2021 湖北省年八市高三 (3月) 联考 数学试题参考答案及评分标准

2021.03.02

一、单选题 1-4 BCAB 5-8 ACDB

二、多选题 9. BC 10.BD 11.BC 12.ACD

三、填空题 13. 1 14.
$$2\sqrt{5}$$
 15. $\frac{61}{81}$ 16. $\left\{\frac{\sqrt{5}}{2}, \frac{9}{8}\right\}$

四、解答题

17. 解析: (1) 由 $\sin(A+C) = 2\sin(B+C)\cos(A+B)$ 得 $\sin B = -2\sin A\cos C$,又 $C = \frac{2\pi}{3}$

代入得 $\sin A = \sin B$ 即 A = B, a = b,

(2) 由 (1) 知
$$\frac{r}{\frac{c}{2}} = \tan \frac{\pi}{12} = \tan (\frac{\pi}{4} - \frac{\pi}{6}) = 2 - \sqrt{3}$$
 得 $c = \frac{2r}{2 - \sqrt{3}} = \sqrt{3}$, 所 以

$$a = b = 1, S_{\triangle ABC} = \frac{1}{2}ab\sin C = \frac{\sqrt{3}}{4}$$
10 $\%$

18. 解析: 二项展开式的通项为
$$T_{r+1} = C_6^r (\frac{x^2}{\sqrt{30}})^{6-r} (\frac{1}{x}) r = C_6^r (\frac{1}{\sqrt{30}})^{6-r} x^{12-3r}$$
,令 $r = 4$ 得

可选择的条件为(1)或(2)或(3)

若选择①: 在 $S_n = -a_n + t$ 中令n = 1得t = 1, $S_{n-1} = -a_{n-1} + 1$ 两式相减得

$$a_n = \frac{1}{2} a_{n-1}$$
,9 $\frac{1}{2}$

故 $\{a_n\}$ 是以 $\frac{1}{2}$ 为首项 $\frac{1}{2}$ 为公比的等比数列,

若选择②: 由
$$(n+1)b_{n+1} = nb_n$$
 得 $\frac{b_{n+1}}{b_n} = \frac{n}{n+1}$,

所以
$$b_n = \frac{b_n}{b_{n-1}} \frac{b_{n-1}}{b_{n-2}} \cdots \frac{b_2}{b_1} \cdot b_1 = \frac{1}{n} (n \ge 2), n = 1$$
 时也满足,

则
$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
, ……9 分

$$S_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{n+1} < 1$$
恒成立. ……12 分

若选择③: 则 $3a_{n+1}^2 - 3a_n^2 = -(a_{n+1} + a_n), a_{n+1} - a_n = -\frac{1}{3},$ 或 $a_{n+1} + a_n = 0$ ···········9 分

又
$$a_1 = \frac{1}{2}$$
, 当 $a_{n+1} + a_n = 0$ 时, $S_n = \begin{cases} 0, & n$ 为偶数.
$$\frac{1}{2}, & n$$
为奇数. $\therefore S_n < 1$

$$\underline{\underline{\underline{\underline{\underline{H}}}}} a_{n+1} - a_n = -\frac{1}{3} \, \mathrm{H}^{\dagger}, \quad S_n = \frac{n}{2} - \frac{n(n-1)}{6} = -\frac{1}{6} (n^2 - 4n),$$

此时
$$n = 2$$
 时 $(S_n)_{\text{max}} = \frac{2}{3} < 1$

19.解: (1) 取AB, AD的中点 G, H, 连接DG、EH, $:: BG = \frac{1}{2}AB = CD$, BG // CD , :: 四边形 BCDG是平行四边形,DG = BC = AG = AD = 2, $:: \Delta ADG$ 为等边三角形,

 $DG = \frac{1}{2}AB$, $\therefore \Delta ABD$ 是直角三角形, $\therefore AD \perp BD$. \because 平面 $ADE \perp$ 平面 ABCD, $BD \subset$ 平

面 ABCD , AD =平面 $ADE \cap$ 平面 ABCD , $BD \perp$ 平面 ADE , $AE \subset$ 平面 ADE , $CE \cap BD \cap ADE$, $CE \cap BD$, $CE \cap BD$

 $AE \perp BD \cdots 5$ 分

(2) F为EB中点即可满足条件.

取*AD*的中点*H*,连接*EH*,则 $EH = \sqrt{3}$, $BD = 2\sqrt{3}$, 如图建立空间直角坐标系 D - xyz,则

$$D(0,0,0), A(2,0,0), B(0,2\sqrt{3},0), C(-1,\sqrt{3},0), E(1,0,\sqrt{3})$$
,则

$$\overrightarrow{DA} = (2,0,0), \overrightarrow{CB} = (1,\sqrt{3},0), \overrightarrow{EB} = (-1,2\sqrt{3},-\sqrt{3}), \overrightarrow{EF} = \lambda \overrightarrow{EB} = (-\lambda,2\sqrt{3}\lambda,-\sqrt{3}\lambda),$$

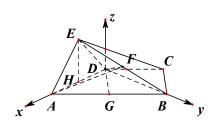
$$\overrightarrow{DF} = (1 - \lambda, 2\sqrt{3}\lambda, \sqrt{3} - \sqrt{3}\lambda),$$

设平面 ADF 的法向量为 $\vec{m} = (x_1, y_1, z_1)$,平面 BCE 的法向量为 $\vec{n} = (x_2, y_2, z_2)$.

由
$$\begin{cases} \overline{DF} \cdot \overline{m} = 0 \\ \overline{DA} \cdot \overline{m} = 0 \end{cases}, \quad \mathcal{F}$$

$$\begin{cases} (1 - \lambda)x_1 + 2\sqrt{3}\lambda y_1 + (\sqrt{3} - \sqrt{3}\lambda)z_1 = 0 \\ 2x_1 = 0 \end{cases}, \quad \mathbb{R}$$

$$\overrightarrow{m} = (0, \lambda - 1.2\lambda)$$
;



由
$$\left\{ \overline{CB} \cdot \vec{n} = 0 \atop \overline{EB} \cdot \vec{n} = 0 \right\}$$
, 得 $\left\{ x_2 + \sqrt{3}y_2 = 0 \atop -x_2 + 2\sqrt{3}y_2 - \sqrt{3}z_2 = 0 \right\}$, 取 $\vec{n} = \left(-\sqrt{3}, 1, 3 \right)$.

于是,
$$|\cos\langle \overrightarrow{m}, \overrightarrow{n} \rangle| = \frac{|\overrightarrow{m} \cdot \overrightarrow{n}|}{|\overrightarrow{m}| \cdot |\overrightarrow{n}|} = \frac{|\lambda - 1 + 6\lambda|}{\sqrt{13} \cdot \sqrt{5\lambda^2 - 2\lambda + 1}} = \frac{\sqrt{65}}{13}$$
.

解得
$$\lambda = \frac{1}{2}$$
或 $\lambda = -\frac{1}{3}$ (舍去)

所以存在 $\lambda = \frac{1}{2}$ 使得平面 ADF 与平面 BCE 所成的锐二面角的余弦值为 $\frac{\sqrt{65}}{13}$12 分

20. (1) 由题意知 $r_2 = -0.9953$

$$r_1 = \frac{13.94}{\sqrt{11.67}\sqrt{21.22}} = \frac{13.94}{\sqrt{247.6374}} == 0.8858 ,$$

因为 $|r_1| < |r_2| < 1$,所有用 $y = c + \frac{d}{x}$ 模型建立 y 与 x 的回归方程更合适.4 分

 $\hat{c} = \overline{y} - \hat{d}\overline{t} = 109.94 + 10 \times 0.16 = 111.54$,

(3) 由題意知
$$\hat{z} = 20\hat{y} - \frac{1}{2}x = 20(111.54 - \frac{10}{x}) - \frac{1}{2}x = 2230.8 - (\frac{200}{x} + \frac{1}{2}x)$$

 $\leq 2230.8 - 20 = 2210.8$,所以 $\hat{z} \leq 2210.8$,当且仅当x = 20时等号成立,

21. (1)
$$f'(x) = \frac{x^2 - 2ax + 1}{x^2}, x > 0$$
, $x > 2x + 1 = 0, \Delta = 4a^2 - 4$

当 $\Delta \le 0$ 即 $-1 \le a \le 1$ 时, $f'(x) \ge 0$,f(x)在 $(0,+\infty)$ 上单调递增;

当 $\Delta > 0$ 即a > 1或a < -1时,

① 当 a < -1 时,-2ax > 0, f'(x) > 0, $f(x) \pm (0, +\infty)$ 上单调递增;

x	$(0,x_1)$	x_1	(x_1,x_2)	x_2	$(x_2,+\infty)$
f'(x)	+	0	-	0	+
f(x)	递增	极大值	递减	极小值	递增

2021 湖北省八市联考数学答案第3页 共5页

综上: 当 $a \le 1$ 时, f(x)在 $(0,+\infty)$ 上单调递增;

当
$$a > 1$$
 时, $f(x)$ 在 $\left(0, a - \sqrt{a^2 - 1}\right), \left(a + \sqrt{a^2 - 1}, +\infty\right)$ 上单调递增,

在
$$(a-\sqrt{a^2-1},a+\sqrt{a^2-1})$$
 上单调递减.5 分

(2)由(1)知a > 1时f(x)有两个极值点 x_1, x_2, x_3

且 $x_1 + x_2 = 2a$, $x_1x_2 = 1$, 不妨设 $x_2 > 1 > x_1 > 0$,

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(x_1 - 2a \ln x_1 - \frac{1}{x_1}) - (x_2 - 2a \ln x_2 - \frac{1}{x_2})}{x_1 - x_2} = \frac{(x_1 - x_2) - 2a \ln \frac{x_1}{x_2} - \frac{x_1 - x_2}{x_1 - x_2}}{x_1 - x_2} = 2 - \frac{2a \ln \frac{x_1}{x_2}}{x_1 - x_2}.$$

要证
$$\frac{f(x_1)-f(x_2)}{x_1-x_2} > 2-4a$$
,即证 $\frac{\ln\frac{x_1}{x_2}}{x_1-x_2} < 2$,即 $\frac{\ln x_2^2}{x_2-\frac{1}{x_2}} < 2$, $\ln x_2-x_2+\frac{1}{x_2} < 0$,

设 $g(t) = \ln t - t + \frac{1}{t}(t > 1)$, 由 (1) 知当 $a = \frac{1}{2}$ 时, f(x) 在 $(0, +\infty)$ 上单调递增, g(t) = -f(t) ,

22. (1)
$$\begin{cases} \sqrt{a^2 + b^2} = \sqrt{7} \\ \frac{c}{a} = \frac{1}{2} \end{cases}$$
 , 所以 $a = 2$, $b = \sqrt{3}$.

(2)①由题意知,由对称性知,P必在x轴上,F(-1,0),设直线MN方程:x = my - 1,

$$M(x_1, y_1)$$
, $N(x_2, y_2)$, $E(-4, y_1)$,

联立方程
$$\begin{cases} x = my - 1 \\ \frac{x^2}{4} + \frac{y^2}{3} = 1 \end{cases} \ \ (3m^2 + 4)y^2 - 6my - 9 = 0 \ \ ,$$

所以
$$-2my_1y_2 = 3(y_1 + y_2)$$
,

又
$$k_{EN} = \frac{y_2 - y_1}{x_2 + 4}$$
,所以直线 EN 方程为: $y - y_1 = \frac{y_2 - y_1}{x_2 + 4}(x + 4)$,6 分

$$\Rightarrow y = 0, \quad \text{if } x = -4 - \frac{y_1(x_2 + 4)}{y_2 - y_1} = -4 - \frac{my_1y_2 + 3y_1}{y_2 - y_1}$$

$$= -4 - \frac{\frac{3}{2}(y_1 - y_2)}{y_2 - y_1} = -4 + \frac{3}{2} = -\frac{5}{2}$$

所以直线 EN 过定点 $P(-\frac{5}{2},0)$ 8 分

(其它解法酌情给分)

②由(1)中
$$\Delta = 144(m^2 + 1) > 0$$
,所以 $m \in R$,又易知 $|y_1 - y_2| = \frac{12\sqrt{m^2 + 1}}{3m^2 + 4}$,

所以
$$S_{\Delta OEN} = \frac{1}{2} |OP| |y_1 - y_2| = \frac{5}{4} \cdot \frac{12\sqrt{m^2 + 1}}{3m^2 + 4} = \frac{15\sqrt{m^2 + 1}}{3m^2 + 4}$$
,10 分

令
$$t = \sqrt{m^2 + 1}$$
 , $t \ge 1$, 则 $S_{\Delta OEN} = \frac{15t}{3t^2 + 1} = \frac{15}{3t + \frac{1}{t}}$, 又因为 $f(t) = \frac{15}{3t + \frac{1}{t}}$

命题人:黄梅一中 王进 潜江教研室 鲁兵 江汉油田教研室 徐洪军 审题人:黄州区一中 童云霞 黄梅一中 王卫华