2022届广东省广州市七校联合体高三调研考试(一)

数学

2021.6

注意事项:

- 1. 答卷前,考生务必将自己的姓名、考生号、试室号和座位号填写在答题卡上。
- 2. 用 2B 铅笔将考生号及试券类型 (B) 填涂在答题卡相应位置上。作答选择题时, 选出每小题答案后, 用 2B 铅笔将答题卡上对应题目选项的答案信息点涂黑; 如需 改动, 用橡皮擦干净后, 再选涂其他答案。答案不能答在试卷上。
- 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区 域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用 铅笔和涂改液。不按以上要求作答无效。
- 4. 考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
- 一、单选题: 本大题共8小题,每小题5分,满分40分。在每小题给出的四个选项中, 只有一项是符合题目要求的.
- 1.若复数 z = m + 1 + (m 1)i 是纯虚数 (i 是虚数单位) , 则实数 m = 1

A. 1

B. -1 C. ± 1

2.已知 $\vec{a} = (3, -1, 2), \vec{b} = (-2, 4, x), 且<math>\vec{a} \perp \vec{b},$ 则x =

A. 5

B. 4 C. 3 D. 2

 $3.\{a_n\}$ 是等比数列,首项 $a_1 = 1$,前 3 项和 $S_3 = 3$,则公比 q = 1

A. 1

B. -2 C. 1或-2 D. 3

0.07

0.0 6

0.0

▲ 频率/组距

20 25 30 35 40 45 年龄(岁) 图1

4.某地为了解参加培训教师的年龄结构, 随机 调查了100名教师的年龄,得到如图1所示的 频率分布直方图,则年龄在[30,40]的频率为

A. 0.06 B. 0.07 C. 0.13 D. 0.65

 $5.在 \Delta ABC$ 中,已知向量 $AB = (\cos 18^{\circ}, \cos 72^{\circ})$,

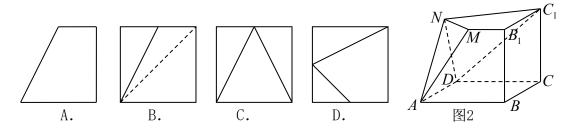
 $\overrightarrow{AC} = (2\cos 63^{\circ}, 2\cos 27^{\circ}), \quad \mathbb{M} \angle BAC =$

A. 45° B. 135° C. 81° D. 99°

6.空间中有 $A \times B \times C \times D \times E \times F$ 共6个点,其中任何4个点都不在同一平面 上,则以其中4个点为顶点的三棱锥共有

A. 30个 B. 24个 C. 20个 D. 15个

7.M 、N 是正方体 $ABCD - A_1B_1C_1D_1$ 的棱 A_1B_1 、 A_1D_1 的中点,如图2是用过 M 、N 、A 和 D 、N 、 C_1 的平面截去两个角后所得几何体,该几何体的主视图是



- 8.已知 f(x)、 g(x) 都是定义在 R 上的函数, $g(x) \neq 0$, f(x)g'(x) > f'(x)g(x) , $f(x) = a^x g(x)$ (a > 0 且 $a \neq 1$),且 $\frac{f(1)}{g(1)} + \frac{f(-1)}{g(-1)} = \frac{5}{2}$,对于有穷数列 $\frac{f(n)}{g(n)}$ (n = 1 , 2 , … , 10) , 任取正整数 k ($1 \leq k \leq 10$) , 它的前 k 项和大于 $\frac{15}{16}$ 的概率是 A. $\frac{3}{10}$ B. $\frac{1}{2}$ C. $\frac{3}{5}$ D. $\frac{2}{5}$
- 二、多选题:本大题共4小题,每小题满分5分,部分选对得2分,多选或错选不得分,满分20分
- 9. 由函数 f(x) = sinx 的图象得到函数 $g(x) = cos\left(\frac{\pi}{3} 2x\right)$ 的图象的过程中,下列表述正确的是(
- A. 先将 f(x)=sinx 的图象上各点的横坐标缩短到原来的 $\frac{1}{2}$ (纵坐标不变),再向左 平移个 $\frac{\pi}{12}$ 单位长度
- B. 先将 f(x) = sinx 的图象上各点的横坐标缩短到原来的 $\frac{1}{2}$ (纵坐标不变),再向左 平移 $\frac{\pi}{6}$ 个单位长度
- C. 先将 f(x) = sinx 的图象向左平移 $\frac{\pi}{6}$ 个单位长度,再将图象上各点的横坐标缩短到

原来的 $\frac{1}{2}$ (纵坐标不变)

D. 先将 f(x) = sinx 的图象向左平移 $\frac{\pi}{12}$ 个单位长度,再将图象上各点的横坐标缩短到 原来的 $\frac{1}{2}$ (纵坐标不变)

10. 数学家华罗庚曾说:"数缺形时少直观,形少数时难人微."事实上,很多代数问题 可以转化为几何问题加以解决,例如,与 $\sqrt{(x-a)^2+(y-b)^2}$ 相关的代数问题,可以转 化为点 A(x,y) 与点 B(a,b) 之间的距离的几何问题. 结合上述观点,可得方程

$$\left| \sqrt{x^2 + 4x + 5} - \sqrt{x^2 - 4x + 5} \right| = 2$$
 的解为 (

- A. $\frac{2\sqrt{3}}{2}$ B. $\frac{\sqrt{3}}{6}$ C. $-\frac{2\sqrt{3}}{3}$ D. $-\frac{\sqrt{3}}{6}$

11. 已知

$$(1-x^2)(x+2)^4 = a_0 + a_1(x+1) + a_2(x+1)^2 + a_3(x+1)^3 + a_4(x+1)^4 + a_5(x+1)^5 + a_6(x+1)^6$$
, [N]

- A. $a_0 = 0$ B. $a_3 = 20$ C. $a_1 + a_5 = 0$ D. $|a_0 + a_2 + a_4 + a_6| = |a_1 + a_3 + a_5|$
- 12. 已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当 $0 \le x \le 1$ 时,

$$f(x)=x$$
, 关于函数 $g(x)=|f(x)|+f(|x|)$, 下列说法正确的是 (

A. g(x) 为偶函数

- B. g(x)在(1,2)上单调递增
- C. g(x)在[2016, 2020]上恰有三个零点 D. g(x)的最大值为2

三、填空题: 本大题共4小题,每小题5分,满分20分.

13. 已知命题 $p: \exists x_0 \in R, x_0^2 + 1 < 0$,则命题 p 的否定为 $\neg p:$ ______.

14.
$$(2x^3 - \frac{1}{2x^3})^{10}$$
 的展开式中,常数项是______.

15. 若双曲线
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 上的点 P 到点 $(5, 0)$ 的距离为 6 ,则 P 到点 $(-5, 0)$ 的距离为 ______.

16. 一物体沿直线以 $v = t^2 + 3$ (t 的单位: s, v 的单位: m/s) 的速度运动,则 该物体在1~4s 间行进的路程是_____.

四、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.

17. (本小题满分10分)

 ΔABC 的三个内角 A 、 B 、 C 对应的三条边长分别是 a 、 b 、 c ,且满足 $c\sin A = \sqrt{3}a\cos C$.

(1)求角C的大小;

(2)若
$$b = 2$$
, $c = \sqrt{7}$, 求 a .

18. (本小题满分12分)

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了 100名电视观众,得到如下列联表:

	文艺节目	新闻节目	总计
20至40岁	40	16	56
大于40岁	20	24	44
总计	60	40	100

- (1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众 应抽取几名?
 - (2)是否有99%的把握认为收看文艺节目的观众与年龄有关?说明你的理由;
- (3)已知在大于40岁收看文艺节目的20名观众中,恰有8名又收看地方戏节目. 现在从这20名观众中随机选出3名进行其他方面调查,记选出收看地方戏节目的人数为 ξ,求 ξ 的分布列与数学期望.

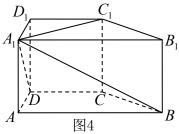
参考公式与临界值表:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, 其中 $n = a+b+c+d$

$P(K^2 \ge k)$	0.15	0.10	0.05	0.025	0.010	0.005	0.001
k	2.072	2.706	3. 841	5.024	6.635	7.879	10.828

19. (本小题满分12分)

如图4, $ABCD - A_1B_1C_1D_1$ 是四棱柱, $AA_1 \perp$ 底面 ABCD,AB / CD, $AB \perp AD$, $AD = CD = AA_1 = 1$, AB = 2.

- (1)求证: $A_1C_1 \perp$ 平面 BCC_1B_1 ;
- (2)求平面 A_1BD 与平面 BCC_1B_1 所成二面角的大小.



20. (本小题满分12分)

已知 $\{a_n\}$ 是递增的等差数列,它的前三项的和为-3,前三项的积为8.

- (1)求数列 $\{a_n\}$ 的通项公式;
- (2)求数列 $\{|a_n|\}$ 的前n项和 S_n .

21. (本小题满分12分)

在平面直角坐标系 xOy 中,抛物线 $C: y^2 = 8x$ 的焦点为 F 。椭圆 Σ 的中心 在坐标原点,离心率 $e = \frac{1}{2}$,并以 F 为一个焦点.

- (1)求椭圆 Σ 的标准方程;
- (2)设 A_1A_2 是椭圆 Σ 的长轴(A_1 在 A_2 的左侧),P 是抛物线 C 在第一象限的一点,过 P 作抛物线 C 的切线,若切线经过 A_1 ,求证: $\tan \angle A_1 P A_2 = \sqrt{2}$.

22. (本小题满分12分)

已知函数 $f(x) = m \ln(x-1) + (m-1)x$, $m \in R$ 是常数.

- (1)若 $m = \frac{1}{2}$, 求函数 f(x) 的单调区间;
- (2)若函数 f(x) 存在最大值,求m 的取值范围;
- (3)若对函数 f(x) 定义域内任意 x_1 、 x_2 ($x_1 \neq x_2$), $\frac{f(x_1) + f(x_2)}{2} > f(\frac{x_1 + x_2}{2})$ 恒成立,求m 的取值范围.

2022届广东省广州市七校联合体高三调研考试(一)

数学评分参考2021.6

一、单选题 BACD ADBC

二、多选题 AC AC ACD AD

三、填空题 13.
$$\forall x \in R$$
 (2分), $x^2 + 1 \ge 0$ (3分) 14. -252

15. ¹⁴ 16. ³⁰*m* (数值4分,单位1分)

四、解答题

17. (1)由正弦定理 $\frac{a}{\sin A} = \frac{c}{\sin C}$ ······2分,得 $c \sin A = a \sin C$ ······3分,由已知得

$$a \sin C = \sqrt{3}a \cos C$$
, $\tan C = \sqrt{3}$ ……4分,因为 $0 < C < \pi$,所以 $C = \frac{\pi}{3}$ ……5分

(2)由余弦定理
$$c^2 = a^2 + b^2 - 2ab\cos C$$
 ……7分,得 $(\sqrt{7})^2 = a^2 + 2^2 - 4a \times \cos \frac{\pi}{3}$

……9分,即
$$a^2-2a-3=0$$
……10分,解得 $a=3$ 或 $a=-1$ ……11分,负值舍去,所以 $a=3$ ……10分

18. (1)应抽取大于40岁的观众人数为 $\frac{24}{40} \times 5 = 3$ (名) ……3分 (列式2分, 计算1分)

(2)根据列联表中的数据,得

$$K^{2} = \frac{100 \times (40 \times 24 - 16 \times 20)^{2}}{56 \times 44 \times 60 \times 40} = \frac{1600}{231} \approx 6.926 > 6.635$$

······7分 (列式2分, 计算1分, 判断1分)

所以,有99%的把握认为收看文艺节目的观众与年龄有关……8分

(3) を的可能值为0、1、2、3……9分

$$P(\xi=0) = \frac{C_{12}^3}{C_{20}^3} = \frac{11}{57}$$
, $P(\xi=1) = \frac{C_8^1 C_{12}^2}{C_{20}^3} = \frac{44}{95}$, $P(\xi=2) = \frac{C_8^2 C_{12}^1}{C_{20}^3} = \frac{28}{95}$,

$$P(\xi=3) = \frac{C_8^3}{C_{20}^3} = \frac{14}{285}$$

ξ的分布列为

ξ	0	1	2	3
D	11	44	28	14
	57	95	95	285

……10分

$$\xi$$
的数学期望 $E\xi = 0 \times \frac{11}{57} + 1 \times \frac{44}{95} + 2 \times \frac{28}{95} + 3 \times \frac{14}{285} = \frac{6}{5} \cdots 12$ 分(每个等号1

19. (1) $AA_1 \perp$ 底面 ABCD,所以 $CC_1 \perp A_1C_1$ ……1分,

取 A_1B_1 的中点 E , 连接 EC_1 ······2分,则 $A_1EC_1D_1$ 是正方形, $\angle A_1C_1E = \frac{\pi}{4}$ ······3分,又 $B_1E = C_1E = 1$, $\angle B_1C_1E = \frac{\pi}{4}$,所以 $\angle A_1C_1B_1 = \frac{\pi}{2}$, $A_1C_1 \perp B_1C_1$ ·······4分,因为 $CC_1 \cap B_1C_1 = C_1$,所以 $A_1C_1 \perp \operatorname{Pm} BCC_1B_1$ ·······5分.

(2) (法一)以 D 为原点,DA、DC 、 DD_1 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系……6分,则 D(0,0,0),A(1,0,0),B(1,2,0), $A_1(1,0,1)$, $C_1(0,1,1)$ ……7分, $\overrightarrow{DA_1}=(1,0,1)$, $\overrightarrow{DB}=(1,2,0)$, $\overrightarrow{A_1C_1}=(-1,1,0)$ ……8分,由(1)知,平面 BCC_1B_1 的一个法向量为 $\overrightarrow{n_1}=\overrightarrow{A_1C_1}=(-1,1,0)$ ……9分,设平面 A_1BD 的一个法向量为 $\overrightarrow{n_2}=(a,b,c)$,则 $\left\{\overrightarrow{n_2}\cdot\overrightarrow{DB}=0\right\}$,即 $\left\{a+2b=0\right\}$,不妨设

b=1,则 a=-2, c=2,从而 $\overrightarrow{n_2}=(-2,1,2)$,设所求二面角的大小为 θ ,则 $\cos\theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}, = \frac{\sqrt{2}}{2},$ 所求二面角的大小为 $\frac{\pi}{4}$ ……12分.

(法二)取 AB 的中点 F ,连接 D_1E 、 EF 、 DF ……6分,则 EF // BB_1 、 DF // BC ,因为 DF \cap EF = F ,所以平面 DD_1EF // 与平面 BCC_1B_1 ……7分,所以平面 A_1BD 与平面 BCC_1B_1 所成二面角等于平面 A_1BD 与平面 DD_1EF 所成二面角……8分。设 EF \cap A_1B = G , D_1E \cap A_1C_1 = H ,连接 DG ,作 A_1M \perp DG ,垂足为 M ,连接 HM ,由(1)知 A_1C_1 \perp 平面 DD_1EF , A_1C_1 \perp DG , A_1M \cap A_1H = A_1 ,所以 DG \perp 平面 A_1HM ……9分, DG \perp HM , $\angle A_1MH$ 是平面 A_1BD 与平面 BCC_1B_1 所成二面角……10分。设 DM = x ,则

$$A_1D^2 - x^2 = A_1G^2 - GM^2 = A_1M^2 \cdots 11$$
分,其中 $A_1D = \sqrt{2}$, $A_1G = \frac{1}{2}A_1B = \frac{\sqrt{5}}{2}$, $DG = \sqrt{DF^2 + FG^2} = \sqrt{(\sqrt{2})^2 + (\frac{1}{2})^2} = \frac{3}{2}$, $GM = \frac{3}{2} - x$,代入解得 $x = 1$,在 ΔA_1MH 中, $A_1H \perp MH$, $A_1M = \sqrt{A_1D^2 - DM^2} = 1$, $A_1H = \frac{\sqrt{2}}{2}$, 所以 $\sin \angle A_1MH = \frac{A_1H}{A_1M} = \frac{\sqrt{2}}{2}$, 所求二面角的大小为 $\frac{\pi}{4} \cdots 12$ 分.

20. (1)设
$$\{a_n\}$$
的公差为 d ($d > 0$),依题意,
$$\begin{cases} a_1 + (a_1 + d) + (a_1 + 2d) = -3 \\ a_1 \cdot (a_1 + d) \cdot (a_1 + 2d) = 8 \end{cases}$$
2

分,即
$$\begin{cases} a_1 + d = -1 \\ a_1 \cdot (a_1 + 2d) = -8 \end{cases}$$
,解得 $\begin{cases} a_1 = -4 \\ d = 3 \end{cases}$ 或 $\begin{cases} a_1 = 2 \\ d = -3 \end{cases}$ ······4分,因为 $d > 0$,

所以
$$\begin{cases} a_1 = -4 \\ d = 3 \end{cases}$$
, $\{a_n\}$ 的通项 $a_n = -7 + 3n \cdots 5$ 分

(2)由(1)得 $a_1 = -4$, $|a_1| = 4$; $a_2 = -1$, $|a_2| = 1$ ……6分; 当 $n \ge 3$ 时, $a_n > 0$, $|a_n| = a_n$ ……7分,所以 $S_1 = 4$, $S_2 = 5$ ……8分

$$\stackrel{\text{"}}{=} n \ge 3$$
 时, $S_n = S_2 + (a_3 + \cdots + a_n) = 5 + [2 + \cdots + (-7 + 3n)] \cdots$ 9分,

$$=5+\frac{2+(-7+3n)}{2}\times(n-2)=\frac{3}{2}n^2-\frac{11}{2}n+10\cdots 11/3;$$

综上所述,
$$S_n = \begin{cases} 4, & n = 1, \\ 5, & n = 2, \dots 12 分. \end{cases}$$

 $\frac{3}{2}n^2 - \frac{11}{2}n + 10, & n \ge 3.$

21. (1)依题意,设椭圆 Σ 的标准方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) ……1分,

$$2p = 8$$
,所以 $p = 4$, $\frac{p}{2} = 2 \cdots 2$ 分, $F(2, 0)$, $c = 2 \cdots 3$ 分,

$$e = \frac{c}{a} = \frac{1}{2}$$
, 所以 $a = 4$ ······4分, $b^2 = a^2 - c^2 = 12$ ······4分,

所以椭圆 Σ 的标准方程为 $\frac{x^2}{16} + \frac{y^2}{12} = 1 \cdots 5$ 分

(2)抛物线C在第一象限的部分可看作函数 $y = \sqrt{8x} = 2\sqrt{2} \cdot \sqrt{x}$ 的图象······6分,

依题意,不妨设
$$P(\frac{{y_0}^2}{8}, y_0)$$
 $(y_0 > 0)$,因为 $y' = 2\sqrt{2} \cdot \frac{1}{2\sqrt{x}} = \sqrt{\frac{2}{x}}$ ……7分,所

以切线
$$PA_1$$
 的斜率 $k_{PA_1} = y'|_{x=x_0} = \frac{4}{y_0} \cdots 9$ 分, $PA_1: y-y_0 = \frac{4}{y_0} (x-\frac{{y_0}^2}{8}) \cdots 8$

分,由(1)得 $A_1(-4, 0)$,代入解得 $y_0 = 4\sqrt{2}$ ……9分,则 $P(4, 4\sqrt{2})$, $A_2(4, 0)$ ……

10分, $PA_2 \perp A_1A_2$,在 $Rt\Delta PA_1A_2$ 中, $A_1A_2 = 8$, $PA_2 = 4\sqrt{2}$, $\angle PA_2A_1$ 是直角,所以 $\tan \angle A_1PA_2 = \frac{A_1A_2}{PA_2} = \sqrt{2}$ ……12分.

22. (1) f(x) 的定义域为 $(1, +\infty)$ ……1分

$$m = \frac{1}{2}$$
 F(x) = $\frac{1}{2}$ ln($x - 1$) - $\frac{1}{2}x$, $f'(x) = \frac{1}{2(x - 1)}$ - $\frac{1}{2} = \frac{2 - x}{2(x - 1)}$ 2 $\frac{1}{2}$

解 f'(x) = 0 得 x = 2 。 当 $x \in (1, 2)$ 时, f'(x) > 0 ,即 f(x) 在 (1, 2) 单调递增 ······3分;当 $x \in (2, +\infty)$ 时, f'(x) < 0 ,即 f(x) 在 $(2, +\infty)$ 单调递减 ······4分。

(2)
$$f'(x) = \frac{m}{x-1} + (m-1) = \frac{(m-1)x+1}{x-1}$$

若 $m \ge 1$,则 f'(x) > 0, f(x) 单调递增,不存在最大值······5分

若 $m \le 0$,则f'(x) < 0,f(x)单调递减,不存在最大值……6分

若
$$0 < m < 1$$
,由 $f'(x) = 0$ 得 $x = \frac{1}{1-m}$,当 $x \in (1, \frac{1}{1-m})$ 时, $f'(x) > 0$, $f(x)$

单调递增,当 $x \in (\frac{1}{1-m}, +\infty)$ 时,f'(x) < 0,f(x)单调递减······8分,所以f(x)

(3)由
$$\frac{f(x_1) + f(x_2)}{2} > f(\frac{x_1 + x_2}{2})$$
 得 $\frac{m \ln(x_1 - 1) + m \ln(x_2 - 1)}{2} > m \ln(\frac{x_1 + x_2}{2} - 1)$

……10分,依题意 $x_1 - 1 > 0$, $x_2 - 1 > 0$ 且 $x_1 - 1 \neq x_2 - 1$,所以

$$\frac{x_1 + x_2}{2} - 1 = \frac{(x_1 - 1) + (x_2 - 1)}{2} > \sqrt{(x_1 - 1)(x_2 - 1)} \cdot \dots \cdot 10$$

 $y = \ln x$ 是增函数,所以 $\ln(\frac{x_1 + x_2}{2} - 1) > \ln \sqrt{(x_1 - 1)(x_2 - 1)}$ ……11分,

$$=\frac{1}{2}\ln[(x_1-1)(x_2-1)]=\frac{1}{2}[\ln(x_1-1)+\ln(x_2-1)], 所求 m 的取值范围为 (-\infty, 0) \dots 12分.$$