高三数学参考答案

选择题(本大题共12小题,每小题5分,共60分)

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	С	В	С	D	C	В	C	A	BD	ABC	AB	ABD

6.B 解析:设小李这两次加油的油价分别为x元/升、y元/升,则方案一:两次加油平均价格为

$$\frac{40x + 40y}{80} = \frac{x + y}{2} \ge \sqrt{xy}; \quad \hat{D}$$
案二: 两次加油平均价格为
$$\frac{400}{\frac{200}{x} + \frac{200}{y}} = \frac{2xy}{x + y} \le \sqrt{xy}.$$

故无论油价如何起伏,方案二比方案一更划算.

7.C 解析:
$$\angle AOB = \frac{3\pi}{4}$$
, P 是弧 AB 上的一个三等分点,故 $\angle POB = \frac{\pi}{2}$, $\angle POA = \frac{\pi}{4}$,

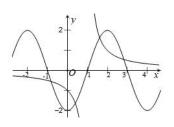
$$\overrightarrow{PM} \cdot \overrightarrow{PN} = (\overrightarrow{PO} + \overrightarrow{OM}) \cdot (\overrightarrow{PO} + \overrightarrow{ON}) = \overrightarrow{PO}^2 + \overrightarrow{PO} \cdot \overrightarrow{ON} + \overrightarrow{PO} \cdot \overrightarrow{OM} + \overrightarrow{OM} \cdot \overrightarrow{ON}$$
$$= 4 + 0 + 2 \cdot |\overrightarrow{OM}| \cos \frac{3\pi}{4} + |\overrightarrow{OM}| |\overrightarrow{ON}| \cos \frac{3\pi}{4} = 4 - \frac{\sqrt{2}}{2} |\overrightarrow{OM}| \cdot (2 + |\overrightarrow{ON}|) \le 4$$

故当 $|\overrightarrow{OM}| = 0$ 时, $\overrightarrow{PM} \cdot \overrightarrow{PN}$ 取最大值 4.

8.A 解析: 令
$$f(x) = 0$$
,得 $\frac{1}{x-1} = -2\cos(\frac{\pi}{2}x)$,函数 $f(x)$ 的零点就是函数 $y = \frac{1}{x-1}$ 与函数 $y = -2\cos(\frac{\pi}{2}x)$

图象交点的横坐标. 又函数 $y = \frac{1}{x-1}$ 的图象关于点 (1,0) 对称, 函数

 $y = -2\cos(\frac{\pi}{2}x)$ 的周期为 4, 其图象也关于点 (1,0) 对称, 画出两函数图象如图:



共有 4 个交点, 这 4 个点两两关于点(1,0)对称, 故其横坐标的和为 4.

9. BD 解析: 对于 A,由频率分布直方图性质得: $(a+0.02+0.035+0.025+a)\times 10=1$,解得 a=0.01,故 A 错误;

对于 B, 由频率分布直方图得成绩落在[60,70)的概率为 0.2, $0.2 \times 120 = 24$, 故 B 正确;

10 . ABC 解析: 由 $\log_3 x - \log_3 y < (\frac{1}{3})^x - (\frac{1}{3})^y$ 变 形 得 $\log_3 x - (\frac{1}{3})^x < \log_3 y - (\frac{1}{3})^y$, 令 函 数 $f(x) = \log_3 x - (\frac{1}{3})^x$,已知函数在定义域上单调递增,所以 0 < x < y ,则 $\frac{1}{x} > \frac{1}{y}$,A 正确; $x^3 < y^3$,B 正确; x - y < 0 ,所以 $2^{x - y} < 1$,C 正确; y - x > 0 , $\ln(y - x)$ 的符号无法判断,D 错.故选:ABC.

11. AB 解析: $f(x) = 2\sin x \cos x - 2\cos^2 x = \sin 2x - 1 - \cos 2x = \sqrt{2}\sin\left(2x - \frac{\pi}{4}\right) - 1$, 对于 A 选项, 当 $x \in \left(0, \frac{\pi}{8}\right)$ 时, $2x - \frac{\pi}{4} \in \left(-\frac{\pi}{4}, 0\right)$, 函数 y = f(x) 为增函数, A 正确; 令 $2x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, 得 $x = \frac{3\pi}{8} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$, 当 k = 0 时, $x = \frac{3\pi}{8}$, 所以直线 $x = \frac{3\pi}{8}$ 是函数 y = f(x) 图象的一条对称轴,B 正确;

函数 $y = \sin 2x$ 的图象向右平移 $\frac{\pi}{8}$ 个单位得到函数 $y = \sin \left[2 \left(x - \frac{\pi}{8} \right) \right] = \sin \left(2x - \frac{\pi}{4} \right)$ 图象,C 错误;函数 y = f(x) 关于 $\left(\frac{\pi}{8}, -1 \right)$ 对称,D 选项错误 , 故选:AB.

12.ABD 解析:连结 AC, D_1A , BC_1 .:: $B_1C \perp BC_1$, $B_1C \perp AB$, .: $B_1C \perp$ 面 ABC_1D_1 .又:: $D_1E \subset$ 面 ABC_1D_1 , .: $B_1C \perp D_1E$ 故 A 选项是正确的;又:: EF //AC, $AD_1 //GE$, .: 面 $AD_1C //$ 面 GEF,

又: D_1C \subset 面 AD_1C , : D_1C / 面 GEF :B 选项是正确的。若 P 在平面 ABCD 内,且 D_1P / 面 GEF ,则 P 的轨迹是直线 AC ,此时 D_1P 的最小值为 $D_1P \perp AC$ 时。在 $\triangle D_1AC$ 中, $AD_1=\sqrt{2}$, $D_1C=2$, AC=2 , : $D_1P \perp AC$: $D_1P=AD_1\cdot\sin \angle D_1AC=\sqrt{2}\cdot\frac{\sqrt{14}}{4}=\frac{\sqrt{7}}{2}$: C 选项是错误的。: $B_1C\perp$ 面 ABC_1D_1 ,且 $D_1Q\perp B_1C$,:点 Q 的轨迹是直线 AB ,: D_1Q 的最小值是 $D_1Q\perp AB$ 时,即 Q 与 A 重合,此时, $D_1A=\sqrt{2}$,: D 选择项是正确的,故选:ABD.

三、填空题(本大题共4小题,每小题5分,共20分)

 13.2π 14.810 15.3 16.45

15.3 解析:设内切圆半径为r,则

$$S_{{\rm LO}_{\rm I}F_{2}P}:S_{{\rm LO}_{\rm I}F_{1}P}:S_{{\rm LO}_{\rm I}F_{1}F_{2}}=\frac{1}{2}\|PF_{2}\|r:\frac{1}{2}\|PF_{1}\|r:\frac{1}{2}\|F_{1}F_{2}\|r\rightleftharpoons PF_{2}|:\|PF_{1}|:\|F_{1}F_{2}\|=1:2:3\ ,$$

故
$$|PF_2| = \frac{1}{3} |F_1F_2| = \frac{2}{3}c$$
, $|PF_1| = \frac{2}{3} |F_1F_2| = \frac{4}{3}c$,又 $|PF_1| - |PF_2| = 2a$,即 $\frac{2}{3}c = 2a$,故 $e = 3$.

16.45 解析:设B同学的声强为m,喷出泉水高度为x,则A同学的声强为10m,喷出泉水高度为50,

$$10\lg \frac{m}{m_0} = 2x \Rightarrow \lg m - \lg m_0 = 0.2x$$
, $10\lg \frac{10m}{m_0} = 2 \times 50 \Rightarrow 1 + \lg m - \lg m_0 = 10$,

相减得 $1=10-0.2x \Rightarrow 0.2x=9 \Rightarrow x=45$. 故答案为 45.

四、解答题(本大题共6小题,共70分)

17. 解析: (1) 选择条件①. $:: 2a - \sqrt{2}c = 2b\cos C$, $:: 2\sin A - \sqrt{2}\sin C = 2\sin B\cos C$

$$\therefore 2\sin B\cos C + 2\cos B\sin C - \sqrt{2}\sin C = 2\sin B\cos C, \\ (\cos B = \frac{\sqrt{2}}{2}, \quad \therefore \tan B = 1 \quad \cdots \quad 5 \text{ }$$

(2) 由
$$\tan B = 1$$
 得 $\sin B = \frac{\sqrt{2}}{2}$, $: S = 10$, $a = 5$,

18. 解析:(1)设等比数列公比为 q ,依题有 $a_n > 0, q > 0$, $2a_4 = 4a_2 + 2a_3$,即 $a_1q^3 = 2a_1q + a_1q^2$,即 $q^2 - q - 2 = 0$, $\therefore q = 2, q = -1$ (舍)

又 $a_3 = 2a_1^2$,即 $a_1 \times 4 = 2 \times a_1^2$, $a_1 = 2$. $a_n = 2^n$

$$\therefore a_{\cdot \cdot} = 2^{t}$$

..... 6分

(2)
$$b_n = \frac{2^n}{(2^{n+1}-1)(2^n-1)} = \frac{1}{2^n-1} - \frac{1}{2^{n+1}-1}$$
,

$$\therefore T_n = b_1 + b_2 + \dots + b_n = \frac{1}{2^1 - 1} - \frac{1}{2^2 - 1} + \dots + \frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1} = 1 - \frac{1}{2^{n+1} - 1}$$

19. 解析: (1) Q $PA \perp$ 平面ABCD, $BC \subset$ 平面ABCD, $\therefore BC \perp PA$

又 $BC \perp AB$, $AB \perp AP = A$, AB, $AP \subset$ 平面PAB, $AB \subset$ 平面PAB,

又 $AF \subset$ 平面PAB, $\therefore AF \perp BC$.

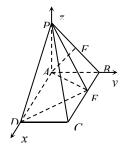
又 PA = AB = 1, $F \in PB$ 的中点, $\therefore AF \perp PB$,

(2) 以 AD, AB, AP 分别为 x 轴, y 轴, z 轴建立空间直角坐标系,如图所示.

 $\therefore PD$ 与底面 ABCD 所成角的正切值为 $\frac{1}{3}$, AP=1 , $\therefore AD=3$,

则
$$P(0,0,1)$$
 , $B(0,1,0)$, $D(3,0,0)$.

设
$$BE = x(0 \le x \le 3)$$
 ,则 $E(x,1,0)$,



设平面 PDE 的法向量为 $m = (x_0, y_0, z_0)$,由 $\begin{cases} \overrightarrow{m} \cdot \overrightarrow{PD} = 0 \\ \overrightarrow{m} \cdot \overrightarrow{PD} = 0 \end{cases}$,得:m = (1, 3 - x, 3), …… …… 9 分 $m \cdot \overrightarrow{PE} = 0$

而平面 ADE 的一个法向量为 $\overrightarrow{AP} = (0,0,1)$, 依题意得: $\frac{|\overrightarrow{m} \cdot \overrightarrow{AP}|}{|\overrightarrow{m} \cdot \overrightarrow{AP}|} = \frac{3\sqrt{14}}{14}$,

即
$$\frac{3}{\sqrt{10+(3-x)^2}} = \frac{3\sqrt{14}}{14}$$
,得 $x=1$ 或 $x=5$ (舍). 故 $BE=1$ 12 分

20. 解析: (1) 由题意得, 2×2 列联表如下:

	属于"追光族"	属于"观望者"	合计
女员工	2	8	10

男员工	10	8	18
合计	1 2	16	28

----- 2分

(2) 由(1) 知在样本里属于"追光族"的员工有12人. 其中男员工10人, 女员工2人.

所以
$$\xi$$
 可能的取值有 $0,2,4$.
$$P(\xi=4) = P(X=4 \pm Y=0) = \frac{C_{10}^4 C_2^0}{C_{12}^4} = \frac{210}{495} = \frac{14}{33};$$

$$P(\xi=2) = P(X=3 \pm Y=1) = \frac{C_{10}^3 C_2^1}{C_{12}^4} = \frac{240}{495} = \frac{16}{33}; \qquad P(\xi=0) = P(X=2 \pm Y=2) = \frac{C_{10}^2 C_2^2}{C_{12}^4} = \frac{45}{495} = \frac{1}{11}. \qquad \cdots 9 \text{ }$$

所以 ξ 的分布列为:

ξ	0	2	4
P	1 11	$\frac{16}{33}$	14 33

所以
$$\xi$$
 的期望 $E(\xi) = 0 \times \frac{1}{11} + 2 \times \frac{16}{33} + 4 \times \frac{14}{33} = \frac{8}{3}$.

12 /

21.解析: (1) 依题意:
$$\begin{cases} a^2 + b^2 = 6 \\ a^2 - b^2 = 2 \end{cases} \Rightarrow \begin{cases} a^2 = 4 \\ b^2 = 2 \end{cases}$$
 ∴ 椭圆 E 的标准方程为 $\frac{x^2}{4} + \frac{y^2}{2} = 1$; …… 4 分

(2) 设
$$A(x_1, y_1), B(x_2, y_2)$$
,则 AB 的中点 $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 在线段 OM 上,且 $k_{OM} = 2$,则

$$y_1 + y_2 = 2(x_1 + x_2)$$
,又
$$\begin{cases} \frac{x_1^2}{4} + \frac{y_1^2}{2} = 1 \\ \frac{x_2^2}{4} + \frac{y_2^2}{2} = 1 \end{cases}$$
,两式相減得:
$$\frac{(x_1 + x_2)(x_1 - x_2)}{4} + \frac{(y_1 + y_2)(y_1 - y_2)}{2} = 0$$

易知:
$$x_1 + x_2 \neq 0, y_1 + y_2 \neq 0$$
, $\therefore \frac{y_1 - y_2}{x_1 - x_2} = -\frac{1}{4}$, 6分

设直线 AB 的方程为 $y = -\frac{1}{4}x + m$, 联立 $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 得: $9x^2 - 8mx + 16m^2 - 32 = 0$.

$$\therefore x_1 + x_2 = \frac{8m}{9}, x_1 x_2 = \frac{16m^2 - 32}{9}, \ \ \ \ \triangle = 64m^2 - 4 \times 9 \times \left(16m^2 - 32\right) > 0 \Rightarrow m^2 < \frac{9}{4}.$$

$$|AB| = \sqrt{1 + \frac{1}{16}} \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \frac{2\sqrt{17}\sqrt{18 - 8m^2}}{9}, d_{O-AB} = \frac{|4m|}{\sqrt{17}},$$
 10 %

$$\therefore S_{\Delta AOB} = \frac{1}{2} |AB| \cdot d = \frac{8m}{9} \sqrt{72 - 32m^2} = \frac{4}{9} \sqrt{18m^2 - 8m^4}.$$

22、解析: (1)
$$f'(x) = a \ln x - \frac{1}{x}$$
 $f'(e) = a - \frac{1}{e}$

又
$$f(e) = 0$$
 , $\therefore g(x) = (a - \frac{1}{e})(x - e)$ 3 分

(2)
$$\Rightarrow F(x) = f(x) - g(x) = f(x) - f'(e)(x - e)$$
,

$$\therefore F'(x) = f'(x) - f'(e) = a \ln x - \frac{1}{x} - a + \frac{1}{e} \div (0, +\infty)$$
 上单调递增,且 $F'(e) = 0$,

(3) 当
$$a = 1$$
 时, $f(x) = (\ln x - 1)(x - 1)$,则 $f'(x) = \ln x - \frac{1}{x}$,显然 $f'(x)$ 在定义域内单调递增,而
$$f'(1) = -1 < 0 \,, \quad f'(e) = 1 - \frac{1}{e} > 0 \,, \quad \therefore$$
 存在 $x_0 \in (1, e)$,使 $f'(x_0) = 0$.

 \therefore 当 $x \in (0, x_0)$ 时, f'(x) < 0 , f(x) 单调递减; 当 $x \in (x_0, +\infty)$ 时, f'(x) > 0 , f(x) 单调递增 ······8 分

令 f(x) = 0 解得 x = 1 或 e.由(1)(2)可知 y = f(x) 在 (e,0) 处的切线方程为 $g(x) = (1 - \frac{1}{e})(x - e)$,且 $f(x) \ge g(x)$ 恒成立,同理可得 y = f(x) 在 (1,0) 处的切线方程为 h(x) = -x + 1,

$$\Rightarrow H(x) = f(x) - h(x) = (\ln x - 1)(x - 1) - (-x + 1) = (x - 1) \ln x$$

当x > 1时,x - 1 > 0, $\ln x > 0$,当0 < x < 1时,x - 1 < 0, $\ln x < 0$,

∴ H(x) ≥ 0 恒成立.

...... 分

设函数 y = f(x) 在两个零点处的切线方程与直线 y = m 的交点的横坐标分别为 x_1 '和 x_2 ',不妨设 $x_1 < x_2$,