数学试题参考答案

- 、选择题:本题考查基本知识和基本运算。每小题 4 分,共 40 分。
- **5**. B **9**. C
- 二、填空题:本题考查基本知识和基本运算。多空题每题 6 分,单空题每题 4 分,共 36 分。
- **11.** 1480
- **12.** $[0, +\infty)$, (-1, 0)
- **13**. 18 , 71

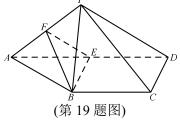
15. $\frac{\pi}{}$

- 17. $\frac{\sqrt{3}}{2}$
- 三、解答题:本大题共5小题,共74分。
- 18. 本题主要考查三角函数及其变换、正弦定理、余弦定理等基础知识,同时考查数学运算等素 养。满分14分。
 - (I)由余弦定理得 代入并化简得 由正弦定理得
- $a^2 = b^2 + c^2 2bc \cos A$, $c = 2b\cos A + 2b\cos B$ $\sin C = 2\cos A\sin B + \sin 2B ,$
- $由 A + B + C = \pi$ 得
- $\sin C = \sin (A + B)$, $\sin(A-B) = \sin 2B$.
- 代入并化简得 (II) 由 $A+B+C=\pi$ 得 当B是锐角时.
- $A \in (0, \pi B)$, A = 3B.

解得

- $B \in (0, \frac{\pi}{4})$;
- 当 B 是直角时, 当B是钝角时,
- 不合题意; $A = 3B - 2\pi$.
- 解得
- $B \in (\frac{2\pi}{3}, \frac{3\pi}{4})$.
- 故角B的取值范围是
- $(0,\frac{\pi}{4}) \cup (\frac{2\pi}{3},\frac{3\pi}{4})$
- 19. 本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查直观想 象和数学运算等素养。满分15分。
 - (I)取AD, AP 中点E, F, 连接BE, BF, EF.
 - 由 AB = PB, $PA \perp PD$ 得
- $PA \perp BF$, $PA \perp EF$, PA ⊥ 平面 BEF .
- 由 $AD \parallel BC$, AD = 2BC 知四边形 BCDE 是平行四边形,则

- 平面 BEF // 平面 PCD, 由 BE // CD, EF // PD 得 所以
 - $PA \perp$ 平面 PCD.



- (Ⅱ)方法・
 - 由 AB = PB = BC = CD = 1, AD = 2 知四边形 ABCD 是以 $\angle A = 60^{\circ}$ 的等腰梯形. 连接 AC,则 $AC \perp CD$, $CD \perp$ 平面 PAC,于是点 P 在底面 ABCD 内的射影在 $AC \perp$.

取 AC 中点 G,则 $PG = \frac{\sqrt{3}}{2}$,于是当 $PG \perp$ 底面 ABCD 时,四棱锥 P - ABCD 的体积最大.

连接BD,则

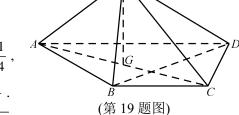
$$V_{P-ABD} = \frac{1}{3} S_{ABD} h_1 = \frac{1}{4} .$$

计算得 $PA = \frac{\sqrt{6}}{2}$, $PD = \frac{\sqrt{10}}{2}$, 则 $S_{PAD} = \frac{\sqrt{15}}{4}$,故

 $V_{B-PAD} = \frac{1}{3} S_{PAD} h_2 = \frac{1}{4} ,$

解得 $h_2 = \frac{\sqrt{15}}{5}$,则

 $\sin\theta = \frac{h_2}{|PR|} = \frac{\sqrt{15}}{5} .$



因此,直线 PB 与平面 PAD 所成角的正弦值为 $\frac{\sqrt{15}}{5}$

(Ⅱ)方法二:

由 AB = PB = BC = CD = 1, AD = 2 知四边形 ABCD 是以 $\angle A = 60^{\circ}$ 的等腰梯形. 连接 AC,则 $AC \perp CD$, $CD \perp$ 平面 PAC,于是点 P 在底面 ABCD 内的射影在 $AC \perp$. 取 AC 中点 G,则 $PG = \frac{\sqrt{3}}{2}$,于是当 PG \bot 底面 ABCD 时,四棱锥 P - ABCD 的体积最大.

如图,以G为原点,分别以射线GB,GC,GP为x,y,z轴的正半轴,建立空间直角坐标系G-xyz.

由题意得

$$G(0,0,0)$$
 , $A(0,-\frac{\sqrt{3}}{2},0)$, $B(\frac{1}{2},0,0)$, $D(-1,\frac{\sqrt{3}}{2},0)$, $P(0,0,\frac{\sqrt{3}}{2})$.
所以 $\overline{PA} = (0,-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2})$, $\overline{PB} = (\frac{1}{2},0,-\frac{\sqrt{3}}{2})$, $\overline{AD} = (-1,\sqrt{3},0)$.
设平面 PAD 的法向量 $n = (x,y,z)$,
$$\begin{cases} n \cdot \overline{PA} = 0 \\ n \cdot \overline{AD} = 0 \end{cases}$$

$$\begin{cases} n \cdot \overline{PA} = 0 \\ -x + \sqrt{3}y = 0 \end{cases}$$
 取
$$n = (\sqrt{3},1,-1)$$
 ,
$$m = (\sqrt{3}$$

因此,直线 PB 与平面 PAD 所成角的正弦值为 $\frac{\sqrt{15}}{5}$

20. 本题主要考查等差数列、等比数列等基础知识,同时考查数学运算和逻辑推理等素养。满分 15 分。

(I)设数列 $\{a_n\}$ 的公比为 $q(q \neq 0)$,数列 $\{b_n\}$ 的公差为d(d > 0).

由于
$$\frac{a_{b_{n+1}}}{a_{b_{-}}} = q^{b_{n+1}-b_{n}} = q^{d} \; .$$

故数列 $\{a_h\}$ 是首项为 a_h ,公比为 q^d 的等比数列.

易知 $q \neq 1$,则

$$\begin{aligned} a_1+a_2+\cdots+a_{2n}&=\frac{1-q^{2n}}{1-q}=3[\frac{1-(q^d)^n}{1-q^d}]=3(a_{b_1}+a_{b_2}+\cdots+a_{b_n})\ ,\\ \mathbf{解得} & q=d=2\ ,\\ \mathbf{因此} & a_n=2^{n-1}\ ,\ b_n=2n-1\ . \end{aligned}$$

(II) 由
$$b_n = 2n - 1$$
 得

$$S_n = n^2 ,$$

$$c_n = 2^{n-1} - n^2 .$$

所以 由于

$$c_{n+1} - c_n = 2^{n-1} - 2n - 1 ,$$

则

$$c_2 - c_1, c_3 - c_2, c_4 - c_3, c_5 - c_4 < 0$$
,

且当 $n \ge 5$ 时, $2^{n-1} - 2n - 1 = 4 \times (1+1)^{n-3} - 2n - 1 > 2n - 9 > 0$,

故当 n=1,2,3,4 时, $c_{n+1} < c_n$;当 $n \ge 5$ 时, $c_{n+1} > c_n$.

因此数列 $\{c_n\}$ 中的最小项是 $c_5 = -9$

- 21. 本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查数学抽象、数学运算与逻辑推理等素养。满分 15 分。
 - (I)由题意知抛物线的准线方程是 x=-1
 - (II) 由题意可设直线 AB: x = my n(m, n > 0) , $A(x_1, y_1)$, $B(x_2, y_2)$. 将直线 AB 的方程代入抛物线 $\gamma^2 = 4x$ 得

$$y^{2} - 4my + 4n = 0$$
,
 $y_{1} + y_{2} = 4m$, $y_{1}y_{2} = 4n$,

所以

点 C 的坐标 (x_3, y_3) 满足

$$y_3 = \frac{1}{2}(y_1 + y_2) = 2m$$
, $x_3 = my_3 - n = 2m^2 - n$.

由 | *AB* | = 2 | *CN* | 得

$$\sqrt{m^2+1} \mid y_1-y_2 \mid = \sqrt{m^2+1} \sqrt{(y_1+y_2)^2-4y_1y_2} = y_1+y_2 \ ,$$
 代入并化简得
$$m^4-m^2n-n=0 \ .$$
 又 $M(-n,0)$, $N(2m^2-n,0)$,由勾股定理得
$$\mid PQ \mid = 2\sqrt{(2m)^2-(2m^2-n)^2} = \frac{2}{m}\sqrt{4n-m^2n^2} \ ,$$
 则
$$\mid MN \mid \cdot \mid PQ \mid = 4m\sqrt{4n-m^2n^2} = 4\sqrt{4-(2-m^2n)^2} \le 8 \ ,$$
 当且仅当 $m^2n=2$,即 $m^6-2m^2-2=0$ 时等号成立 . 由于
$$m^2-n>0 \ ,$$
 解得
$$m>\sqrt[4]{2} \ .$$
 记 $f(m)=m^6-2m^2-2$, $m>\sqrt[4]{2}$.

$$f(\sqrt[4]{2}) \cdot f(2) < 0$$
,

则存在 $m \in (\sqrt[4]{2}, 2)$ 符合题意.

因此, $|MN|\cdot|PQ|$ 的最大值是8.

22. 本题主要考查函数的单调性,导数的运算及其应用,同时考查数学抽象、数学运算与逻辑推理等素养。满分 15 分。

(I) 当
$$a = 0$$
 , $b = -1$ 时 , $f(x) = \ln^2 x + 2ex$, 则 $f'(x) = \frac{2}{x}(\ln x + ex)$. 设 $g(x) = \ln x + ex$,

易知 g(x) 单调递增,且 $g(\frac{1}{e})=0$,则

x	$(0,\frac{1}{e})$	$\frac{1}{\mathrm{e}}$	$(\frac{1}{e}, +\infty)$
f'(x)	_	0	+
f(x)	单调递减	极小值 $f(\frac{1}{e})$	单调递增

所以

$$f(x) \ge f(\frac{1}{e}) = 3.$$

$$f'(x) = \frac{2\ln x}{x} + 2ax + b ,$$

设 $h(x) = \frac{\ln x}{x} + ax$, $h'(x) = \frac{1 - \ln x}{x^2} + a$, 则h'(x)有两个变号零点 $x_1, x_2(x_1 < x_2)$.

记
$$h''(x) = [h'(x)]', 则 \qquad h''(x) = \frac{2\ln x - 3}{x^3},$$

所以

x	$(0,\mathrm{e}^{\frac{3}{2}})$	$e^{\frac{3}{2}}$	$\left(e^{\frac{3}{2}}, +\infty\right)$	
h''(x)	_	0	+	
h'(x)	单调递减	极小值h'(e ^{3/2})	单调递增	

因此

$$x_1 \in (e, e^{\frac{3}{2}}), x_2 \in (e^{\frac{3}{2}}, +\infty).$$

此时

	x	$(0, x_1)$	x_1	(x_1, x_2)	x_2	$(x_2, +\infty)$
	h'(x)	+	0	-	0	+
Ī	h(x)	单调递增	极大值 $h(x_1)$	单调递减	极小值 $h(x_2)$	单调递增

将
$$\frac{\ln x_1 - 1}{x_1^2} = \frac{\ln x_2 - 1}{x_2^2} = a$$
 代入 $h(x_1)$, $h(x_2)$ 得
$$h(x_1) = \frac{2\ln x_1 - 1}{x_1} , h(x_1) = \frac{2\ln x_2 - 1}{x_2} .$$

设
$$\varphi(x) = \frac{2\ln x - 1}{x}$$
,则
$$\varphi'(x) = \frac{3 - 2\ln x}{x^2}$$
,所以

x $(0, e^{\frac{3}{2}})$ $e^{\frac{3}{2}}$ $(e^{\frac{3}{2}}, +\infty)$ $\varphi'(x)$ + 0 - $\varphi(x)$ 单调递增 极大值 $\varphi(e^{\frac{3}{2}})$ 单调递减

由
$$b \in (-2h(x_1), -2h(x_2))$$
 解得

$$b \in (-4e^{-\frac{3}{2}}, 0)$$
.

(ii) 由题意得 $f'(s) = 0$,即 $\frac{2\ln s}{s} + 2as + b = 0$,
将 $\frac{2\ln s}{s} + 2as + b = 0$ 代入 $f(s)$ 得
$$f(s) = \ln^2 s - 2\ln s - as^2$$
.
设 $p(x) = \ln^2 x - 2\ln x - ax^2$,则
$$p'(x) = \frac{2}{x}(\ln x - 1 - ax^2)$$
.
设 $q(x) = \ln x - 1 - ax^2$,则 $q'(x) = \frac{1 - 2ax^2}{x}$,结合 $p'(x_1) = p'(x_2) = 0$ 及 $a > 0$ 得
$$p'(x) > 0(x_1 < x < x_2)$$
.
又 $x_1 < s < x_2$,故 $p(s) > p(x_1) = \ln^2 x_1 - 3\ln x_1 + 1 > -\frac{5}{4}$.