南京市 2022 届高三年级零模考前复习卷

数学

2021.08

第 I 卷 (选择题 共60分)

一、单项选择题(本大题共8小题,每题5分,共40分	— 、	单项选择题	(本大题共8小题,	每题 5 分,	共 40 分
---------------------------	------------	-------	-----------	---------	--------

- 1. 已知复数 z=1+i ,设复数 $w=\frac{2\overline{z}}{z^2}$,则 w 的虚部是()

- 2. 已知a, b为非零实数,则"a < b"是" $\frac{a}{|b|} < \frac{b}{|a|}$ "的()
- A. 充分而不必要条件

- B. 必要而不充分条件
- C. 既不充分也不必要条件
- D. 充要条件
- 3. 在 $\triangle ABC$ 中, $\overrightarrow{BD} = \overrightarrow{DC}$, $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM}$, $\overrightarrow{AM} = \lambda \overrightarrow{OD}$,则 $\lambda = ($
- A. $\frac{1}{2}$
- B. 1
- C. 2
- D. 3
- 4. 棱长为a的正方体 $ABCD-A_1B_1C_1D_1$ 中,点E,F,G分别为棱 AB,CC_1,C_1D_1 的中点, 则过E, F, G三点的平面截正方体所得截面面积为(

- A. $\frac{\sqrt{3}}{4}a^2$ B. $\frac{\sqrt{3}}{2}a^2$ C. $\frac{3\sqrt{3}}{4}a^2$ D. $\frac{3\sqrt{3}}{2}a^2$
- 5. 若 θ 为锐角, $\cos\left(\theta + \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{10}$,则 $\tan\theta + \frac{1}{\tan\theta} = ($
- A. $\frac{12}{25}$

- B. $\frac{25}{12}$ C. $\frac{24}{7}$ D. $\frac{7}{24}$
- 6. 将正整数 12 分解成两个正整数的乘积有 $1 \times 12, 2 \times 6, 3 \times 4$ 三种,其中 3×4 是这三种分 解中两数差的绝对值最小的,我们称 3×4 为 12 的最佳分解. 当 $p\times q\left(p,q\in\mathbf{N}^*\right)$ 是正整 数 n 的最佳分解时,我们定义函数 f(n) = |p-q|,例如 f(12) = |4-3| = 1,则

$$\sum_{i=1}^{2021} f(2^i) = ()$$

- A. $2^{1011}-1$ B. 2^{1011} C. $2^{1010}-1$ D. 2^{1010}

7. 过点 M(p, 0) 作倾斜角为 150°的直线与抛物线 $C: y^2 = 2px(p > 0)$ 交于两点 A, B, B

若 $|AB| = 2\sqrt{10}$,则 $|AM| \cdot |BM|$ 的值为(

- A. 4
- B. $4\sqrt{2}$ C. $2\sqrt{10}$ D. $4\sqrt{5}$
- 8. 已知a > 1, b > 1,且 $\frac{e^a}{a} = \frac{e^{b+1} + 1}{b+1}$,则下列结论一定正确的是()
- A. $\ln(a+b) > 2$

B. $\ln(a-b) > 0$

C. $2^{a+1} < 2^b$

- D. $2^a + 2^b < 2^3$
- 二、多项选择题(本大题共4小题,每题5分,共20分.每题全选对的得5分,部分选对 的得2分,有选错的得0分)
- 9. 已知函数 $f(x) = 2\sin(\omega x + \varphi), (\omega > 0, 0 < \varphi < \pi)$ 图象的一条对称轴为 $x = \frac{2\pi}{3}$,
- $f\left(\frac{\pi}{4}\right) = \sqrt{3}$, 且 f(x) 在 $\left(\frac{\pi}{4}, \frac{2\pi}{3}\right)$ 内单调递减,则以下说法正确的是(
- A. $\left(-\frac{7\pi}{12},0\right)$ 是其中一个对称中心 B. $\omega = \frac{14}{5}$
- C. f(x)在 $\left(-\frac{5\pi}{12},0\right)$ 单增 D. $f\left(-\frac{\pi}{6}\right) = -1$
- 10. 在 $\triangle ABC$ 中,角 A , B , C 所对的边分别为 a , b , c , 且 $C = \frac{\pi}{2}$, 将 $\triangle ABC$ 分别

绕边a, b, c 所在的直线旋转一周,形成的几何体的体积分别记为 V_a , V_b , V_c , 侧面积

分别记为 S_a , S_b , S_c , 则(

A. $V_a + V_b \ge 2V_c$

B. $S_a + S_b \ge 2S_c$

C. $\frac{1}{V^2} + \frac{1}{V^2} = \frac{1}{V^2}$

- D. $\frac{1}{S^2} + \frac{1}{S^2} = \frac{1}{S^2}$
- 11. 设集合 S, T, $S \subseteq N^*$, $T \subseteq N^*$, S, T 中至少有两个元素, 且 S, T 满足:
- ①对于任意 x, $y \in S$, 若 $x \neq y$, 都有 $xy \in T$
- ②对于任意 x, $y \in T$, 若 x < y, 则 $\frac{y}{x} \in S$;

下列情况中可能出现的有(

- A. S有 4 个元素, $S \cup T$ 有 7 个元素 B. S有 4 个元素, $S \cup T$ 有 6 个元素
- C. S有 3 个元素, $S \cup T$ 有 5 个元素
- D. S有 3 个元素, $S \cup T$ 有 4 个元素

12. 甲、乙两人进行围棋比赛,共比赛 $2n(n \in N^*)$ 局,且每局甲获胜的概率和乙获胜的概率均为 $\frac{1}{2}$.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为

P(n),则()

A.
$$P(2) = \frac{1}{8}$$

B.
$$P(3) = \frac{11}{32}$$

C.
$$P(n) = \frac{1}{2} \left(1 - \frac{C_{2n}^n}{2^{2n}} \right)$$

D.
$$P(n)$$
的最大值为 $\frac{1}{4}$

第 Ⅱ 卷 (非选择题 共90分)

三、填空题(本大题共4小题,每题5分,共20分)

13. 己知
$$f(x) = \tan x \cdot (e^x + e^{-x}) + 6$$
, $f(t) = 8$, 则 $f(-t) =$ ______.

14. 根据下面的数据:

х	1	2	3	4
у	32	48	72	88

15. 斜率为
$$-\frac{1}{3}$$
的直线 l 与椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ($a > b > 0$) 相交于A, B两点,线段

AB 的中点坐标为(1,1),则椭圆C 的离心率等于 .

16. "韩信点兵"问题在我国古代数学史上有不少有趣的名称,如"物不知数""鬼谷算""隔墙算""大衍求一术"等,其中《孙子算经》中"物不知数"问题的解法直至 1852 年传由传教士传入至欧洲,后验证符合由高斯得出的关于同余式解法的一般性定理,因而西方称之为"中国剩余定理". 原文如下:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?"这是一个已知某数被 3 除余 2,被 5 除余 3,被 7 除余 2,求此数的问题. 满足条件的数中最小的正整数是_____; 1 至 2021 这 2021 个数中满足条件的数的个数是

四、解答题(本大题共6小题,共70分)

17. (本题满分10分)

$$\triangle ABC$$
 内角 A , B , C 的对边分别为 a , b , c , $\sin A = \frac{\sqrt{15}}{8}$, $\cos B = \frac{11}{16}$.

(1) 证明: a: b: c = 2:3:4;

(2) 若 $|\overrightarrow{AC} + \overrightarrow{CB}| = 8$, 求 $\triangle ABC$ 的周长.

18. (本题满分12分)

设等差数列 $\{a_n\}$ 的前n项和为 S_n ,已知 $a_2=3$,且 $S_5=4a_3+5$.

(1) 求 a_n 和 S_n ;

(2) 是否存在等差数列
$$\left\{b_{n}\right\}$$
,使得 $\frac{S_{1}}{a_{1}a_{2}}+\frac{S_{2}}{a_{2}a_{3}}+\cdots+\frac{S_{n}}{a_{n}a_{n+1}}=\frac{nb_{n}}{a_{n+1}}$ 对 $n\in\mathbb{N}^{*}$ 成立?并证明你的结论.

19. (本题满分 12 分)

为保护学生视力,让学生在学校专心学习,防止沉迷网络和游戏,促进学生身心健康发展,教育部于2021年1月15日下发《关于加强中小学生手机管理工作的通知》,对中小学生的手机使用和管理作出了相关的规定.某研究型学习小组调查研究"中学生使用智能手机对学习的影响",现对我校80名学生调查得到统计数据如下表,记A为事件:"学习成绩优秀且不使用手机"; B为事件:"学习成绩不优秀且不使用手机",且已知事件A的频率是事件B的频率的2倍.

	不使用手机	使用手机	合计
学习成绩优秀人数	а	12	
学习成绩不优秀人数	b	26	
合计			

(1) 运用独立性检验思想,判断是否有99.5%的把握认为中学生使用手机对学习成绩有影

响?

(2) 采用分层抽样的方法从这 80 名学生中抽出 6 名学生,并安排其中 3 人做书面发言,记做书面发言的成绩优秀的学生数为 *X* , 求 *X* 的分布列和数学期望.

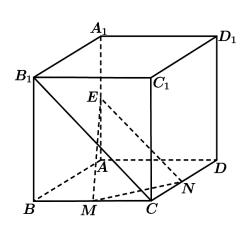
参考数据:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, 其中 $n=a+b+c+d$.

$P(K^2 \ge k_0)$	0.10	0.05	0.01	0.005	0.001
k_0	2.706	3.841	6.635	7.879	10.828

20. (本题满分12分)

如图,四棱柱 $ABCD-A_1B_1C_1D_1$ 中,面 ABB_1A_1 上面 ABCD,面 ADD_1A_1 上面 ABCD,点 $E \mathrel{\cdot} M \mathrel{\cdot} N$ 分别是棱 $AA_1 \mathrel{\cdot} BC \mathrel{\cdot} CD$ 的中点.

- (1) 证明: *AA*_i 上面 *ABCD*.
- (2) 若四边形 ABCD 是边长为 2 的正方形,且 $AA_1 = AD$,面 $EMN \cap$ 面 $ADD_1A_1 =$ 直线
- l, 求直线l与 B_1C 所成角的余弦值.



21. (本题满分 12 分)

已知双曲线 $E: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 过点 D(3,1),且该双曲线的虚轴端点与两顶点

 A_1, A_2 的张角为120°.

- (1) 求双曲线E的方程;
- (2) 过点 B(0,4) 的直线 l 与双曲线 E 左支相交于点 M , N ,直线 DM , DN 与 y 轴相交于 P , Q 两点,求 |BP|+|BQ| 的取值范围.

22. (本题满分12分)

已知函数 $f(x) = (x-1)(ae^x-1)$ 在 x=1 处的切线方程为 y=(e-1)(x-1),

- (1) 求 a 的值;
- (2) 若方程 f(x) = b 有两个不同实根 x_1 、 x_2 , 证明: $|x_1 x_2| < \frac{eb}{e-1} + 1$

南京市 2022 届高三年级零模考前复习卷答案

数学

2021.08

一、单项选择题

1	2	3	4	5	6	7	8
A	D	С	С	В	A	A	В

二、多项选择题

9	10	11	12
AD	ABC	ACD	BC

三、填空题

15.
$$\frac{\sqrt{6}}{3}$$

13.
$$4$$
 14. 3.2 15. $\frac{\sqrt{6}}{3}$ 16. 23 , 20

四、解答题

17. (1) 由
$$\cos B = \frac{11}{16}$$
,可得 $\sin B = \sqrt{1 - \cos^2 B} = \frac{3\sqrt{15}}{16} > \sin A$,

所以
$$A < B$$
,所以A为锐角, $\cos A = \sqrt{1-\sin^2 A} = \frac{7}{8}$,

所以
$$\sin C = \sin(A+B) = \frac{\sqrt{15}}{8} \times \frac{11}{16} + \frac{7}{8} \times \frac{3\sqrt{15}}{16} = \frac{\sqrt{15}}{4}$$

由正弦定理可得 $a:b:c=\sin A:\sin B:\sin C=\frac{\sqrt{15}}{8}:\frac{3\sqrt{15}}{16}:\frac{\sqrt{15}}{4}=2:3:4.$

(2) 由 (1) 知
$$\cos C = -\cos(A+B) = -\frac{1}{4}$$
,

所以

$$|\overrightarrow{AC} + \overrightarrow{CB}|^2 = |\overrightarrow{AC}|^2 + |\overrightarrow{CB}|^2 + 2\overrightarrow{AC} \cdot \overrightarrow{CB} = b^2 + a^2 - 2ab\cos C = b^2 + a^2 + \frac{ab}{2} = 64,$$

设
$$a = 2t$$
 , $b = 3t$, $c = 4t$, 则 $b^2 + a^2 + \frac{ab}{2} = 9t^2 + 4t^2 + 3t^2 = 64$, 解得 $t = 2$,

所以 $\triangle ABC$ 的周长为9t = 18.

18.解: (1) 设数列
$$\{a_n\}$$
 的公差为 d ,则 $\begin{cases} a_2 = a_1 + d = 3 \\ 5a_1 + 10d = 4(a_1 + 2d) + 5 \end{cases}$

解得 $a_1 = 1$, d = 2,

$$\therefore a_n = 2n - 1, \quad n \in \mathbf{N}^*,$$

$$\therefore S_n = \frac{n(a_1 + a_n)}{2} = n^2;$$

(2) 设
$$T_n = \frac{S_1}{a_1 a_2} + \frac{S_2}{a_2 a_3} + \dots + \frac{S_n}{a_n a_{n+1}}$$
,由 $\frac{1}{3} = \frac{b_1}{3}$ 可得 $b_1 = 1$,

由
$$T_2 = \frac{1}{3} + \frac{4}{15} = \frac{2}{5}b_2$$
,可得 $b_2 = \frac{3}{2}$,

故存在等差数列 $\{b_n\}$ 满足条件,其中 $b_n = \frac{n+1}{2}$, $n \in \mathbb{N}^*$,

下面用数学归纳法证明: 当 $b_n = \frac{n+1}{2}$ 时, $T_n = \frac{nb_n}{a_{n+1}}$ 对 $n \in \mathbb{N}^*$ 成立,

①当n=1时,由上面过程可知,等式成立,

②假设
$$n = k$$
时等式成立,即 $T_k = \frac{kb_k}{a_{k+1}} = \frac{k(k+1)}{2(2k+1)}$,

则当
$$n=k+1$$
时, $T_{k+1}=T_k+rac{S_{k+1}}{a_{k+1}a_{k+2}}$

$$= \frac{k(k+1)}{2(2k+1)} + \frac{(k+1)^2}{(2k+1)(2k+3)}$$

$$=\frac{(k+1)[k(2k+3)+2(k+1)]}{2(2k+1)(2k+3)},$$

$$=\frac{(k+1)(2k^2+5k+2)}{2(2k+1)(2k+3)}$$

$$= \frac{(k+1)(k+2)(2k+1)}{2(2k+1)(2k+3)}$$

$$=\frac{(k+1)(k+2)}{2(2k+3)}$$

$$=\frac{\left(k+1\right)b_{k+1}}{a_{k+2}},$$

即当n=k+1时等式成立,

曲①②可知
$$\frac{S_1}{a_1a_2} + \frac{S_2}{a_2a_3} + \cdots + \frac{S_n}{a_na_{n+1}} = \frac{nb_n}{a_{n+1}}$$
 , (其中 $b_n = \frac{n+1}{2}$) 对 $n \in \mathbf{N}^*$ 成立.

19. (1) 由己知得
$$\begin{cases} a+b+12+26=80, \\ a=2b \end{cases}$$
 解得
$$\begin{cases} a=28, \\ b=14, \end{cases}$$

补全表中所缺数据如下:

	不使用手机	使用手机	合计
学习成绩优秀人数	28	12	40
学习成绩不优秀人数	14	26	40
合计	42	38	80

根据题意计算观测值为
$$K^2 = \frac{80 \times (28 \times 26 - 14 \times 12)^2}{42 \times 38 \times 40 \times 40} \approx 9.825 > 7.879$$
,

所以有99.5%的把握认为中学生使用手机对学习有影响.

(2) 根据题意由分层抽样方法可知,抽取成绩优秀的学生3名,成绩不优秀的学生3名.

从而x的所有可能取值为0,1,2,3,

$$P(x=3) = \frac{C_3^3 C_3^0}{C_3^2} = \frac{1}{20},$$

所以x的分布列为

X	0	1	2	3
P	$\frac{1}{20}$	$\frac{9}{20}$	$\frac{9}{20}$	$\frac{1}{20}$

$$x$$
的数学期望为 $E(x) = 0 \times \frac{1}{20} + 1 \times \frac{9}{20} + 2 \times \frac{9}{20} + 3 \times \frac{1}{20} = \frac{3}{2}$.

20. (1) 如图所示,在底面 ABCD中,过点 C 分别作 $CP \perp AB$, $CQ \perp AD$

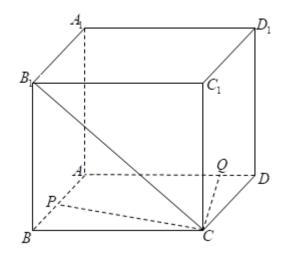
因为平面 ABB_1A_1 上平面面 ABCD, $ABB_1A_1 \cap ABCD = AB$, 且 $CP \subset$ 平面 ABCD,

由面面垂直的性质定理,可得CP 上平面 ABB_1A_1 ,

又由 AA_{l} 二平面 $ABB_{l}A_{l}$, 所以 $AA_{l} \perp CP$,

同理可证: $AA_1 \perp CQ$,

又因为 $CP \cap CQ = C$,且 $CP,CQ \subset \text{平面 }ABCD$,所以AA,上平面ABCD.



(2) 因为四边形 ABCD 是边长为 2 的正方形,且 $AA_1 = AD$,

可得四棱柱 $ABCD - A_iB_iC_iD_i$ 为棱长为 2 的正方体,

延长MN 交AD 于点H,连接EH,即为平面EMN 个平面 $ADD_1A_1=EH$,

则直线l与 B_iC 所成角即为直线EH与 B_iC 所成的角,

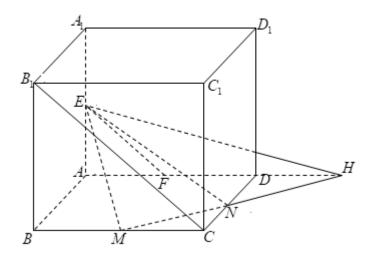
取 AD 的中点 F , 连接 EF , 可得 $EF //B_1C$,

则异面直线 EH 与 B_1C 所成的角即为 EF 与 B_1C 所成的角,设为 θ ,其中 $\theta \in (0,\frac{\pi}{2})$,

在直角 $\triangle EAH$ 中,可得 $EH = \sqrt{AE^2 + AH^2} = \sqrt{10}$,

在
$$\triangle EFH$$
 中,可得 $\cos \theta = \frac{EH^2 + EF^2 - FH^2}{2EH \cdot EF} = \frac{10 + 2 - 4}{2\sqrt{10} \cdot \sqrt{2}} = \frac{2\sqrt{5}}{5}$,

即直线l与 B_lC 所成角的余弦值为 $\frac{2\sqrt{5}}{5}$



21. (1) 由己知

$$\begin{cases} a = \sqrt{3}b \\ \frac{9}{a^2} - \frac{1}{b^2} = 1 \\ c^2 = a^2 + b^2 \end{cases} \therefore \begin{cases} a^2 = 6 \\ b^2 = 2 \end{cases} \therefore \frac{x^2}{6} - \frac{y^2}{2} = 1$$

(2) 设直线方程为 y = kx + 4, $M(x_1, y_1), N(x_1, y_1)$,

直线 *DM* 的方程为
$$y-1=\frac{y_1-1}{x_1-3}(x-3)$$
, 可得 $P\left(0,1-\frac{3(y_1-1)}{x_1-3}\right)$

直线
$$DN$$
 的方程为 $y-1=\frac{y_2-1}{x_2-3}(x-3)$,可得 $Q\left(0,1-\frac{3(y_2-1)}{x_2-3}\right)$

联立
$$\begin{cases} y = kx + 4 \\ \frac{x^2}{6} - \frac{y^2}{2} = 1 \end{cases}, \quad \text{消去 } y \text{ , } \text{ 整理得} \left(1 - 3k^2\right) x^2 - 24kx - 54 = 0 \ .$$

$$\begin{cases} \Delta = 24^{2} k^{2} + 4 \times (1 - 3k^{2}) \times 54 > 0 \\ x_{1} + x_{2} = \frac{24k}{1 - 3k^{2}} < 0 \\ x_{1}x_{2} = \frac{-54}{1 - 3k^{2}} > 0 \end{cases}$$

可得
$$\frac{\sqrt{3}}{3}$$
< k < $\sqrt{3}$

$$|BP| + |BQ| = 4 - y_M + 4 - y_N = 6 + \frac{3(y_1 - 1)}{x_1 - 3} + \frac{3(y_2 - 1)}{x_2 - 3}$$

$$=6+3\times\frac{(y_1-1)(x_2-3)+(y_2-1)(x_1-3)}{(x_1-3)(x_2-3)}$$

$$=6+3\times\frac{(kx_1+3)(x_2-3)+(kx_2+3)(x_1-3)}{(x_1-3)(x_2-3)}$$

$$=6+3\times\frac{2kx_1x_2+(3-3k)(x_1+x_2)-18}{x_1x_2-3(x_1+x_2)+9}$$

$$=6+3\times\frac{2k\times\frac{-54}{1-3k^2}+(3-3k)\times\frac{24k}{1-3k^2}-18}{\frac{-54}{1-3k^2}-3\times\frac{24k}{1-3k^2}+9}$$

$$=\frac{24k^2+60k+36}{3k^2+8k+5}=\frac{24k+36}{3k+5}=8-\frac{4}{3k+5}$$

又
$$\frac{\sqrt{3}}{3} < k < \sqrt{3}$$
,所以 $|BP| + |BQ|$ 的范围是 $\left(\frac{78 + 2\sqrt{3}}{11}, 18 - 6\sqrt{3}\right)$.

22. (1)
$$\therefore f'(x) = ae^x - 1 + (x-1) \cdot ae^x$$
, $\therefore k = f'(1) = ae - 1 = e - 1$, $\therefore a = 1$;

在(0,1)上单调递增

所以 $f'(x) = xe^x - 1 = 0$ 有唯一实根 $x_0 \in (0,1)$,

 $x \in (-\infty, x_0)$ 时,f'(x) < 0,f(x) 递减, $x \in (x_0, +\infty)$ 时,f'(x) > 0,f(x) 递增,故两根分别在 $(-\infty, x_0)$ 与 $(x_0, +\infty)$ 内,无妨设 $x_1 < x_2$,

设
$$g(x) = f(x) - (e-1)(x-1)$$
, $x \in (x_0, +\infty)$, 则 $g'(x) = x \cdot e^x - e$,

$$x \in (x_0, 1)$$
 时, $g'(x) < 0$, $g(x)$ 递减, $x \in (1, +\infty)$ 时, $g'(x) > 0$, $g(x)$ 递增, $\therefore g(x)$

有最小值
$$g(1) = 0$$
,即 $f(x) \ge (e-1)(x-1)$ 恒成立, $b = f(x_2) \ge (e-1)(x_2-1)$,

 $\therefore x_2 \le \frac{b}{e-1} + 1$,又因为函数 f(x) 在 x = 0 处的切线方程为 y = -x,所以 $f(x) \ge -x$ 恒成立, $b = f(x_1) \ge -x_1$,

∴
$$x_1 \ge -b$$
, $\mp \mathbb{E} |x_1 - x_2| \le \frac{b}{\rho - 1} + 1 + b = \frac{eb}{\rho - 1} + 1$.