江苏七市 2021 届高三第二次调研考试数学

注意事项:

- 1. 答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 设集合 M, N, P 均为 R 的非空真子集,且 $M \cup N = R, M \cap N = P$,则 $M \cap (C_R P) =$

A. *M*

B. *N*

C. C_RM

D. C_RN

2. 己知 $x \in R$, 则 " $-3 \le x \le 4$ " 是 " $\lg(x^2 - x - 2) \le 1$ " 的

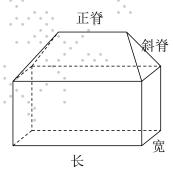
A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分又不必要条件

3. 欧拉恒等式: $e^{ix} + 1 = 0$ 被数学家们惊叹为"上帝创造的等式". 该等式将数学中几个重要的数:自然对数的底数 e、圆周率 x、虚数单位 i、自然数 1 和 0 完美地结合在一起,它是在欧拉公式: $e^{i\theta} = \cos\theta + i\sin\theta(\theta \in R)$ 中,令 $\theta = \pi$ 得到的. 根据欧拉公式, e^{2i} 在复平面内对应的点在


A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

4. "帷幄"是古代打仗必备的帐篷,又称"幄帐"。右图是的一种幄账示意图,帐顶采用"五脊四坡式",四条斜脊的长度相等,一条正脊平行于底面。若各斜坡面与底面所成二面角的正切值均为 $\frac{1}{2}$,底面矩形的长与宽之比为5:3,则正脊与斜脊长度的比值为

A. $\frac{3}{5}$

B. $\frac{8}{9}$

C. $\frac{9}{10}$

D. 1

5. 已知 \vec{a} , \vec{b} , \vec{c} 均为单位向量,且 \vec{a} + $2\vec{b}$ = $2\vec{c}$,则 \vec{a} · \vec{c} =

A. $-\frac{1}{2}$

B. $-\frac{1}{4}$

C. $\frac{1}{4}$

D. $\frac{1}{2}$

6. 函数 $f(x) = \sin x \cos x + \sqrt{3} \cos^2 x$ 的图象的一条对称轴为

()

A. $x = \frac{\pi}{12}$

B. $x = \frac{\pi}{6}$

C. $x = \frac{\pi}{3}$

D. $x = \frac{\pi}{2}$

7. 某班 45 名学生参加 "3·12" 植树节活动,每位学生都参加除草、植树两项劳动. 依据劳动表现,评定为"优 秀"、"合格"2个等级,结果如下表:

	优秀	合格	合计
除草	30	15	45
植树	20	25	45

若在两个项目中都"合格"的学生最多有10人,则在两个项目中都"优秀"的人数最多为

A. 5

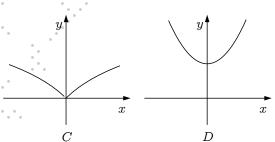
B. 10

C. 15

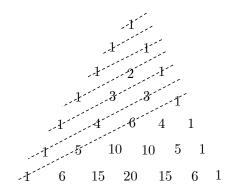
D. 20

)

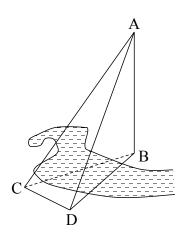
8. 若 $a \ln a > b \ln b > c \ln c = 1$, 则


- A. $e^{b+c} \ln a > e^{c+a} \ln b > e^{a+b} \ln c$
- C. $e^{a+b} \ln c > e^{c+a} \ln b > e^{b+c} \ln a$

- B. $e^{c+a} \ln b > e^{b+c} \ln a > e^{a+b} \ln c$
- D. $e^{a+b} \ln c > e^{b+c} \ln a > e^{c+a} \ln b$


二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的 得5分,部分选对的得2分,有选错的得0分。

- 9. 已知数列 $\{a_n\}$ 是等比数列,下列结论正确的为
 - A. 若 $a_1a_2 > 0$, 则 $a_2a_3 > 0$


- B. 若 $a_1 + a_3 < 0$, 则 $a_1 + a_2 < 0$
- C. 若 $a_2 > a_1 > 0$, 则 $a_1 + a_3 > 2a_2$
- D. 若 $a_1a_2 < 0$, 则 $(a_2 a_1)(a_2 a_3) < 0$
- 10. 己知函数 $f(x) = \sqrt{|x^2 a|}$ $(a \in R)$, 则 y = f(x) 的大致图象可能为

- A11."杨辉三角"是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发,引一组平 行线,从上往下每条线上各数之和依次为: 1,1,2,3,5,8,13,…,则
 - A. 在第9条斜线上,各数之和为55
 - B. 在第 $n(n \ge 5)$ 条斜线上,各数自左往右先增大后减小
 - C. 在第n条斜线上,共有 $\frac{2n+1-(-1)^n}{4}$
- D. 在第 11 条斜线上,最大的数是 C_7^3

12. 如图,某校测绘兴趣小组为测量河对岸直塔 AB(A) 为塔顶, B 为塔底)的高度,选取与 B 在同一水平面内的两点 C 与 D(B,C,D 不在同一直线上),测得 CD=s. 测绘兴趣小组利用测角仪可测得的角有: $\angle ACB, \angle ACD, \angle BCD, \angle ADB, \angle ADC, \angle BDC$,则根据下列各组中的测量数据可计算出塔 AB 的高度的是

A. s, $\angle ACB$, $\angle BCD$, $\angle BDC$ C. s, $\angle ACB$, $\angle ACD$, $\angle ADC$

B. $s, \angle ACB, \angle BCD, \angle ACD$

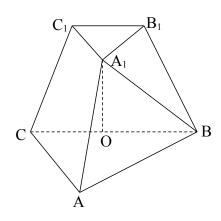
- D. s, $\angle ACB$, $\angle BCD$, $\angle ADC$
- 三、填空题:本题共4小题,每小题5分,共20分。
- 13. 已知随机变量 $X \sim N(2, \sigma^2), P(X > 0) = 0.9, 则 P(2 < X \leq 4) =$
- 14. 能使"函数f(x) = x|x-1| 在区间I上不是单调函数,且在区间I上的函数值的集合为[0,2]."是真命题的一个区间I为
- 15. 已知椭圆 C_1 : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右顶点为 P,右焦点 F 与抛物线 C_2 的焦点重合, C_2 的顶点与 C_1 的中心 0 重合.若 C_1 与 C_2 相交于点 A,B,且四边形 OAPB 为菱形,则 C_1 的离心率为______.
- 16. 在三棱锥 P ABC 中, $AB \perp BC$,AC = 8,点 P 到底面 ABC 的距离为 7. 若点 P, A, B, C 均在一个半径为 5 的球面上,则 $PA^2 + PB^2 + PC^2$ 的最小值为______.
- 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (10分)

在 $\triangle ABC$ 中,角 A,B,C 所对边分别为 $a,b,c,b=\sqrt{5}c,c\sin A=1$. 点 D 是 AC 的中点,BD \bot AB, 求 c 和 $\angle ABC$.

18. (12分)

已知数列 $\{a_n\}$ 的前 n 项和为 $S_n, S_{n+1} = 4a_n, n \in N^*$, 且 $a_1 = 4$.

- (1) 证明: $\{a_{n+1}-2a_n\}$ 是等比数列,并求 $\{a_n\}$ 的通项公式;
- (2) 在① $b_n = a_{n+1} a_n$: ② $b_n = \log_2 \frac{a_n}{n}$: ③ $b_n = \frac{a_{n+2}}{a_{n+1}a_n}$ 这三个条件中任选一个补充在下面横线上,并加以解答。


已知数列 $\{b_n\}$ 满足_____, 求 $\{b_n\}$ 的前 n 项和 T_n .

注:如果选择多个方案分别解答,按第一个方案解签计分。

19. (12分)

如图,在三棱台 $ABC-A_1B_1C_1$ 中, $AC\perp A_1B,O$ 是 BC 的中点, $A_1O\perp$ 平面 ABC.

- (1) 求证: $AC \perp BC$:
- (2) 若 $A_1O = 1$, $AC = 2\sqrt{3}$, $BC = A_1B_1 = 2$, 求二面角 $B_1 BC A$ 的大小

20. (12分)

甲、乙两队进行排球比赛,每场比赛采用"5局3胜制"(即有一支球队先胜3局即获胜,比赛结束). 比赛排名采用积分制,积分规则如下:比赛中,以3:0或3:1取胜的球队积3分,负队积0分;以3:2取胜的球队积2分,负队积1分. 已知甲、乙两队比赛,甲每局获胜的概率为 $\frac{2}{3}$.

- (1) 甲、乙两队比赛 1 场后,求甲队的积分 X 的概率分布列和数学期望;
- (2) 甲、乙两队比赛 2 场后,求两队积分相等的概率

21. (12分)

已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点分别为 F_1, F_2 ,点 P(3,1) 在 C 上,且 $|PF_1| - |PF_2| = 10$.

- (1) 求 C 的方程:
- (2) 斜率为 -3 的直线 l 与 C 交于 A, B 两点,点 B 关于原点的对称点为 D. 若直线 PA, PD 的斜率存在且分别为 k_1,k_2 , 证明: $k_1\cdot k_2$ 为定值.

22. (12分)

已知函数 $f(x) = e^{ax}(\ln x + 1)$ $(a \in R), f'(x)$ 为f(x) 的导数.

- (1) 设函数 $g(x) = \frac{f'(x)}{e^{ax}}$, 求 g(x) 的单调区间;
- (2) 若f(x) 有两个极值点 $x_1, x_2(x_1 < x_2)$,
- ①求实数 a 的取值范围;
- ②证明: 当 $a < 2e^{\frac{3}{2}}$ 时, $\frac{f(x_1)}{x_1} < \frac{f(x_2)}{x_2}$.