{\qquad}?$

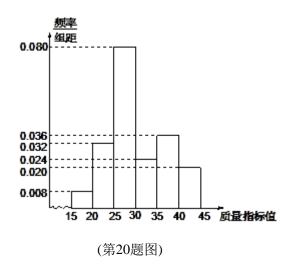
注:如果选择多个条件分别解答,按第一个解答计分.


18. (12分)

已知数列 $\{a_n\}$ 是正项等比数列,满足 $2a_3 + a_4 = a_5$, $a_1 + a_2 = 1$.

(1) 求 $\{a_n\}$ 的通项公式;

(2) 设
$$t_n = \log_2(3a_n)$$
, 求数列 $\left\{\frac{1}{t_{n+1}t_{n+2}}\right\}$ 的前 n 项和 T_n .


- 19. (12分) 如图, 三棱锥 P ABC 中, AC = BC = PC = PB = 2, $\angle ACB = 120^{\circ}$, 平面 PBC上底面ABC, D, E分别是BC, AB的中点.
 - (1) 证明: PD 上平面ABC;
 - (2) 求二面角P-CE-B的正切值.

(第19题图)

20. (12分)某药企对加工设备进行升级,现从设备升级前、后生产的大量产品中各抽取了 100件产品作为样本检测某项质量指标值:该项质量指标值落在[25,30)内的产品为优等 品,每件售价240元;质量指标值落在[20,25]和[30,35]内的为一等品,每件售价为180元; 质量指标值落在[35,40)内的为二等品,每件售价为120元;其余为不合格品,全部销毁.每 件产品生产销售全部成本50元.

下图是设备升级前100个样本的质量指标值的频率分布直方图

下表是设备升级后100个样本的质量指标值的频数分布表

质量	[15, 20)	[20, 25)	[25,30)	[30,35)	[35,40)	[40, 45)
频数	2	18	48	14	16	2

- (1) 以样本估计总体, 若生产的合格品全部在当年内可以销售出去, 计算设备升级前一件产 品的利润 X (元)的期望的估计值.
- (2)以样本估计总体,若某位患者从升级后生产的合格产品中随机购买两件,设其支付的费 用为 ξ (单位:元),求 ξ (元)的分布列.

- 21. (12分) 已知函数 $f(x) = xe^x + ax^2 2(e^x + ax) + a$, $a \ge 0$.
- (1) 讨论函数 f(x) 的单调性;
- (2) 讨论 f(x) 的零点的个数.

- 22. (12分)已知抛物线 E 的顶点在原点,焦点 $F(0,\frac{p}{2})$ (p>0) 到直线 l:y=x-2 的距 离为 $\frac{3\sqrt{2}}{2}$, $P(x_0,y_0)$ 为直线 l 上的点,过 P 作抛物线 E 的切线 PM 、 PN ,切点为 M 、 N .
- (1)求抛物线 E 的方程;
- (2) 若P(3,1), 求直线MN的方程;
- (3)若 P 为直线 l 上的动点,求 $|MF| \cdot |NF|$ 的最小值.