2021 届高三年级苏州八校联盟第三次适应性检测

数 学 试 卷

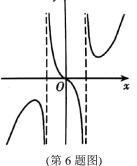
(满分 150 分 考试时间 120 分钟)

一、单项选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.

- 1. 己知集合 $M = \{x \mid -4 < x < 2\}$, $N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, 则 $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x^2 x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0\}$, $M \cup N = \{x \mid x 6 < 0$

 - A. $\{x \mid -4 < x < 3\}$ B. $\{x \mid -4 < x < -2\}$ C. $\{x \mid -2 < x < 2\}$ D. $\{x \mid 2 < x < 3\}$

- 2. 复数 $z \in \mathbb{C}$,在复平面内 z 对应的点 Z,满足 $1 \le |z \frac{1}{1+i}| \le 2$,则点 Z 所在区域的面积
- B. 2π
- C. 3π
- D. 4π
- 3. 《九章算术》是世界上最古老的数学著作之一,书中有如下问题: "今有金箠,长五 尺,斩本一尺,重十斤,斩末一尺,重四斤,问次一尺各重几何?"意思是:"现有 一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重10斤;在细的一端截 下1尺,重4斤,问依次每一尺各重多少斤?"假设金杖由粗到细是均匀变化的,则截 去粗端 2 尺后, 金杖剩余部分的重量为
 - A. 15.5斤 B. 16.5斤 C. 17.5斤 D. 18.5斤


- 4. 设三点 A, B, C 不共线,则"向量 \overrightarrow{AB} 与 \overrightarrow{AC} 夹角是钝角"是" $|\overrightarrow{AB} + \overrightarrow{AC}| < |\overrightarrow{BC}|$ "的
 - A. 充分而不必要条件 B. 必要而不充分条件

C. 充分必要条件

- D. 既不充分也不必要条件
- 5. $\psi x = \log_{0.4} 0.5$, $y = \log_{1.5} 0.5$, \emptyset
 - A. xy < x + y < 0

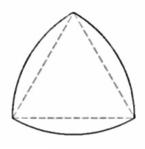
B. x + y < xy < 0

- C. x + y < 0 < xy
- D. xy < 0 < x + y
- 6. 已知函数 y = f(x) 的图像如右图所示,则此函数可能是
 - A. $f(x) = \frac{e^{-x} e^{x}}{x^{2} + |x| 2}$ B. $f(x) = \frac{e^{x} e^{-x}}{x^{2} + |x| 2}$
 - C. $f(x) = \frac{x^3 + x}{e^{|x|-1} e^{1-|x|}}$ D. $f(x) = \frac{x^3 x}{e^{|x|-1} e^{1-|x|}}$

7. 若数列 $\{F_n\}$ 满足 $F_1=1$, $F_2=1$, $F_n=F_{n-1}+F_{n-2}$ $(n\geq 3)$, 则 $\{F_n\}$ 称为斐波那契数列,它是由 中世纪意大利数学家斐波那契最先发现. 它有很多美妙的特征, 如当 $n \ge 2$ 时, 前 n 项 之和等于第n+2 项减去第2 项: 随着n 的增大, 相邻两项之比越来越接近0.618 等等. 若 第30项是832040,请估计这个数列的前30项之和最接近

(备注: $0.618^2 \approx 0.38$, $1.618^2 \approx 2.61$)

- A. 31万
- B. 51 万 C. 217 万 D. 317 万
- 8. 平面直角坐标系 xov 中, 若点的横、纵坐标均为整数,则称该点为整点. 已知点 $A(-\sqrt{6}.0)$. $B(\sqrt{6}.0)$, 若整点 P 满足 $\overrightarrow{PA} \cdot \overrightarrow{PB} + |\overrightarrow{PA}| \cdot |\overrightarrow{PB}| \leq 4$, 则点 P 的个数为
 - A. 10
- B. 11
- C. 14
- 二、多项选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的四个选项中. 只有多项符合题目要求,全部选对得5分,部分选对得2分,有选错得0分.
- 9. 已知函数 $f(x) = (\sin x + \sqrt{3}\cos x)^2$,则


 - A. f(x)在区间 $[0,\frac{\pi}{6}]$ 上递增 B. f(x)的图象关于点 $(-\frac{\pi}{3},0)$ 对称
 - C. f(x)最小正周期为 π
- D. f(x)的值域为[0,4]
- 10. 某学校组织知识竞赛,每班组成四人小组参加比赛,比赛采用抢答形式,答对则得 5 分, 否则得 0 分. 高三(10)班由甲、乙、丙、丁四人组队参赛. 最后统计结果为: 甲、乙、丙、丁四人得分恰好由高到低排列,且均不相同; 甲答对题个数的 2 倍小于 丁答对题个数的 3 倍,则
 - A. 甲至少答对了 11 道题
 - B. 乙至少答对了9道题
 - C. 丁至少答对了8道题
 - D. 高三(10)班至少获得了170分
- 11. 在平面直角坐标系 xoy 中,凸四边形 ABCD 的 4 个顶点均在抛物线 $E: y^2=2x$ 上,则
 - A. 四边形 ABCD 不可能为平行四边形
 - B. 存在四边形 ABCD, 满足 $\angle A=\angle C$
 - C. 若 AB 过抛物线 E 的焦点 F,则直线 OA,OB 斜率之积恒为-2

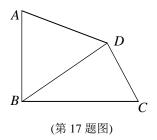
- 12. 平行六面体 ABCD- $A_1B_1C_1D_1$ (底面为平行四边形的四棱柱)中, $AB=AD=AA_1=2$, $\angle A_1AB=\angle DAB=\angle A_1AD=60^0$,则
 - A. 线段 AC_1 的长度为 $2\sqrt{6}$
 - B. 异面直线 BD_1 、 B_1C 夹角的余弦值为 $\frac{1}{3}$
 - C. 对角面 BB_1D_1D 的面积为 $4\sqrt{3}$
 - D. 四棱柱 $ABCD-A_1B_1C_1D_1$ 的体积为 $4\sqrt{2}$

三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

- 13. 以坐标轴为对称轴的等轴双曲线 C 经过点 A(-3, 1),则 C 的标准方程为______.
- 14. $(x + \frac{y^2}{x})^5 (x + y)^5$ 展开式中, $x^8 y^2$ 的系数为______.

(第15题图)

16. 已知函数 $f(x) = (2x^2 - 4x + 3)(e^{x-1} - e^{1-x}) - 2x + 1$ 在[0, 2]上的最大值为 M,最小值为 m,


则 M+m= _____.

四、解答题: 本题共6小题, 共70分. 解答时应写出说明、证明过程或演算步骤.

17. (本小题满分 10 分)

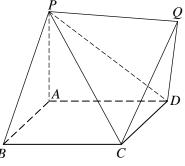
如图,在平面四边形 ABCD 中, BC=1, $\angle ABC=90^{\circ}$, $\angle BCD=60^{\circ}$, $\angle BAD=75^{\circ}$.

- (1) 若 $\angle CBD = 30^{\circ}$, 求三角形 ABD 的面积;
- (2) 若 $AD = \frac{\sqrt{6} \sqrt{2}}{2}$,求 $\angle CBD$ 的大小.

18. (本小题满分 12 分)

已知数列 $\{a_n\}$ 为等比数列,且各项均为正数, $a_1=2$, a_2+a_3 是 a_3 与 a_4 的等差中项.记正项数列 $\{b_n\}$ 前 n 项之积为 T_n , $b_1=1$, $T_n^2=a_{n(n-1)}$ $(n\geq 2)$.

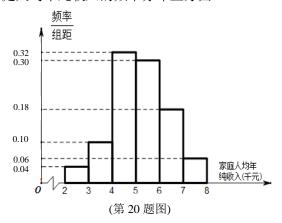
(1) 求数列 $\{a_n\}$ 与 $\{b_n\}$ 的通项公式;


(2) 证明:
$$\sum_{i=1}^{n} \frac{a_i - 1}{(2b_i - i)(2b_{i+1} - i - 1)} \ge \frac{1}{2} (n \in N_+)$$
.

19. (本小题满分 12 分)

如图,多面体 PQABCD 中,四边形 ABCD 是菱形,PA上平面 ABCD,AB=PA=2,

$$\angle ABC = 60^{\circ}$$
, $QC = QD = 2\sqrt{2}$, $PQ = a \ (a > 0)$.


- (1) 设点 F 为棱 CD 的中点,求证:对任意的正数 a,四边形 PQFA 为平面四边形;
- (2) 当 $a = \sqrt{14}$ 时,求直线PQ与平面PBC所成角的正弦值。

(第19题图)

20. (本小题满分 12 分)

某贫困地区截至 2016 年底,按照农村家庭人均年纯收入 8000 元的小康标准,该地区 仅剩部分家庭尚未实现小康. 现从这些尚未实现小康的家庭中随机抽取 50 户,得到这 50 户 2016 年的家庭人均年纯收入的频率分布直方图.

- (1) 将家庭人均年纯收入不足 5000 元的家庭称为"特困户", 若从这 50 户中再取出 10 户调查致贫原因, 求这 10 户中含有"特困户"的户数 X 的数学期望;
- (2) 假设 2017 年底该地区有 1000 户居民,其中 900 户为小康户,100 户为"特困户",若每经过一年的脱贫工作后, "特困户"中有 90% 变为小康户,但小康户仍有 t% (0<t<10)变为"特困户",假设该地区居民户数保持不变,记经过 n 年脱贫工作后该地区小康户数为 a_n.
 - (i) 求 a_1 并写出 a_{n+1} 与 a_n 的关系式;
 - (ii)要使经 2 年脱贫工作后该地区小康户数至少有 950 户, 求最大的正整数 t 的值.

21. (本小题满分 12 分)

已知圆 $E:(x+1)^2+y^2=8$,点 F(m,0)(m>0), P 是圆 E 上一点,线段 PF 的垂直平分线 l 与直线 EP 相交于点 Q.

- (1) 若 m=2, 点 P 在圆 E 上运动时, 点 Q 的轨迹是什么? 说明理由;
- (2) 若 m=1,点 P 在圆 E 上运动时,点 Q 的轨迹记为曲线 C. 过 E 点作两条互相垂直的直线 l_1 、 l_2 , l_1 与曲线 C 交于两点 A、B, l_2 与曲线 C 交于两点 C、D,M 为线段 AB 的中点,N 为线段 CD 的中点。试问,直线 MN 是否过定点?若过定点,并求出该定点的坐标,若不过定点,请说明理由。

22. (本小题满分 12 分)

已知函数 $f(x) = e^x$, $g(x) = \sin x$.

- (1) 设函数 $h(x) = f(x) (x-1) \cdot g(x)$, 当 $x \in [-\pi, 0]$ 时,求函数 h(x) 零点的个数;
- (2) 求证: $g(x) \cdot g'(x) + 1 < x \cdot f(x) \ln x$.