武昌区 2021 届高三年级 5 月质量检测

*	ᆇ	#	TE	
泩	息	垂	坝	1

1	 	老生务必将	自己的姓名	准考证号填写在答题卡	F.
٠.	10-10-M1	クエカスか	D W MAY	在为 位 了 强 可 在 在 心 下。	ᅩ。

— ,	选择题:	本题共8小题,	每小题5分,	共40分。	在每小题给出的四个选项中,	只有一项是	符
	合题目要	Ē 求的。					

动,用橡皮擦干净, 卷上无效。		答案标号。回答	非选择题时,将答	目的答案标亏涂黑。如需改 案写在答题卡上。写在本试
一、选择题:本题: 合题目要求的。		题 5 分,共 40 分	[}] 。在每小题给出的	四个选项中,只有一项是符
1. 己知集合 <i>A</i> = { <i>x</i>	$\in \mathbf{R} \mid x^2 - 2x < 0 \}$	$B = \{x \in \mathbf{R} \mid 1:$	$\leq x \leq 4$, $\emptyset A \cup B =$	
2. 己知向量 a =(1, A.(0, 0)	3),则下列向量 B.(-3,-1)	量中与 a 垂直的是		$ x 2 < x \le 4$
3. 复数 $\frac{4i}{1+\sqrt{3}i}$ 的总				
A.1 B. 4. 己知双曲线 <i>C</i> :	$-1 C\frac{y^2}{m} - \frac{x^2}{m+2} = 1(m)$		离心率的取值范围为	1
A. $(1, \sqrt{2})$	B. (1,2)	$C.(\sqrt{2},+\infty)$	D. $(2,+\infty)$
				J. 湖北秭归是"中国脐橙之 :果". 已知某品种脐橙失去
的新鲜度 h 与其采	摘后的时间 t(天) 满足关系式	: $h = m \cdot a^t$. 若采拍	商后 10 天,这种脐橙失去的
新鲜度为10%,采	摘后 20 天失去	的新鲜度为 20%	%, 那么采摘下来的	这种脐橙在多长时间后失去
50%的新鲜度(已	知lg2≈0.3,纟	吉果四舍五入取	整数)	
A. 23 天	B. 33 天	C. 43 天	D. 50 天	
6. 某班有 60 名字	学生参加某次模	拟考试,其中	数学成绩 & 近似服 &	人正态分布 N(110, σ²), 若

P(100 ≤ ξ ≤ 110) = 0.35,则估计该班学生数学成绩在 120 分以上的人数为

D.7 A.10

7. $(x + \frac{1}{x^2} - 1)^4$ 展开式中的常数项为

A. -11 B. -7 C. 8 D. 11

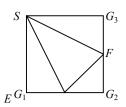
8. 桌面上有 3 个半径为 2021 的球两两相外切,在其下方空隙中放入一个球,该球与桌面和三个 数学试题答案及评分细则 第1页(共8页)

球坎	5球的半径是 B. <u>2021</u>	C. $\frac{2021}{2}$	D. 2021
	ऽ题共 4 小题,每小 的得 5 分,部分选∑	•	

- 的选项中,有多项符合题目
- 9. 某学校为了促进学生德、智、体、美、劳全面发展,制订了一套量化评价标准. 下表是该校 甲、7.两个班级在某次活动中的德、智、体、美、劳的评价得分(得分越高,说明该项教育 越好). 下列说法正确的是
 - A. 甲班五项得分的极差为 1.5
 - B. 甲班五项得分的平均数高于乙班五项得分的平均数
 - C. 甲班五项得分的中位数大于乙班五项得分的中位数
 - D. 甲班五项得分的方差小于乙班五项得分的方差

	德	智	体	美	劳
甲班	9.5	9.5	9	9.5	8
乙班	9.5	9	9.5	9	8.5

- 10. 已知函数 $f(x) = \sin \omega x \sin(\omega x + \frac{\pi}{3})$ ($\omega > 0$) 在 $\left[0, \pi\right]$ 上的值域为 $\left[-\frac{\sqrt{3}}{2}, 1\right]$,则实数 ω 的值可 能取
 - A.1


- B. $\frac{4}{2}$
- C. $\frac{5}{3}$
- D.2
- 11. 已知 F 为抛物线 $C: y^2 = 4x$ 的焦点. 设 P 是准线上的动点,过点 P 作抛物线 C 的两条切线,切 点分别为A, B, 线段AB 的中点为M, 则
 - A. |AB|的最小值为4
- B. 直线 AB 过点 F

C. $PM \perp v$ 轴

- D. 线段 AB 的中垂线过定点
- 12. 已知实数 x, y, z满足 x+y+2z=1, 且 $x^2+y^2+\frac{1}{2}z^2=1$, 则下列结论正确的是
 - A. x 的最小值为 $-\frac{4}{5}$ B. z 的最大值为 $\frac{1}{2}$

 - C. z 的最小值为 $-\frac{1}{5}$ D. xyz 取最小值时 $z = \frac{16}{27}$
- 三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.
- 13. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $S_n + a_n = 4$,则 $S_n = 1$
- 14. 抛掷 3 个骰子,事件 A 为"三个骰子向上的点数互不相同",事件 B 为"其中恰好有一个骰子 向上的点数为 2",则 P(A|B)= .
- 15. 已知函数 $f(x) = ax x\sin x 2\cos x$ 在 $(0,2\pi)$ 上有两个极值点,则实数 a 的取值范围是
- 16. 如图,在边长为 2 的正方形 $SG_1G_2G_3$ 中, E, F 分别是 G_1G_2 , G_2G_3 的中点. 若沿 SE, SF 及 EF 把这个正方形折成一个四面体,使 G_1 , G_2 , G_3 三点重合,重合后的点记为 G_1 , G_2 , G_3 三点重合,重合后的点记为 G_2 , G_3

三棱锥 S-EFG 外接球的表面积为______;(2)点 G 到平面 SEF 的距离为

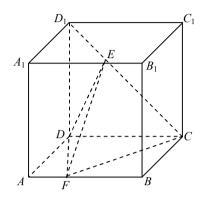
四、解答题: 本题共 6 小题, 共 70 分。解答应写出文字说明、证明过程或演算步骤。

17. (10分)

已知各项均为正数的数列 $\{a_n\}$ 的前n项和为 S_n , $a_1 \in (0,2)$, $a_n^2 + 3a_n + 2 = 6S_n$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前n项和 T_n .

18. (12分)


在① $\cos B=-\frac{3}{5}$;② $b+c=2\sqrt{3}$;③ $a=\sqrt{6}$,这三个条件中选择两个,补充在下面问题中,使问题中的三角形存在,并求出 ΔABC 的面积.

٦

19. (12分)

如图,在正方体 ABCD- $A_1B_1C_1D_1$ 中,点 E 在线段 CD_1 上,CE= $2ED_1$,点 F 为线段 AB 上的动点,AF= λ FB,且 EF//平面 ADD_1A_1 .

- (1) 求λ的值;
- (2) 求二面角 E-DF-C 的余弦值.

20. (12分)

某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有 4 个红球、6 个白球的甲箱和装有 5 个红球、5 个白球的乙箱中,各随机摸出 1 个球,在摸出的 2 个球中,若都是红球,则获一等奖;若只有 1 个红球,则获二等奖;若没有红球,则不获奖.

- (1) 求顾客抽奖1次能获奖的概率;
- (2) 若某顾客有 3 次抽奖机会,记该顾客在 3 次抽奖中获一等奖的次数为 X,求 X 的分布列和数学期望.

21. (12分)

已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{\sqrt{2}}{2}$, 焦距为 2.

- (1) 求椭圆C的方程;
- (2)设 A, B 为椭圆 C 上两点,O 为坐标原点, k_{OA} · $k_{OB} = -\frac{1}{2}$. 点 D 在线段 AB 上,且 $\overline{AD} = \frac{1}{3}\overline{AB}$,连接 OD 并延长交椭圆 C 于 E,试问 $\frac{|OE|}{|OD|}$ 是否为定值?若是定值,求出定值;若不是定值,请说明理由.

22. (12分)

已知函数 $f(x) = xe^x$.

- (1) 求 f(x) 在 x = -2 处的切线方程;
- (2) 已知关于 x 的方程 f(x)=a 有两个实根 x_1 , x_2 , 当 $-\frac{1}{e} < a < -\frac{2}{e^2}$ 时,求证: $|x_1-x_2|<(e^2+1)a+4$.