安徽省六校教育研究会 2021 届高三联考

数学能力测试(文)

命题:淮北一中六校联考文科数学命题组

注意事项:

1	公 卷前。	者生各必将自	己的姓名、	准考证号填写在答题卡上	_ 0
---	--------------	--------	-------	-------------	-----

- 2. 回答选择题时, 选出每小题答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡 皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。

考试时间 120 分钟, 满分 150 分

- 目
- 1

要求的)			在每小题给出的四个远台	
.设全集为实数	χ 集 R ,集合 $P = \langle x x \rangle$	$\leq 1+\sqrt{2}, x\in R\}, \ \ $	長合 $Q = \{1,2,3,4\}$,则图中	可阴影部分表示的集合为
()				R
A. {4}	в. {3,4}	c. {2,3,4}	D. {1,2,3,4}	P
lpha.已知平面 $lpha$,	直线 a,b,l ,且 $a \subset a$	$a,b\subset lpha$,则" $l\perp a$ 且	l l ⊥ b "是" l ⊥ α "的()
A.充分不必要 C.充分必要多		B.必要不充分条件 D.既不充分也不必要	条件	
3.己知√2 ≈ 1	.41421, 如果对应关	系 f 将 n 对应到 $\sqrt{2}$ (的小数点后第n位上的数等	字,则 $f(2) + f(4) =$
()				
	в. 6	c. 3	D. 2	
	,下列叙述正确的有	() 个		
①若 Zi = 1				
	复数都不能比较大小	:		
③实数没有	共轭复数;			
④复数3-2	2i 的实部是3,虚部是	¹ 2.		
A. 1	в. 2	c. 3	D. 4	
5.已知角 θ 的	顶点在坐标原点,始远	カ与x 轴非负半轴重合	7, 终边在直线 2x - y = 0	上,
3π	(1)		•	

$$\mathbb{M}\frac{\sin(\frac{3\pi}{2}+\theta)+\cos(\pi-\theta)}{\sin(\frac{\pi}{2}-\theta)-\sin(\pi-\theta)} = ($$

 $A_1 - 2$

c. 0

6.M(a,b) 为圆 $x^2+y^2=r^2(r>0)$ 内异于圆心的一点,则直线 $ax+by=r^2$ 与该圆的位置关系(

A.相切

B.相交

C.相离

D.相切或相交

7.中国古代有计算	多项式值的秦九韶第	[法,如图是实现 该	5 算法的程序框图.执行该程/	开始
框图, 若输入的	x = 2, n = 3.	次输入的 a 为 1,2,	3,4, 则输出的 s = ()	输入x,n
A. 11	в. 16	c. 26		k=0,5=0
			真实质量 m 表述正确的是	输入 a
$A. m < \sqrt{ab}$	$B. m > \frac{a+b}{2}$	$C. m < \frac{a+b}{2}$	D. $m > \sqrt{ah}$	
体感染的标志为 乙、丙、丁四地 A.甲地: 总体均:	7"连续14天,每天 3新增疑似病例数据, 值为1,中位数为1	新增疑似病例不超》 一定符合该标志的 B.乙地:总	:一段时间没有发生在规模群过6人".根据过去14天甲、 过6人".根据过去14天甲、 约是() 体均值为1,总体标准差大于(体均值为2,总体方差为1	第出 s
10. Δ <i>4BC</i> 的内角。	A, B, C 的对边分别》		$2A - 2\cos A + \frac{3}{2} = 0 且满足 a$	$a=\sqrt{3}(b-c)$, \emptyset
Δ <i>ABC</i> 的形状是 A.等腰三角形	と() B.直角三角形	c.等腰直角三角	形 D.等边三角形	
	- A _i B _i C _i 的底面是じ ² 到 B _i 和 P 到 A 的趴		[角三角形, 且 AC = CC ₁ = 1 (个最小值是 ()	1,在面对角线 <i>BC</i> ₁ 上
A. 2	B. $1 + \sqrt{2}$	c. √5	$D.\frac{\sqrt{2}+\sqrt{6}}{2}$	
12.设 <i>F</i> 为双曲线($C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > a)$	0,b > 0) 的右焦点,	O为坐标原点,以O为圆。	心 <i>OF</i> 为半径的圆与
双曲线 C 交干 F	P,Q两点(P,Q均在	E x 轴的上方). 若	PQ = OF ,则 C 的离心率	为()
$A.\frac{2\sqrt{3}}{3}$	в. √ <u>2</u>	c. 2	D. $\sqrt{3} + 1$	
	題共 4 小題,每小題		*	
13. 己知平面向量	\bar{a}, \bar{b} 满足 $\bar{a} \cdot (\bar{a} + \bar{b})$	$=3$. $\mathbb{E}\left \vec{a}\right =2,\left \vec{b}\right =$	=1,则向量 \vec{a} 与 \vec{b} 的夹角为	
			·安排一名志愿者去春风养老 两名志愿者都是女生的概率力	
15.设F 为抛物线($C: x^2 = 2py(p > 0)$)) 的焦点 , 直线 y –	x+1=0 与抛物线 C 有公共	点M,且MF与抛物
线 C 的对称轴重	哲.则p=			
16.关于函数 $f(x)$	$=2^{\cos(2x\cdot\frac{\pi}{3})}$ 的性质,	下列表述正确的是	·	

- ① 是周期函数,且最小正周期是π.
- ② 是轴对称图形,且对称轴是直线 $x = \frac{k\pi}{2} \frac{\pi}{6}, k \in \mathbb{Z}$;
- ③ 定义域是 R. 值域是 $\left[\frac{1}{2},2\right]$:
- ④ 是中心对称图形,且对称中心是 $\left(\frac{k\pi}{2} + \frac{\pi}{12}, 1\right) k \in \mathbb{Z}$;
- ⑤ 单调递减区间是 $\left[k\pi \frac{\pi}{6}, k\pi + \frac{\pi}{3}\right], k \in \mathbb{Z}$.

三、解答题: (共70分. 解答题应写出文字说明、证明过程或演算步骤. 第17~21 题为必考题,每个试题考生都必须作答. 第22、23 题为选考题,考生根据要求作答)

(一) 必考题: (共60分)

17. (12分)

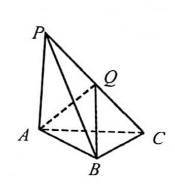
某村海拔 1500 米,交通极为不便,被称为"云端上的村庄",系建档立卡贫困村.该省政府办公厅组建了精准扶贫组进行定点帮扶,扶贫组在实地调研和充分听取群众意见后,立足当地独特优势,大力发展高山蔬菜和生态黑猪,有效带动了全村父老乡亲脱贫奔小康.村民甲在企业帮扶下签订合同,代养生态黑猪,2016 年至 2020 年养殖黑猪的年收入 y(单位:万元)的数据如下表:

年份	2016	2017	2018	2019	2020
年份代号 x	1	2	3	4	5
年收入 y	5. 6	6. 5	7. 4	8. 2	9. 1

- (1)请根据上表提供的数据,用最小二乘法求出 y 关于 x 的线性回归方程;
- (II)利用(I)中的回归方程, 预测 2021 年该村民养殖黑猪的年收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为
$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
, $\hat{a} = \bar{y} - b\bar{x}$

18. (12分)


已知各项均为正数的等差数列 $\{a_n\}$ 满足 $a_1a_5=33$, $a_2^2=25$.

- (1)求数列 $\{a_n\}$ 的通项公式:
- (II)设 $b_n=4^{n-2}+3a_n$,若 $a_n\in N$,求 $\{b_n\}$ 的前n项和 T_n .

19. (12分)

如图, 三棱锥 P-ABC中, PA 上平面 ABC, BC 上 AC (1) 求证: 平面 PBC 上平面 PAC.

(II) 若PA = 2, AC = BC = 1, Q为PC的中点, 求点C到平面 AQB的距离.

设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbb{I}(a > b > 0)$ 的左焦点为 F,离心率为 $\frac{\sqrt{2}}{2}$,过点 F 且与 x 轴垂直的直线被椭圆 截得的线段长为 $\sqrt{2}$.

- (1)求椭圆C的标准方程;
- (II)假设椭圆C的上顶点是P,斜率为k的直线l与椭圆交于不同于点P的A,B两点,直线AP的斜率是 k_1 ,直线BP的斜率是 k_2 ,若 $k_1k_2=\frac{3}{2}$,证明直线l过定点。

21、(12分)

已知函数 $f(x) = e^x - \ln(x+a) - a$.

- (1) 当a = 1时,求曲线 f(x) 在点(1, f(1)) 处的切线方程;
- (II)若 $f(x) \ge 0$,求a的取值范围.
- (二)选考题: (共10分、请考生在第22、23题中任选一题作答,并用2B铅笔将所选题号涂黑。多涂、错涂、漏涂均不给分,如果多做,那么按所做第一题计分)
- 22. [选修 4-4:坐标系与参数方程] (10 分)

在平面直角坐标系 xOy 中,已知曲线 C_1 : x+y=1与曲线 C_2 $\begin{cases} x=2+2\cos t \\ y=2\sin t \end{cases}$ (大为参数), 以坐标原点 O为极点,x轴的非负半轴为极轴建立极坐标系,

- (1)写出曲线 C_1 , C_2 的极坐标方程;

22. [选修 4-5: 不等式选讲] (10 分)

已知
$$f(x) = |ax+1| + |x-1|$$

- (1)当a=2时,求不等式 f(x) < 2的解集:
- (II) 若 $x \in (1,2)$ 时不等式 f(x) < x 成立, 求a 的取值范围.

烈克

大力 代

C

安徽省六校教育研究会 2021 届高三联考

文科数学试卷参考答案

一、选择题

2. B 3. C 4. A 5. B 6. C 7. C 8. C 9. D

二、填空题

13.
$$\frac{2\pi}{3}$$

14.
$$\frac{1}{4}$$
 15. 2

16. (1) (2) (3) (5)

三、解答题

17. (12分)

【解析】: (I)由所给数据计算得

$$\overline{x} = \frac{1}{5}(1+2+3+4+5) = 3$$

$$\overline{y} = \frac{1}{5}(5.6 + 6.5 + 7.4 + 8.2 + 9.1) = 7.36$$
 2 \(\frac{1}{2}\)

$$\sum_{i=1}^{7} (x_i - \bar{x})^2 = 4 + 1 + 0 + 1 + 4 = 10$$

$$\sum_{i=1}^{7} (x_i - \overline{x})(y_i - \overline{y}) = (1-3)(5.6 - 7.36) + (2-3)(6.5 - 7.36) + \dots + (5-3)(9.1 - 7.36) = 8.7$$

$$\hat{b} = \frac{\sum_{i=1}^{7} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{7} (x_i - \bar{x})^2} = \frac{8.7}{10} = 0.87 \dots 5 \text{ }$$

$$\hat{a} = \bar{y} - b\bar{x} = 7.36 - 0.87 \times 3 = 4.75$$

(II)将 2021 年的年份代号 x = 6代入(I)中的回归方程,得

$$\hat{y} = 0.87 \times 6 + 4.75 = 9.97$$
,

故预测 2021 年该村民养殖黑猪的年收入是 9.97 万元.12 分

18. (12分)

【解析】: (I)设正项等差数列 $\{a_n\}$ 的公差为d.

因为 $a_2^2 = 25$,所以 $a_2 = 5$,

因为
$$a_1a_5=33$$
,所以 $(a_2-d)(a_2+3d)=33$,所以 $d=2$ 或 $d=\frac{4}{3}$.

当
$$d=2$$
 时, $a_1=3$, 此时 $a_n=3+2(n-1)=2n+1$;

所以
$$T_n = 4^{-1} + 3 \times 3 + 4^0 + 3 \times 5 + 4^1 + 3 \times 7 + \dots + 4^{n-2} + 3(2n+1)$$

$$= (4^{-1} + 4^{0} + 4^{1} + 4^{n-2}) + 3(3 + 5 + 7 + \dots + 2n + 1)$$

$$= \frac{\frac{1}{4}(1-4^n)}{1-4} + 3 \times \frac{(3+2n+1)n}{2}$$

$$=\frac{4^{n-1}}{3}+3n^2+6n-\frac{1}{12}.$$

【解析】: (I)证明: $: PA \perp \text{平面 } ABC, BC \subset \text{平面 } ABC, :: PA \perp BC.$

又 $: BC \perp AC, PA \cap AC = A, PA \subset$ 平面 $PAC, AC \subset$ 平面PAC,

 $∴ BC \bot$ 平面 PAC , $∵ BC \subset$ 平面 PBC ,

$$(II)$$
解: $\therefore PA = 2, AC = BC = 1.Q$ 是中点

$$\therefore AQ = \frac{\sqrt{5}}{2}, BQ = \frac{3}{2}, AB = \sqrt{2}$$
,假设点 C 到平面 AQB 的距离是 d

$$\cos \angle AQB = \frac{AQ^2 + BQ^2 - AB^2}{2AQ \cdot BQ} = \frac{\frac{5}{4} + \frac{9}{4} - 2}{2 \times \frac{\sqrt{5}}{2} \times \frac{3}{2}} = \frac{\sqrt{5}}{5}$$

$$\sin \angle AQB = \frac{2\sqrt{5}}{5} \dots 8 \text{ } \%$$

$$V_{C-ABQ} = V_{Q-ABC} \label{eq:VC-ABQ}$$

$$\frac{1}{3}S_{\Delta ABQ} = \frac{1}{3}S_{\Delta ABC}$$

$$\frac{1}{3} \times \frac{1}{2} \times \frac{\sqrt{5}}{2} \times \frac{3}{2} \times \frac{2\sqrt{5}}{5} \times d = \frac{1}{3} \times \frac{1}{2} \times 1 \times 1 \times 1$$

$$d = \frac{2}{3} \dots 12 \,$$

【解析】: (I)设
$$F(-c,0)$$
, 由 $\frac{c}{a} = \frac{\sqrt{2}}{2}$, 知 $a = \sqrt{2}c$.

过点 F 且与 x 轴垂直的直线的方程为 x = -c,代入椭圆方程有 $\frac{(-c)^2}{a^2} + \frac{y^2}{b^2} = 1$,

解得
$$y = \pm \frac{\sqrt{2}}{2}b$$
,于是 $\sqrt{2}b = \sqrt{2}$,解得 $b = 1$,

$$\mathbb{X} a^2 - c^2 = b^2,$$

从而
$$a = \sqrt{2}$$
 , $c = 1$,

(II)设
$$A(x_1, y_1), B(x_2, y_2)$$
,直线 l 的方程为 $y = kx + m$,由方程组 $\begin{cases} y = kx + m \\ \frac{x^2}{2} + y^2 = 1 \end{cases}$

消去 y, 整理得 $(1+2k^2)x^2+4kmx+2m^2-2=0$.

所以

$$k_{1}k_{2} = \frac{y_{1}-1}{x_{1}} \cdot \frac{y_{2}-1}{x_{2}} = \frac{y_{1}y_{2}-(y_{1}+y_{2})+1}{x_{1}x_{2}}$$

$$= \frac{k^{2}x_{1}x_{2}+km(x_{1}+x_{2})+m^{2}-k(x_{1}+x_{2})-2m+1}{x_{1}x_{2}}$$

$$= \frac{k^{2}x_{1}x_{2}+(km-k)(x_{1}+x_{2})+m^{2}-2m+1}{x_{1}x_{2}}$$

$$= \frac{k^{2}\frac{2m^{2}-2}{1+2k^{2}}+(km-k)\frac{-4km}{1+2k^{2}}+m^{2}-2m+1}{\frac{2m^{2}-2}{1+2k^{2}}}$$

$$= \frac{k^{2}(2m^{2}-2)-4km(km-k)+(1+2k^{2})(m^{2}-2m+1)}{2m^{2}-2}$$

$$= \frac{m^{2}-2m+1}{2m^{2}-2} = \frac{3}{2}$$

解得 m=1 (舍去), 或者 m=-2

所以直线方程为 y = kx - 2 过定点 (0,-2)

·····12 分

【解析】: (I) 当 a = 1 时 $f(x) = e^x - \ln(x+1) - 1$

$$derivative f'(x) = e^x - \frac{1}{x+1}$$

得
$$k = f'(1) = e - \frac{1}{2}$$
, $f(1) = e - \ln 2 - 1$ 2 分

所以
$$y - (e - \ln 2 - 1) = (e - \frac{1}{2})(x - 1)$$

(II)①当a > 1时,因为f(x)的定义域是 $(-a,+\infty)$,此时 $f(0) = 1 - \ln a - a < 0$,

所以 $f(x) \ge 0$ 不恒成立,不合题意舍去.

②当 $a \le 1$ 时,易证 $e^x \ge x+1$, $\ln x \le x-1$,

所以
$$\ln(x+a) \le (x+a)-1$$
, 则 $-\ln(x+a) \ge -[(x+a)-1]$,

所以
$$f(x) = e^x - \ln(x+a) - a \ge (x+1) - [(x+a)-1] - a = 2 - 2a \ge 0$$

综上所述 $a \le 1$

······12 分

22. (10分)

【解析】: (I)曲线 C_1 的极坐标方程为 $\rho(\cos\theta + \sin\theta) = 1$,即 $\rho\sin(\theta + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$.

曲线 C_2 的普通方程为 $(x-2)^2 + y^2 = 4$,即 $x^2 + y^2 - 4x = 0$,

所以曲线 C_2 的极坐标方程为 $\rho = 4\cos\theta$;

(II)由(I)知
$$|OA| = \rho_A = \frac{1}{\cos\alpha + \sin\alpha}, |OB| = \rho_B = 4\cos\alpha,$$

$$\frac{\left|OB\right|}{\left|OA\right|} = 4\cos\alpha\left(\cos\alpha + \sin\alpha\right) = 2\left(1 + \cos2\alpha + \sin2\alpha\right) = 2 + 2\sqrt{2}\sin\left(2\alpha + \frac{\pi}{4}\right),$$

$$\frac{|OB|}{|OA|} = 4\cos\alpha(\cos\alpha + \sin\alpha) = 2(1 + \cos2\alpha + \sin2\alpha) = 2 + 2\sqrt{2}\sin(2\alpha + \frac{\pi}{4}),$$

因为
$$\frac{|OB|}{|OA|} = 4$$
所以 $2 + 2\sqrt{2}\sin(2\alpha + \frac{\pi}{4}) = 4$, $\sin(2\alpha + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$,

由
$$0 < \alpha < \frac{\pi}{2}$$
,知 $\frac{\pi}{4} < 2\alpha + \frac{\pi}{4} < \frac{5\pi}{4}$ 所以 $2\alpha + \frac{\pi}{4} = \frac{3\pi}{4}$,

23. (10分)

【解析】: (1) 当 a = 2 时, f(x) = |2x+1| + |x-1|

$$\mathbb{P} f(x) = \begin{cases}
-3x, x \le -\frac{1}{2} \\
x + 2, -\frac{1}{2} < x < 1 \\
3x, x \ge 1
\end{cases}$$

(II) 当 $x \in (1,2)$ 时 f(x) < x 成立等价于当 $x \in (1,2)$ 时 |ax+1| < 1 成立.

2021 届高三六校联考 文科数学 学科考试命题双向细目表

				Α	В	С	D	
题	题	分	知识点	识	理	理解	综合	预估难
型	号	值		记	解	应用	应用	度系数
	1	5	集合运算文氏图	√				0.9
	2	5	简易逻辑、立体几何		√			0.8
	3	5	函数的概念		√			0.8
	4	5	复数的概念			√		0.7
选	5	5	三角函数的概念及诱 导公式			√		0.8
择	6	5	均值不等式的应用			√		0.7
题	7	5	算法与框图			√		0.7
	8	5	直线与圆的位置关系			√		0.7
	9	5	统计数据			√		0.7
	10	5	解三角形			√		0.7
	11	5	立体几何				√	0.5
	12	5	双曲线离心率				V	0.4
1.40	13	5	平面向量的夹角计算		√			0.8
填	14	5	概率		√			0.7
空题	15	5	求抛物线的焦准距			√		0.6
/EZS	16	5	复合函数的性质				V	0.4
	17	12	统计回归分析				√	0.7
	18	12	数列通项公式求和				V	0.7
解	19	12	立体几何垂直点到面 距离体积公式				V	0.6
答	20	12	直线和椭圆定点				√	0.5
题	21	12	导数切线方程恒成立 分类讨论				√	0.4
	22	10	极坐标与参数方程			√		0.6
	23	10	不等式选讲			√		0.6