2021届新高考基地学校高三第二次大联考

数学试卷

注意事项:

1. 答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净 后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效,

3. 考试结束后,将本试卷和答题卡一并交回.

一、选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 设全集为**R**,集合 $A = \{x | 2 < x < 5\}, B = \{x | 2^x > 16\}, 则 A \cap (C_B B) =$

A. $\{x | 4 < x \le 5\}$ B. $\{x | 4 < x < 5\}$ C. $\{x | 2 < x \le 4\}$ D. $\{x | 2 < x < 4\}$

2. 某校组建了甲、乙、丙3支羽毛球球队参加男女混合双打比赛,其中男队员有小王、小张、小李,女队员有小 红、小芳、小丽.若小王和小红不是搭档,小张和小丽不是搭档,小李和小芳不是搭档,则

A. 小王的搭档一定是小芳

B. 小芳的搭档不可能是小张

C. 小张的搭档不可能是小红

D. 小李的搭档可能是小丽

3. 根据 2010~2019 年我国 16~59 岁人口比重统计数据 y(%),拟合了 y 与年份 x 的回归方程为 $\hat{y} = -0.74x +$ 1551,试据此估计我国约从哪一年开始16~59岁人口比重低于50%

A. 2023

B. 2026

C. 2029

D. 2032

4. 碌碡是我国古代人民发明的一种把米、麦、豆等粮食加工成粉末的器具,如图,近似圆柱形碌碡的轴固定在

经过圆盘圆心且垂直于圆盘的木桩上,当人推动木柄时,碌碡在圆盘上滚动.若人推动 木柄绕圆盘转动1周,碌碡恰好滚动了3圈,则该圆柱形碌碡的高与其底面圆的直径之 比约为

A. 3:1

B. 3:2 C. 1:3

5. 若存在复数 z 同时满足 |z-i|=1, |z-3+3i|=t,则实数 t 的取值范围是

A. [0,4]

B. (4,6) C. [4,6]

D. $(6, +\infty)$

6. 香农定理是所有通信制式最基本的原理,它可以用香农公式 $C = B\log_2\left(1 + \frac{S}{N}\right)$ 来表示,其中C是信道支 持的最大速度或者叫信道容量,B是信道的带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已 知平均信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽的前提下,要使信道容 量增大到原来的2倍,则平均噪声功率约降为

B. 1.0W

C. 3.2W

7. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的焦距为 2c(c > 0),右焦点为 F,过 C 上一点 P 作直线 $x = \frac{3}{2}c$ 的垂 线,垂足为Q.若四边形OPQF为菱形,则C的离心率为

B. $\frac{\sqrt{6}}{3}$ C. $4-2\sqrt{3}$ D. $\sqrt{3}-1$

8. 已知函数 $f(x) = \frac{x-a}{e^x}$,且 $e^a = \ln b = c$,则

A. f(a) < f(b) < f(c) B. f(b) < f(c) < f(a)

C. f(a) < f(c) < f(b) D. f(c) < f(b) < f(a)

二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5分,部分选对的得2分,有选错的得0分.

9.	已知无穷等差数列 $\{a_n\}$ 的前 n 项	和为 S_n , a_1 >	\cdot 0, d < 0 ,则
Α.	数列 $\{a_n\}$ 单调递减	В.	数列 $\{a_n\}$ 没有最小值
C.	数列 $\{S_n\}$ 单调递减	D.	数列 $\{S_n\}$ 有最大值

10. 已知
$$a,b$$
 均为正数,且 $a-b=1$,则

A.
$$2^a - 2^b > 1$$
 B. $a^3 - b^3 < 1$ C. $\frac{4}{a} - \frac{1}{b} \le 1$ D. $2\log_2 a - \log_2 b < 2$

11. 已知函数
$$f(x) = \frac{\sin^3 x}{x^2 + 1}, x \in (-\pi, \pi),$$
则

A.
$$\forall x \in (-\pi, \pi), f(x)f(-x) \ge 0$$

B.
$$\forall x \in (-\pi,\pi), |f(x)| \leq 1$$

C.
$$\exists x_1, x_2 \in (-\pi, \pi), x_1 \neq x_2, f(x_1) = f(x_2)$$

D.
$$\exists x_0 \in (-\pi, \pi), \forall x \in (-\pi, \pi), |f(x)| \leq f(x_0)$$

12. 由倍角公式 $\cos 2x = 2\cos^2 x - 1$,可知 $\cos 2x$ 可以表示为 $\cos x$ 的二次多项式.一般地,存在一个 $n(n \in \mathbf{N}^*)$ 次多项式 $P_n(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n(a_0, a_1, a_2, \dots, a_n \in \mathbf{R})$,使得 $\cos nx = P_n(\cos x)$,这些多项式 $P_n(t)$ 称为切比雪夫(*P.L. Tschebyscheff*)多项式.则

A.
$$P_3(t) = 4t^3 - 3t$$

B. 当
$$n \ge 3$$
时, $a_0 = 0$

C.
$$|a_1 + a_2 + a_3 + \dots + a_n| \le 2$$

D.
$$\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}$$

三、填空题:本题共4小题,每小题5分,共20分.

- 13. 若志愿者服务大队计划在今年"五一"小长假这5天中安排3天到社区进行劳动法宣讲,则这3天中恰有2天连排的概率为
- 14. 己知正方形 ABCD 的边长为 2, 当点 P 满足 时, $\overrightarrow{AP} \cdot \overrightarrow{AC} = 4$.

(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)

15. 设
$$\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^6=\sum_{i=0}^{14}a_ix^{7-i}$$
,则 $\left(a_0+a_2+a_4+a_6\right)-\left(a_7+a_9+a_{11}+a_{13}\right)=$ ______.

16. 已知等边三角形 ABC 的边长为 2,点 D,E 分别在边 AC,BC 上,且 DE // AB,将 ΔCDE 沿 DE 折起,则四棱锥 C-DABE 的体积的最大值为 ,此时四棱锥 C-DABE 的外接球的表面积为 .

四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

17. $(10 \, f)$ 在① $4a\sin B\cos A = \sqrt{3}b$,② $b\sin^2 B + c\sin^2 C = (b+c)\sin^2 A$,③ $\sqrt{3}\sin A + \cos A = \frac{b}{a} + \frac{a}{b}$. 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求出 $\cos B$ 的值;若问题中的三角形不存在,说明理由.

问题:在 $\triangle ABC$ 中,角 A,B,C 的对边分别为 a,b,c,已知 $\cos C = \frac{1}{3}$,______. 注:如果选择多个条件分别解答,按第一个解答计分. 18. (12 分)已知数列 $\{a_n\}$ 满足 $a_1=2$, $(n+2)a_n=3(n+1)a_{n+1}$.

- (1)求数列 $\{a_n\}$ 的通项公式;
- (2)设 S_n 为数列 $\{a_n\}$ 的前n项和,求证: $S_n < \frac{15}{4}$.

19. (12分)阳澄湖大闸蟹又名金爪蟹,产于江苏苏州.蟹身青壳白肚,体大膘肥,肉质膏腻,营养丰富,深受消费者喜爱.某水产品超市购进一批重量为100千克的阳澄湖大闸蟹,随机抽取了50只统计其重量,得到的结果如下表所示:

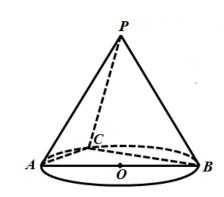
规格	中蟹		大蟹		小蟹	
重量 (单位:克)	[160,180)	[180,200)	[200,220)	[220,240)	[240,260)	[260,280]
数量 (单位:只)	3	2	15	20	7	3

- (1)试用组中值来估计该批大闸蟹约有多少只?(所得结果四舍五入保留整数);
- (2)某顾客从抽取的 10 只特大蟹中随机购买了 4 只,记重量在区间 [260,280] 上的大闸蟹数量为 X,求 X 的概率分布和数学期望.

20. $(12 \, \mathcal{G})$ 已知 AB 是圆 O 的直径,且长为 4,C 是圆 O 上异于 A,B 的一点,点 P 到 A,B,C 的距离均为 $2\sqrt{3}$.设二面角 P-AC-B 与二面角 P-BC-A 的大小分别为 α , β .

$$(1)$$
求 $\frac{1}{\tan^2\alpha} + \frac{1}{\tan^2\beta}$ 的值;

(2)若 $\tan \beta = \sqrt{3} \tan \alpha$,求二面角 A - PC - B 的余弦值.



- 21. (12 分)在平面直角坐标系 xOy 中,过点 M(0,-1) 的直线交抛物线 $y^2 = 4x$ 于 A,B 两点.
- (1)设OA,OB的斜率分别为 k_1,k_2 ,求 k_1+k_2 的值;
- (2)过点 A,B 分别作直线 x=-4 的垂线,垂足为 C,D,试探究 $\angle AOB$ 和 $\angle COD$ 的关系,并说明理由.

- 22. (12 分)已知函数 $f(x) = -\frac{3}{2}x^2 + 6x + 3\log_a x$ (a > 0,且 $a \neq 1$)为单调减函数,f(x) 的导函数f'(x) 的最大值不小于 0.
- (1)求 a 的值;
- (2)若 $f(x_1) + f(x_2) = 9$,求证: $x_1 + x_2 \ge 2$.