# 河北衡水中学2021届全国高三第二次联合考试

# 数学

本试卷4页。总分150分。考试时间120分钟。

#### 注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
  - 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题:本题共8小题,每小题5分,共4分。在每小题给出的四个选项中,只有一项是符合题目要求的。

|                                                                                                      | <b>₩</b> 11.0                                                                |                                                                                            |                                              |                                              |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--|
|                                                                                                      | 1. 己知集合 $A = \{x   -1 \le x \le 2\}, B = \{0, 2, 4\},  \text{则 } A \cap B =$ |                                                                                            |                                              |                                              |  |
|                                                                                                      | A. $\{0,2,4\}$                                                               |                                                                                            | B. $\{0,2\}$                                 |                                              |  |
|                                                                                                      | C. $\{x 0 \le x \le 4\}$                                                     |                                                                                            | D. $\{x   -1 \le x \le 2 $ 或                 | x = 4                                        |  |
|                                                                                                      | 2. 已知复数 $z = \frac{3+2i}{3-2i}$ ,                                            | 则之在复平面内对应的                                                                                 | J点位于                                         |                                              |  |
|                                                                                                      | A. 第一象限                                                                      | B. 第二象限                                                                                    | C. 第三象限                                      | D. 第四象限                                      |  |
|                                                                                                      | 3. 在平面直角坐标系中                                                                 | ,O为坐标原点,A(4,3),                                                                            | $B(-1,\sqrt{3})$ ,则 $\angle AOB$ 的           | 的余弦值为                                        |  |
|                                                                                                      | A. $\frac{4\sqrt{3}-3}{10}$                                                  | B. $\frac{4\sqrt{3}+3}{10}$                                                                | C. $\frac{3\sqrt{3}-4}{10}$                  | D. $\frac{3\sqrt{3}+4}{10}$                  |  |
|                                                                                                      | 4. 已知 a,b 为两条不同                                                              | 的直线,α,β为两个不同                                                                               | 的平面,则下列结论正确                                  | 的是                                           |  |
|                                                                                                      | A. 若 $\alpha / / \beta$ , $a \subset \alpha$ , $b \subset \beta$             | ß, 则 a//b                                                                                  |                                              |                                              |  |
|                                                                                                      | B. 若 $a \subset \alpha, b \subset \beta, a//$                                | b, 则 $lpha / / eta$                                                                        |                                              |                                              |  |
| C. 若 $\alpha \cap \beta = a, b \subset \beta, b \perp a$ , 则 $\alpha \perp \beta$                    |                                                                              |                                                                                            |                                              |                                              |  |
|                                                                                                      | D. 若 $\alpha \cap \beta = l, \alpha \perp \beta$                             |                                                                                            |                                              |                                              |  |
|                                                                                                      | 5. 在五边形 ABCDE 中                                                              | $\overrightarrow{EB} = \overrightarrow{a}, \overrightarrow{AD} = \overrightarrow{b}, M, N$ | 分别为 <i>AE</i> ,BD 的中点,                       | 则 $\overrightarrow{MN}$ =                    |  |
|                                                                                                      | A. $\frac{3}{2}\vec{a} + \frac{1}{2}\vec{b}$                                 | B. $\frac{2}{3}\vec{a} + \frac{1}{3}\vec{b}$                                               | C. $\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$ | D. $\frac{3}{4}\vec{a} + \frac{1}{4}\vec{b}$ |  |
| 6. 命题 $p$ : 关于 $x$ 的不等式 $ax^2 + ax - x - 1 < 0$ 的解集为 $(-\infty, -1) \cup (\frac{1}{a}, +\infty)$ 的一个 |                                                                              |                                                                                            |                                              | $(\frac{1}{a}, + \infty)$ 的一个充分不必要           |  |
|                                                                                                      | 条件是                                                                          |                                                                                            |                                              |                                              |  |
|                                                                                                      | A. <i>a</i> ≤−1                                                              | B. $a > 0$                                                                                 | C. $-2 < a < 0$                              | D. $a < -2$                                  |  |
|                                                                                                      | 7. 面对全球蔓延的疫情                                                                 | ,疫苗是控制传染的最                                                                                 | 有力技术手段.科研攻急                                  | 关组第一时间把疫苗研发作为                                |  |
|                                                                                                      | 重中之重,对灭活疫                                                                    | 苗、重组蛋白疫苗、腺病                                                                                | 毒载体疫苗、减毒流感物                                  | 病毒载体疫苗和核酸疫苗 5 个                              |  |
|                                                                                                      | 技术路线并行研发,经                                                                   | 组织了12个优势团队进                                                                                | 行联合攻关.其中有5~                                  | 个团队已经依据各自的研究协                                |  |
|                                                                                                      | 势分别选择了灭活疫                                                                    | 苗、重组蛋白疫苗、腺病                                                                                | <b>青毒载体疫苗、减毒流感</b>                           | 病毒载体疫苗和核酸疫苗这具                                |  |
|                                                                                                      | 个技术路线,其余团                                                                    | 队作为辅助技术支持进                                                                                 | 驻这5个技术路线.若位                                  | 保障每个技术路线至少有两个                                |  |
|                                                                                                      |                                                                              |                                                                                            |                                              |                                              |  |

研究团队,则不同的分配方案的种数为

- A. 14700
- B. 16800
- C. 27300
- D. 50400
- 8. 若不等式  $m\cos x \cos 3x \frac{1}{8} \le 0$  对任意  $x \in \left(0, \frac{\pi}{2}\right)$  恒成立, 则实数 m 的取值范围是
  - A.  $\left(-\infty, -\frac{9}{4}\right]$  B.  $\left(-\infty, -2\right]$  C.  $\left(-\infty, \frac{9}{4}\right]$  D.  $\left(-\infty, \frac{9}{8}\right]$

- 二、选择题:本题共4小题、每小题5分、共20分。在每小题给出的选项中,有多项符合题目要求。全 部选对的得5分,有选错的得0分,部分选对的得2分。
- 9. 已知  $0 < \log_{\frac{1}{2}} a < \log_{\frac{1}{2}} b < 1$ , 则下列说法正确的是
  - A.  $1 > a^2 > b^2 > \frac{1}{4}$  B.  $2 > \frac{1}{a} > \frac{1}{b} > 1$  C.  $\frac{a}{b-1} > \frac{b}{a-1}$  D.  $\frac{1}{\sqrt{e}} > e^{-b} > \frac{1}{e}$

- 10. 将函数  $f(x) = 2\cos x$  图象上所有点的横坐标伸长到原来的 2 倍, 纵坐标不变, 再将得到的图象向左 平移 $\pi$ 个单位长度,得到函数g(x)的图象,则下列说法正确的有
  - A. g(x) 为奇函数
  - B. g(x) 的周期为  $4\pi$
  - C.  $\forall x \in R$ , 都有  $g(x+\pi) = g(\pi-x)$
  - D. g(x) 在区间  $\left[-\frac{2\pi}{3}, \frac{4\pi}{3}\right]$  上单调递增, 且最小值为  $-\sqrt{3}$
- 11. 提丢斯.波得定律是关于太阳系中行星轨道的一个简单的几何学规则,它是在1766年由德国的 一位中学老师戴维斯·提丢斯发现的,后来被柏林天文台的台长波得归纳成一条定律,即数列 $\{a_n\}$ :0.4,0.7,1.6,2.8,5.2,10,19.6 ··· 表示的是太阳系第 n 颗行星与太阳的平均距离 (以天文单位 A.U. 为单位). 现将数列 $\{a_n\}$ 的各项乘以10后再减4,得到数列 $\{b_n\}$ ,可以发现数列 $\{b_n\}$ 从第3项起, 每项是前一项的2倍,则下列说法正确的是
  - A. 数列  $\{b_n\}$  的通项公式为  $b_n = 3 \times 2^{n-2}$
  - B. 数列  $\{a_n\}$  的第 2021 项为  $0.3 \times 2^{2020} + 0.4$
  - C. 数列  $\{a_n\}$  的前 n 项和  $S_n = 0.4n + 0.3 \times 2^{n-1} 0.3$
  - D. 数列  $\{nb_n\}$  的前 n 项和  $T_n = 3(n-1) \cdot 2^{n-1}$
- 12. 在一张纸上有一圆  $C: (x+2)^2 + u^2 = r^2 (r > 0)$  与点 M(m,0)  $(m \neq -2)$ , 折叠纸片, 使圆 C 上某一 点 M'恰好与点 M 重合, 这样的每次折法都会留下一条直线折痕 PQ, 设折痕 PQ 与直线 M'C 的 交点为T,则下列说法正确的是
  - A. 当-2-r < m < -2+r时,点T的轨迹为椭圆
  - B. 当r=1, m=2时,点T的轨迹方程为 $x^2-\frac{y^2}{3}=1$
  - C. 当 $m=2,1 \le r \le 2$ 时,点T的轨迹对应曲线的离心率取值范围为[2,4]
  - D. 当 $r=2\sqrt{2}$ ,m=2时,在T的轨迹上任取一点S,过S作直线y=x的垂线,垂足为N,则  $\triangle SON(O$  为坐标原点)的面积为定值
- 三、填空题:本题共4小题,每小题5分,共20分。
- 13. 正态分布在概率和统计中占有重要地位, 它广泛存在于自然现象、生产和生活实践中, 在现实生活 中, 很多随机变量都服从或近似服从正态分布. 在某次大型联考中, 所有学生的数学成绩

 $X \sim N(100, 225)$ . 若成绩低于 m+10 的同学人数和高于 2m-20 的同学人数相同, 则整数 m 的值为 \_\_\_\_\_\_.

- 14. 已知抛物线  $x^2 = 4y$ , 其准线与 y 轴交于点 P, 则过点 P 的抛物线的切线方程为 .
- 15. 在  $\triangle ABC$  中,a,b,c 分别是内角 A,B,C 的对边,其中  $A=\frac{\pi}{3},b+c=4,M$  为线段 BC 的中点,则 |AM| 的最小值为

四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

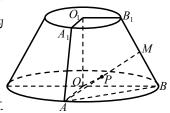
### 17. (10分)

在①  $\triangle ABC$  的外接圆面积为  $3\pi$ , ②  $\triangle ADC$  的面积为  $\frac{3\sqrt{3}}{4}$ , ③  $\triangle BDC$  的周长为  $5+\sqrt{7}$  这三个条件中任选一个, 补充在下面的问题中, 并给出解答.

问题: 在  $\triangle ABC$  中,内角 A , B , C 的对边分别为 a , b , c , D 是 AB 边上一点.已知  $AD=\frac{1}{3}AB$ ,  $\sin A\sin C=\frac{3}{4}$ ,  $\cos 2B+3\cos B=1$ , 若 \_\_\_\_\_\_, 求 CD 的长.

注:如果选择多个条件分别解答,按第一个解答计分.

#### 18. (12分)


已知等差数列  $\{a_n\}$  的前 n 项和为  $S_n$ , 且  $S_4 = S_5 = -20$ .

- (1) 求数列  $\{a_n\}$  的通项公式;
- (2) 已知数列  $\{b_n\}$  是以 4 为首项, 4 为公比的等比数列, 若数列  $\{a_n\}$  与  $\{b_n\}$  的公共项为  $a_m$ , 记 m 由小到大构成数列  $\{c_n\}$ , 求  $\{c_n\}$  的前 n 项和  $T_n$ .

#### 19. (12分)

如图,已知圆台  $O_1O$  的下底面半径为 2,上底面半径为 1,母线与底面所成的角为  $\frac{\pi}{3}$ , $AA_1$ , $BB_1$ 为母线,平面  $AA_1O_1O$   $\bot$  平面  $BB_1O_1O$ ,M 为  $BB_1$ 的中点,P 为 AM 上的任意一点.

- (1) 证明: BB₁ ⊥ OP;
- (2) 当点 P 为线段 AM 的中点时, 求平面 OPB 与平面 OAM 所成锐二 面角的余弦值.



#### 20. (12分)

国务院办公厅印发了《关于防止耕地"非粮化"稳定粮食生产的意见》,意见指出要切实稳定粮食生产,牢牢守住国家粮食安全的生命线.为了切实落实好稻谷、小麦、玉米三大谷物种植情况,某乡镇抽样调查了A村庄部分耕地(包含永久农田和一般耕地)的使用情况,其中永久农田100亩,三

大谷物的种植面积为90亩,棉、油、蔬菜等的种植面积为10亩;一般耕地50亩,三大谷物的种植面 积为30亩,棉、油、蔬菜等的种植面积为20亩.

- (1)以频率代替概率,求A村庄每亩耕地(包括永久农田和一般耕地)种植三大谷物的概率;
- (2) 上级有关部门要督促落实整个乡镇三大谷物的种植情况, 现从本乡镇抽测5个村庄, 每个村庄 的三大谷物的种植情况符合要求的概率均为 A 村庄每亩耕地(永久农田和一般耕地)种植三大谷 物的概率. 若抽测的村庄三大谷物的种植情况符合要求, 则为本乡镇记1分, 若不符合要求, 记-1  $\mathcal{L}$  分.X 表示本乡镇的总积分, 求X 的分布列及数学期望;
- (3)目前在农村的劳动力大部分是中老年人,调查中发现,80位中老年劳动力中有65人种植三大 谷物,其余种植棉、油、蔬菜等农作物;20位青壮年劳动力中有15人种植需要技术和体力,短期收 益大的棉、油、蔬菜等农作物,其余种植三大谷物.请完成下表,并判断是否有99.9%的把握认为 种植作物的种类与劳动力的年龄层次有关?

| 劳动力年龄层次 | 种植情况   |           | 合计 |
|---------|--------|-----------|----|
|         | 种植三大谷物 | 种植棉,油、蔬菜等 |    |
| 中老年劳动力  |        |           |    |
| 青壮年劳动力  |        |           |    |
| 合计      |        |           |    |

附: 
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
 其中  $n = a+b+c+d$ .
$$P(K^2 \ge k_0) \quad 0.10 \quad 0.05 \quad 0.025 \quad 0.010 \quad 0.001$$

$$k_0 \quad 2.706 \quad 3.841 \quad 5.024 \quad 6.635 \quad 10.828$$

# 21. (12分)

已知椭圆  $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$  的左、右焦点分别为 $F_1, F_2, P\left(-\frac{2\sqrt{6}}{3}, \frac{\sqrt{3}}{3}\right)$ 满足 $|PF_1| + |PF_2|$ =2a, 且以线段  $F_1F_2$  为直径的圆过点 P.

3.841

5.024

6.635

10.828

- (1) 求椭圆 C 的标准方程;
- (2) O 为坐标原点, 若直线 l 与椭圆 C 交于 M, N 两点, 直线 OM 的斜率为  $k_1$ , 直线 ON 的斜率为  $k_2$ , 当  $\triangle OMN$  的面积为定值 1 时,  $k_1k_2$  是否为定值? 若是, 求出  $k_1k_2$  的值; 若不是, 请说明理由.

## 22. (12分)

设函数
$$f(x) = \ln x + x + \frac{2}{x}, g(x) = \frac{e^x}{x}$$

- (1) 若  $h(x) = mf(x) g(x), m \in R$ , 试判断函数 h(x) 的极值点个数;
- (2) 设 $\varphi(x) = x^2 g(x) f(x) kx + 2x + \frac{2}{x}$ 若 $\varphi(x) \ge 1$ 恒成立, 求实数k的取值范围.