成都七中2020~2021 学年度上期2021届高三阶段性测试 数学试卷(理科)

考试时间: 120 分钟 总分: 150 分

一. 选择题(每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有一项符合要求. 把 答案凃在答题卷上.)

1. 复数
$$z = (1+i)^2$$
的虚部为()

- A. 2*i*
- B. 2
- C. -2i D. -2

2.
$$P = \{y | y = x^2\}, Q = \{x | x^2 + y^2 = 2\}, \text{ } \emptyset P \cap Q = ($$

- A. $[-\sqrt{2}, \sqrt{2}]$ B. $\{(1,1), (-1,1)\}$ C. $\{0, \sqrt{2}\}$ D. $[0, \sqrt{2}]$

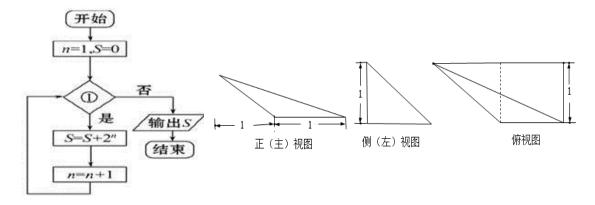
3. "
$$a > 2$$
" 是"函数 $f(x) = (x-a)e^x \pm (0,+\infty)$ 上有极值"的 ()

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 4. 若如图所示的程序框图输出的S是126,则条件①可为()



- B. $n \le 6$? C. $n \le 7$? D. $n \le 8$?
- 5. 某几何体的三视图如上图(右)所示,则该几何体的体积为()
- B. 1
- C. $\frac{1}{2}$ D. $\frac{1}{3}$

6. 关于函数
$$f(x) = 4\sin\left(2x + \frac{\pi}{3}\right)(x \in \mathbb{R})$$
 有如下命题,其中正确的个数有(

①
$$y = f(x)$$
的表达式可改写为 $f(x) = 4\cos\left(2x - \frac{\pi}{6}\right)(x \in R)$

②y = f(x)是以 2π 为最小正周期的周期函数;

③
$$y = f(x)$$
的图象关于点 $\left(-\frac{\pi}{6}, 0\right)$ 对称;

④ $y = f(x)$ 的图象关于直线 $x = \frac{\pi}{3}$ 对称.								
A. 0 个	B. 1个	C. 2个	D. 3个					
7. 为抗击新冠病毒,	某部门安排甲、乙、西	可、丁、戊五名专家到 <u>3</u>	三地指导防疫工作.					
因工作需要,每地至	因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工							
作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为()								
A. 18	B. 24	C. 30	D. 36					
8. 在平面直角坐标系	. 在平面直角坐标系 xOy 中,直线 1: $kx-y+4k=0$ 与曲线 $y=\sqrt{9-x^2}$ 交于 A , B							
两点,且 \overrightarrow{AO} · \overrightarrow{AB} =2	2 ,则 $k = ($)							
$A. \frac{\sqrt{3}}{3}$	B. $\frac{\sqrt{2}}{2}$	C. 1	D. $\sqrt{3}$					
9. 如图,四棱锥 <i>S</i> -	ABCD 中,底面是边长	为 $\sqrt{2}$ 的正方形 $ABCD$,	AC与BD的交点为					
0, SO⊥平面 ABCD 且	$ASO = \sqrt{2}$, E 是边 BC	的中点,动点 <i>P</i> 在四核	竞 锥表面上运动,并					
且总保持 $PE \perp AC$,	则动点 P的轨迹的周·	长为()	<u>*</u>					
A. $2\sqrt{2}$	B. $2\sqrt{3}$		D					
C. $1+\sqrt{2}$	D. $1 + \sqrt{3}$	B E	o C					
10. 已知定义域为 R 的	的奇函数 $f(x)$ 的周期为	$g_2, $	$f(x) = \log_{\frac{1}{2}} x . 若函$					
数 $F(x) = f(x) - \sin x$	$ \frac{\pi}{2}x$ 在区间 $\left[-3,m\right]$ ($m \in Z \perp m > -3$) $\perp 3$	至少有5个零点,则					
m 的最小值为()							
A. 2	В. 3	C. 4	D. 6					
11. 过抛物线 <i>E</i> : <i>x</i> ² =	=2py(p>0)的焦点 P	作两条互相垂直的弦力	4B, CD,设P为抛物					
线上的一动点, $Q(1,2)$,若 $\frac{1}{ AB } + \frac{1}{ CD } = \frac{1}{4}$,则 $ PF + PQ $ 的最小值是()								
A. 4	В. 3	C. 2	D. 1					
12. 已知定义在 R 上	的奇函数 $f(x)$ 满足 $f'(x)$) > -2,则不等式						
$f(x-1) < x^2(3-2l)$	(nx) + 3(1 - 2x)的解集	为()						
A. $(0, \frac{1}{e})$ B.	(0,1) C. $(1,e)$	D. $(\frac{1}{e}, e)$						
二、填空题(本大题共	4小题,每小题5分,	共 20 分,把答案填在	答题卷的横线上。)					
$13. \Box 知 (2x - \frac{1}{\sqrt{x}})^n \mathbb{R}$	是开式的二项式系数之利	叩为 64,则其展开式中	常数项是					
14. 已知 $\left \vec{a} \right = 2, \left \vec{b} \right =$	$1, \vec{a} - \vec{b} 与 \vec{b}$ 垂直,则 \vec{a}	$ar{b}$ 的夹角为 $_$	<u></u> .					

试卷第2页,总4页

- 15. 已知集合 $\{a,b,c\}$ = $\{0,1,2\}$,有下列三个关系① $a \neq 2$;② b = 2 ;③ $c \neq 0$,若三个关系中有且只有一个正确的,则 a + 2b + 3c =
- 16. 已知函数 $f(x) = 2\ln x ax^2 + 3$,若存在实数 $m, n \in [1, 5]$ 满足 $n m \ge 2$ 时,

f(m) = f(n)成立,则实数a的最大值为_____

三、解答题(共70分,22与23题二选一,各10分,其余大题均为12分)

17. (本题 12 分) 已知向量 $\vec{m} = (\sin A, \sin B), \vec{n} = (\cos B, \cos A), \vec{m} \cdot \vec{n} = \sin 2C,$

且 A、B、C 分别为 $\triangle ABC$ 的三边 a、b、c 所对的角.

- (1) 求角 C的大小;
- (2) 若 $\sin A$, $\sin C$, $\sin B$ 成等差数列,且 $\overrightarrow{CA} \cdot (\overrightarrow{AB} \overrightarrow{AC}) = 18$,求 c 边的长.
- 18. (本题 12 分)某校随机调查了 80 位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:

	爱好	不爱好	合计	
男	20	30	50	
女	10	20	30	
合计	30	50	80	

- I)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为 *X*,求*X*的分布列和期望值;
- II)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \ge k_0)$	0.50	0.40	0.25	0.15	0.10	0.05	0.025	0.010	0.005	0.001
k_0	0.455	0.708	1.323	2.072	2.706	3.841	5.024	6.635	7.879	10.828

19. (本题 12 分) 如图, 在四棱锥 P-ABCD 中, 四边形 ABCD 是直角梯形,

 $AB \perp AD, AB / / CD, PC \perp$ 底面ABCD, $AB = 2AD = 2CD = 4, PC = 2a, E \neq PB$ 的中点.

(1) 求证:平面 EAC 上平面 PBC;

(2) 若二面角 P-AC-E 的余弦值为 $\frac{\sqrt{6}}{3}$, 求直线 PA 与平面 AEC 所成角的正弦值.

20. (本题 12 分) 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个焦点为 F_1 , F_2 , 焦距为

$$2\sqrt{2}$$
,直线 $l: y=x-1$ 与椭圆 C 相交于 A , B 两点, $P\left(\frac{3}{4},-\frac{1}{4}\right)$ 为弦 AB 的中点.

- (1) 求椭圆的标准方程;
- (2) 若直线 l: y = kx + m 与椭圆 C 相交于不同的两点 M , N , Q(0,m) , 若 $\overline{OM} + \lambda \overline{ON} = 3\overline{OO}$ (O 为坐标原点), 求 m 的取值范围.

21. (本题 12 分)已知函数 $f(x) = \frac{e^x}{ax^2 + bx + 1}$, 其中 a > 0, $b \in R$, e 为自然对数

的底数. (1) 若b=1, $x \in [0,+\infty)$, ①若函数 f(x) 单调递增, 求实数 a 的取值范围;

②若对任意 $x \ge 0$, $f(x) \ge 1$ 恒成立,求实数a的取值范围.

$$(2)$$
若 $b=0$,且 $f(x)$ 存在两个极值点 x_1 , x_2 ,求证: $1+\frac{3}{2a} < f(x_1) + f(x_2) < e$.

22. (本题 10 分)在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x = \sqrt{2}\cos\alpha \\ y = \sin\alpha \end{cases}$ (α 为

参数)。在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为 $\rho\sin(\theta-\frac{3\pi}{4})=\frac{\sqrt{2}}{2} \ .$

- (I) 求曲线 C 的普通方程和直线 I 的直角坐标方程:
- (II) 设点P(2,-3),若直线l与曲线C交于A,B两点,求 $|PA|\cdot|PB|$ 的值.
- 23. (本题 10 分)选修 4-5: 不等式选讲

(I) 求函数
$$f(x) = \frac{|3x+2|-|1-2x|}{|x+3|}$$
 的最大值 M .

(II) 若实数a, b, c满足 $a^2+b^2 \le c \le M$, 证明: $2(a+b+c)+1 \ge 0$, 并说明取等条件.