扬州市 2021 届高三考前调研测试试题

数学

2021.05

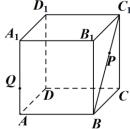
注意事项:

	1. 本试卷考试时间为	为 120 分钟,试卷满分	·150 分,考试形式闭卷.					
	2. 本试卷中所有试	题必须作答在答题卡上	规定的位置,否则不给分	}.				
	3. 答题前,务必将	自己的姓名、 准考 证号	等信息用黑色墨水签字等	色填写在答题卡的相应位置.				
<u> </u>	、单项选择题(本大题共	48小题,每小题5分	,共 40 分. 在每小题给	出的选项中,只有一项符合要	求).			
1.	设全集 $U = \{x \mid y = \lg(x)\}$	$2x-x^2)\}, \text{$\mathfrak{A}=\{y$}$	$\mid y = 2^x, x < 0 \} , \text{If } \mathbb{C}_U A =$					
	A. $[1,+\infty)$	в. (0,1]	c. [1,2)	D. $(-\infty,1]$				
2.	若 $(3+i)(2+xi)=y$,其中 $x,y\in R$, i 为虚数单位,则复数 $x+yi$ 在复平面内对应的点位于(
	A. 第一象限	B. 第二象限	C. 第三象限	D. 第四象限				
3.	在 ΔABC 中, $AB = 6$	$5, AC = 8, BC = 10, \overline{BC}$	$\overrightarrow{C} = 2\overrightarrow{DB}, \ \ \overrightarrow{D} \cdot \overrightarrow{BC} =$	()				
	A86	B. 86	C. 7	D7				
4.	现有《诗经》、《尚书	i》、《礼记》、《周易》、	《春秋》各一本,分给甲	、乙、丙、丁、戊5名同学,	每人一			
	本,若甲乙都没有拿	:到《诗经》,且乙也没	拿到《春秋》,则所有可	能的分配方案有()				
	A. 18种	B. 24 种	C. 36种	D. 54 种				
5.	密位制是度量角的一	·种方法.将周角等分为	为 6000 份,每一份叫做1	密位的角. 以密位作为角的原	度量单位,			
	这种度量角的单位制	, 叫做角的密位制. 7	生角的密位制中,采用四	个数码表示角的大小,单位名	3称密位二			
	字可以省去不写. 密	位的写法是在百位数字	字与十位数字之间画一条	短线,如: 478 密位写成"4-	- 78",1厚			
	角等于 6000 密位,i	己作1周角=60-00.	如果一个扇形的半径为2	,面积为 $\frac{7}{3}\pi$,则其圆心角罩	可以用密位			
	制表示为()			3				
	A. 25-00	B. 35-00	C. $42-00$	D. 70-00				
6.	"五一"期间,甲、乙、	丙三个大学生外出旅	游,已知一人去北京,一	一人去西安,一人去云南. 回来				
	对去向作了如下陈述	<u>:</u> :						
	甲:"我去了北京,石	乙去了西安."						
	乙:"甲去了西安,同	丙去了北京."						
	丙:"甲去了云南,石	乙去了北京."						
	事实是甲、乙、丙三	人的陈述都只对了一	半(关于去向的地点仅对	一个). 根据以上信息,可判	断下面说			
	法中正确的是()						
	A. 甲去了西安	B. 乙去了北京	C. 丙去了西安	D. 甲去了云南				

7. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F , 以 F 为圆心, |OF| 为半径的圆交双曲线 C 的右支于

P,Q 两点 (O为坐标原点),若 ΔOPQ 是等边三角形,则双曲线C的离心率为(

A.
$$\frac{\sqrt{7} + 1}{3}$$


B.
$$\sqrt{3}$$

$$C. \frac{\sqrt{5} + 1}{2}$$

- 8. 已知定义在 $(-\infty,0)$ \cup $(0,+\infty)$ 上的奇函数 f(x) 在 $(-\infty,0)$ 上单调递减,且满足 f(2)=2,则关于 x 的不等 式 $f(x) < \sin \pi x + x$ 的解集为(
 - A. $(-\infty, -2) \cup (2, +\infty)$ B. $(-2,0) \cup (2, +\infty)$ C. $(-\infty, -2) \cup (0,2)$ D. $(-2,0) \cup (0,2)$

- 二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选 对的得5分,部分选对的得2分,有选错的得0分)
- 9. 已知ab > 0且 $\frac{1}{a} > \frac{1}{b}$,则下列不等式一定成立的有(
 - A. a < b

- B. $\frac{a}{b} < \frac{b}{a}$ C. $\frac{a}{b} + \frac{b}{a} > 2$ D. $2^a + a < 2^b + b$
- 10. 已知函数 $f(x) = \sin(\omega x \frac{\pi}{6})$ ($\omega > 0$) 在区间 $[0,\pi]$ 上恰能取到 2 次最大值,且最多有 4 个零点,则下列说 法中正确的有(
 - A. f(x) 在 $(0,\pi)$ 上恰能取到 2 次最小值 B. ω 的取值范围为 $[\frac{8}{2},\frac{25}{6}]$
- - C. f(x)在 $(0,\frac{\pi}{6})$ 上一定有极值
- D. f(x) 在 $(0,\frac{\pi}{2})$ 上不单调
- 11. 正方体 $ABCD A_iB_iC_iD_i$ 中, $AA_i=2$,点 P 在线段 BC_i 上运动,点 Q 在线段 AA_i 上运动,则下列说法中 正确的有(
 - A. 三棱锥 $A D_1 PC$ 的体积为定值
 - B. 线段PQ长度的最小值为2
 - C. 当 P 为 BC_1 中点时,三棱锥 $P-ABB_1$ 的外接球表面积为 2π
 - D. 平面 BPQ 截该正方体所得截面可能为三角形、四边形、五边形

- 12. 在三角函数部分,我们研究过二倍角公式 $\cos 2x = 2\cos^2 x 1$,实际上类似的还有三倍角公式,则下列说法 中正确的有(
 - A. $\cos 3x = 4\cos^3 x 3\cos x$
 - B. 存在 $|x| \le 1$ 时,使得 $|4x^3 3x| > 1$
 - C. 给定正整数 n , 若 $|x_i| \le 1$, $(i = 1, 2, \dots, n)$, 且 $\sum_{i=1}^{n} x_i^3 = 0$, 则 $\left|\sum_{i=1}^{n} x_i\right| \le \frac{n}{3}$
 - D. 设方程 $8x^3 6x 1 = 0$ 的三个实数根为 x_1, x_2, x_3 ,并且 $x_1 < x_2 < x_3$,则 $2(x_3^2 x_2^2) = x_3 x_1$
- 三、填空题(本大题共4小题,每小题5分,共20分)

- 13. $\left(2x \frac{1}{\sqrt{x}}\right)^6$ 展开式中常数项为_____(用数字作答).
- 14. 已知点 P 在抛物线 $y^2 = 4x$ 上,点 Q 在圆 $(x-5)^2 + y^2 = 1$ 上,则 PQ 长度的最小值为
- 15. 根据天文学有关知识,当且仅当一颗恒星的"赤纬"数值大于 –58° 时,能在扬州的夜空中看到它. 下表列出了 10 颗恒星的"赤纬"数值:

星名	天狼星	老人星	南门二	大角星	织女一	五车二	参宿七	南河三	水委一	参宿四
赤纬	-16.7°	-52.7°	-60.8°	19.2°	38.8°	46°	-8.2°	5.2°	-57.2°	7.4°

现有四名学生从这 10 颗恒星中各随机选择 1 颗进行观测,其中有 X 人能在扬州的夜空中看到观测目标,则 X 的数学期望为

16. 对于有限数列
$$\left\{a_{n}\right\}$$
, 定义集合 $S(k) = \left\{s \mid s = \frac{a_{i_{1}} + a_{i_{2}} + \cdots + a_{i_{k}}}{k}, 1 \leq i_{1} < i_{2} < \cdots < i_{k} \leq 10\right\}$, 其中

 $k \in \mathbb{Z}$ 且 $1 \le k \le 10$,若 $a_n = n$,则S(3)的所有元素之和为______

四、解答题(本大题共6小题, 计70分. 解答应写出必要的文字说明、证明过程或演算步骤)

17. (本小题满分 10 分)

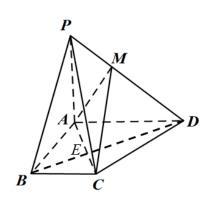
已知等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$ 满足: $a_1 = b_1 = 2$, 且 $a_2 - 1$, a_3 , $a_6 - 1$ 是等比数列 $\{b_n\}$ 的连续三项.

- (1) 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式;
- (2) 设 $c_n = (-1)^n \log_2(a_n a_{n+1}) + \log_2 b_n$, 求数列 $\{c_n\}$ 的前 10 项和 T_{10} .

18. (本小题满分 12 分)

在 $\triangle ABC$ 中,角 A,B,C 所对边分别为 a,b,c ,现有下列四个条件:

①
$$a = \sqrt{3}$$
; ② $b = 2$; ③ $2c\cos A = a\cos B + b\cos A$; ④ $3(a^2 + c^2 - b^2) = -2\sqrt{3}ac$.


- (1) ③④两个条件可以同时成立吗?请说明理由;
- (2) 请从上述四个条件中选三个,使得 ΔABC 有解,并求 ΔABC 的面积.
- (注:如果选择多个组合作为条件分别解答,按第一个解答计分)

19. (本小题满分 12 分)

如图,四棱锥 P-ABCD 中,PA 上平面 ABCD,AD // BC,

$$AB = AD = 2$$
, $AC = \sqrt{3}$, $AC \cap BD = E$, $\overrightarrow{DM} = 2\overrightarrow{MP}$, $PB // \text{$\forall$ $\vec{\exists}$ } MAC$.

- (1) 证明: *AC* ⊥平面 *PAD*;
- (2) 若 PB 与平面 ABCD 所成角为 45° , 求二面角 C-PD-A 的余弦值.

20. (本小题满分 12 分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,M为椭圆C上一点,线段 MF_1 与圆 $x^2 + y^2 = 1$ 相切于该线段的中点N,且 ΔMF_1F_2 的面积为2.

- (1) 求椭圆C的方程;
- (2) 椭圆 C 上是否存在三个点 A, B, P, 使得直线 AB 过椭圆 C 的左焦点 F_1 ,且四边形 OAPB 是平行四边形?若存在,求出直线 AB 的方程;若不存在,请说明理由.

21. (本小题满分 12 分)

甲、乙两所学校之间进行排球比赛,采用五局三胜制(先赢3局的学校获胜,比赛结束),约定比赛规则如下:先进行男生排球比赛,共比赛两局,后进行女生排球比赛. 按照以往比赛经验,在男生排球比赛中,每局甲校获胜的概率为 $\frac{2}{3}$,乙校获胜的概率为 $\frac{1}{3}$,在女生排球比赛中,每局甲校获胜的概率为 $\frac{1}{3}$,乙校获胜的概率为 $\frac{2}{3}$,每局比赛结果相互独立.

- (1) 求甲校以3:1获胜的概率;
- (2) 记比赛结束时女生比赛的局数为 ξ , 求 ξ 的概率分布.

22. (本小题满分 12 分)

已知函数 $f(x) = \ln x - ax$.

- (1) 若 f(x) 存在极值,求实数 a 的取值范围;
- (2) 当a=1时,判断函数 $g(x)=f(x)+2\sin x$ 的零点个数,并证明你的结论.