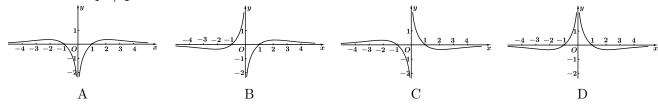
2021 届南开中学高三校模拟(数学)

- 1. 已知集合 $A = \{x \in \mathbb{N} \mid 0 < x < 4\}, B = \{x \mid x^2 2x \le 0\}, 则 A \cap B = ($
 - A. [0, 2]
- B. [1, 2]
- $C. \{1, 2\}$
- D. $\{1, 2, 3\}$
- 2.设a, b, c 为实数,则"a, b, c 成等比数列是" a^2 , b^2 , c^2 成等比数列"的(
 - A. 充分不必要条件

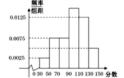
B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 3. 函数 $f(x) = \frac{2^x \ln x^2}{4^x + 1}$ 的大致图象为 (



4.某校有 1000 名学生参加扶贫知识政策答题比赛, 分初赛和复赛两个阶段进行, 规定:初赛成绩小于等于 90 分的会被淘汰. 已知所有学生的初赛成绩均在区间 (30,150] 内, 其频率分布直方图如图所示, 则会被淘汰的人数为(



- A. 350

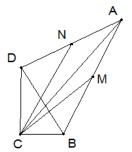
- 5. 已知 $a = \left(\frac{1}{3}\right)^{0.3}$, $b = \log_{\frac{1}{3}}0.3$, $c = a^b$, 则 a, b, c 的大小关系为 (C. c > b > aD. a > b > cB. b > c > a

- 6.已知圆锥的顶点和底面圆周都在球 O 的球面上,圆锥的母线长为 3,侧面展开图的面积为 3π ,则球 O 的表 面积等于(
 - A. $\frac{81\pi}{3}$
- C. $\frac{121\pi}{8}$
- D. $\frac{121\pi}{2}$
- 7. 已知抛物线 $y^2 = 2px (p > 0)$ 上一点 M(1,m) (m > 0) 到其焦点的距离为 5, 双曲线 $\frac{x^2}{a} y^2 = 1$ 的左顶点 为 A , 若双曲线的一条渐近线与直线 AM 平行 , 则实数 a 的值是 (A. $\frac{1}{9}$ B. $\frac{1}{25}$ C. $\frac{1}{5}$

- D. $\frac{1}{3}$
- 8. 已知 $f(x) = \sin\left(\omega x + \varphi + \frac{\pi}{3}\right)$ 同时满足下列三个条件:
 - ① $|f(x_1) f(x_2)| = 2$ 时 $|x_1 x_2|$ 最小值为 $\frac{\pi}{2}$;
 - ② $y = f\left(x \frac{\pi}{3}\right)$ 是奇函数;

若 f(x) 在 [0,t) 上没有最大值,则实数 t 的范围是 (A. $\left(0,\frac{\pi}{6}\right]$ B. $\left(0,\frac{11}{6}\pi\right]$ C. $\left(\frac{\pi}{6},\frac{11}{12}\pi\right]$

- D. $\left(\frac{5}{6}\pi, \frac{11}{12}\pi\right]$
- 9.如图,已知 B, D 是直角 C 两边上的动点, $AD \perp BD$, $|\overrightarrow{AD}| = \sqrt{3}$, $\angle BAD = \frac{\pi}{6}$, $\overrightarrow{CM} = \frac{1}{2} \left(\overrightarrow{CA} + \overrightarrow{CB} \right), \ \overrightarrow{CN} = \frac{1}{2} \left(\overrightarrow{CD} + \overrightarrow{CA} \right), \ \text{则} \ \overrightarrow{CM} \cdot \overrightarrow{CN} \ \text{的最大值为} \ ($ A. $\frac{4 + \sqrt{13}}{2} \qquad \text{B. } \frac{2 + \sqrt{13}}{2} \qquad \text{C. } \frac{4 + \sqrt{13}}{4} \qquad \text{D. } \frac{2 + \sqrt{13}}{4}$



- 10.设复数 z 满足 (1+2i) z=3-4i (i) 为虚数单位),则 |z| 的值为 _____.
- 11. $\left(2x^2 + \frac{1}{\sqrt[3]{x}}\right)^5$ 的展开式中 x^3 的系数为 ______ (用数字作答).

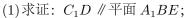
- 12. 已知过点 P(0,1) 的直线 l 与直线 4x-3y=0 垂直,l 与圆 $x^2+y^2+2x-6y+6=0$ 相交于 A,B 两点,则 线段 AB 的长为 _____.
- 13.2021年是中国共产党成立100周年现有A,B两队参加建党100周年知识竞赛,每队3人,每人回答一个问 题,答对者为本队赢 1 分,答错得 0 分; A 队中每人答对的概率均为 $\frac{1}{3}$, B 队中 3 人答对的概率分别为 $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$, 且各答题人答题正确与否互不影响,设A队总得分为随机变量 X,则 X 的数学期望为 ______;
- 者事件 M 表示 "A 队共得 2 分",事件 N 表示 "B 队共得 1 分",则 P(MN) = _____.

 14. 已知实数 x, y 满足 x > 1, y > 0 且 $x + 4y + \frac{1}{x-1} + \frac{1}{y} = 11$,则 $\frac{1}{x-1} + \frac{1}{y}$ 的最大值为 _____.
- 15. 已知函数 $f(x) = \begin{cases} \ln(x+1) + m, & x \ge 0 \\ ax b + 1, & x < 0 \end{cases}$ 其中 m < -1, 对于任意 $s \in \mathbf{R}$ 且 $s \ne 0$, 均存在唯一的实数 t,

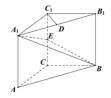
使得 f(s) = f(t), 且 $s \neq t$.

- (1) 若 m = -2, $b = _____;$ (2) 若关于 x 的方程 $|f(x)| = f\left(\frac{m}{3}\right)$ 有 4 个不相等的实数根,则 a 的取值范围是 _____.
- 16. 在 $\triangle ABC$ 中,内角 A, B, C 所对的边分别为 a, b, c 且 $\frac{\cos B}{\cos C} = -\frac{b}{2a+c}$.
 - (1)求 B 的大小;
 - (2)若 a = 2, c = 3, 求 $\cos A$ 和 $\sin (2A B)$ 的值.

17. 如图,在三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 \perp$ 平面 ABC, $AA_1 = AC = BC = 2$, $\angle ACB = 90^{\circ}$, D, E 分别是 A_1B_1 , CC_1 的中点.



- (2)求直线 BC_1 与平面 A_1BE 所成角的正弦值;
- (3) 在棱 CC_1 上是否存在一点 P,使得平面 PAB 与平面 A_1BE 所成二面角为 60°?若存在,求出线段 CP 的长;若不存在,请说明理由.



- 18. 已知 A_1 , A_2 分别为椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左、右顶点,B 为椭圆 C 的上顶点,点 A_2 到直线 A_1B 的距离为 $\frac{4\sqrt{7}b}{7}$,椭圆 C 过点 $\left(\frac{2\sqrt{3}}{3},\sqrt{2}\right)$.
 - (1)求椭圆 C 的标准方程;
 - (2)设直线 l 过点 A_1 , 且与 x 轴垂直, P, Q 为直线 l 上关于 x 轴对称的两点, 直线 A_2P 与椭圆 C 相交于 异于 A_2 的点 D, 直线 DQ 与 x 轴的交点为 E, 当 $\triangle PA_2Q$ 与 $\triangle PEQ$ 的面积之差取得最大值时, 求直 线 A_2P 的方程.

- 19.已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,满足 $S_n=2a_n-1$ $(n\in \mathbf{N}^*)$,数列 $\{b_n\}$ 满足 $nb_{n+1}-(n+1)$ $b_n=n$ (n+1) $(n\in \mathbf{N}^*)$,且 $b_1=1$.
 - (1)证明数列 $\left\{\frac{b_n}{n}\right\}$ 为等差数列,并求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (2)若 $c_n = \frac{(-1)^{n-1} 4(n+1)}{(3+2\log_2 a_n)(3+2\log_2 a_{n+1})}$, 求数列 $\{c_n\}$ 的前 2n 项和;
 - (3) 若 $d_n = a_n \cdot \sqrt{b_n}$,数列 $\{d_n\}$ 的前 n 项和为 D_n ,对任意的 $n \in \mathbb{N}^*$,都有 $D_n \leqslant nS_n a$,求实数 a 的取值范围.

- 20. 已知函数 $f(x) = \frac{\ln x}{x} + k$ 的极大值为 $\frac{1+e}{e}$, 其中 $e = 2.71828 \cdots$ 为自然对数的底数.
 - (1)求实数 k 的值.
 - (2)若函数 $g(x) = e^x \frac{a}{x}$, 对任意 $x \in (0, +\infty)$, $g(x) \geqslant af(x)$ 恒成立.
 - (i) 求实数 a 的取值范围;
 - (ii) 证明: $x^2 f(x) > a \sin x + x^2 1$.

答案:2021-05-14 — 参考答案

1	2	3	4	5	6	7	8	9
С	A	A	С	В	A	A	D	С

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- $10.\sqrt{5}$
- 11.40
- $12.2\sqrt{3}$
- 13.1,
- 14.9
- 15.3, (-6, -3)

16.

. (1) 由余弦定理,得
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$
, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$, $\frac{\cos B}{\cos C} = -\frac{b}{2a + c}$,整理得
$$\frac{a^2 + c^2 - b^2}{2ac} \cdot \frac{2ab}{a^2 + b^2 - c^2} = -\frac{b}{2a + c}.$$
 整理得 $a^2 + c^2 - b^2 = -ac$,所以 $\cos B = \frac{-ac}{2ac} = -\frac{1}{2}.$

所以
$$\cos B = \frac{-ac}{2ac} = -\frac{1}{2}$$
.

因为 B 为三角形的内角,所以 $B = \frac{2}{3}\pi$.

(2)
$$b^2 = a^2 + c^2 - 2ac\cos B = 2^2 + 3^2 - 2 \times 2 \times 3 \times \cos\left(\frac{2}{3}\pi\right) = 19, \ b = \sqrt{19},$$

又由于
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
,得 $\sin A = \frac{a}{b} \sin B = \frac{\sqrt{3}}{\sqrt{19}}$,

又因为 $B = \frac{2}{3}\pi$, A 为锐角,

所以
$$\cos A = \sqrt{1 - \sin^2 A} = \frac{4\sqrt{19}}{19}$$
,

$$\sin 2A = 2\sin A\cos A = \frac{8\sqrt{3}}{19}, \cos 2A = \cos^2 A - \sin^2 A = \frac{13}{19},$$

所以
$$\sin(2A - B) = \sin 2A \cos B - \cos 2A \sin B = -\frac{21\sqrt{3}}{38}$$
.

17.

(1) 取 AB 的中点 F, 连接 DF, 交 A_1B 于点 M, 可知 M 为 DF 的中点,

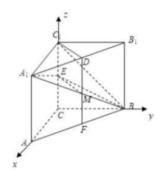
连接 EM, 易知四边形 C_1DME 为平行四边形,

所以 $C_1D /\!\!/ EM$,

又 $C_1D \not\subset$ 平面 A_1BE , $EM \subset$ 平面 A_1BE ,

所以 C_1D // 平面 A_1BE .

(2) 分别以CA, CB, CC_1 所在的直线为x轴, y轴, z 轴建立如图所示的空间直角坐标系,



可得 B(0,2,0), $C_1(0,0,2)$, E(0,0,1), $A_1(2,0,2)$, 则 $\overrightarrow{BC_1} = (0, -2, 2), \ \overrightarrow{EA_1} = (2, 0, 1), \ \overrightarrow{EB} = (0, 2, -1),$

设平面
$$A_1BE$$
 的法向量为 $\overrightarrow{n} = (x, y, z)$, 则
$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{EA_1} = 0, \\ \overrightarrow{n} \cdot \overrightarrow{EB} = 0, \end{cases}$$
 即
$$\begin{cases} 2x + z = 0, \\ 2y - z = 0, \end{cases}$$
 令 $x = 1$, 可得 $y = -1$, $z = -2$, 即 $\overrightarrow{n} = 0$

令
$$x = 1$$
, 可得 $y = -1$, $z = -2$, 即 $\overrightarrow{n} = (1, -1, -2)$, 所以 $\cos\langle \overrightarrow{BC_1}, \overrightarrow{n} \rangle = \frac{\overrightarrow{BC_1} \cdot \overrightarrow{n}}{|\overrightarrow{BC_1}| \cdot |\overrightarrow{n}|} = -\frac{\sqrt{3}}{6}$,

所以直线 BC_1 与平面 A_1BE 所成角的正弦值为 $\frac{\sqrt{3}}{6}$.

(3) 假设在棱 CC_1 是存在一点 P, 设 CP = a (0 < a < 2), 可得 P(0,0,a),

由 A(2,0,0), B(0,2,0), 可得 $\overrightarrow{PA} = (2,0,-a)$, $\overrightarrow{PB} = (0,2,-a)$,

设平面 PAB 的法向量为 $\overrightarrow{m} = (x_1, y_1, z_1)$,

则
$$\begin{cases} \overrightarrow{m} \cdot \overrightarrow{PA} = 0, \\ \overrightarrow{m} \cdot \overrightarrow{PB} = 0, \end{cases} \quad \mathbb{II} \begin{cases} 2x_1 - az = 0, \\ 2y_2 - az = 0, \end{cases}$$

 $\mathbb{P} \overrightarrow{m} = (a, a, 2),$

所以
$$\cos\langle \overrightarrow{m}, \overrightarrow{n} \rangle = \frac{\overrightarrow{m} \cdot \overrightarrow{n}}{|\overrightarrow{m}| \cdot |\overrightarrow{n}|} = \frac{-4}{\sqrt{a^2 + a^2 + 4} \cdot \sqrt{6}}$$

又由平面 A_1BE 的一个法向量为 $\overrightarrow{n} = (1, -1, -2)$, 所以 $\cos(\overrightarrow{m}, \overrightarrow{n}) = \frac{\overrightarrow{m} \cdot \overrightarrow{n}}{|\overrightarrow{m}| \cdot |\overrightarrow{n}|} = \frac{-4}{\sqrt{a^2 + a^2 + 4} \cdot \sqrt{6}}$, 因为平面 PAB 与平面 A_1BE 所成二面角为 60° ,可得 $\frac{4}{\sqrt{a^2 + a^2 + 4} \cdot \sqrt{6}} = \cos 60^\circ = \frac{1}{2}$,

解得 $a^2 = \frac{10}{3}$, 此时 $a = \frac{\sqrt{30}}{3}$, 符合题意,

所以在棱 CC_1 上存在一点 P,使得平面 PAB 与平面 A_1BE 所成二面角为 60° ,且 $CP = \frac{\sqrt{30}}{2}$ 18.

(1) 由题意知 $A_2(a,0)$, $A_1(-a,0)$, B(0,b), 则直线 A_1B 的方程为 $y = \frac{b}{a}x + b$, 即 bx - ay + ab = 0,

所以点
$$A_2$$
 到直线 A_1B 的距离 $d = \frac{2ab}{\sqrt{a^2 + b^2}} = \frac{4\sqrt{7}b}{7}$,即 $\frac{b^2}{a^2} = \frac{3}{4}$ ①

又椭圆
$$C$$
 过点 $\left(\frac{2\sqrt{3}}{3}, \sqrt{2}\right)$,所以 $\frac{4}{3a^2} + \frac{2}{b^2} = 1$. · · · · · · ②

联立①②,解得 $a^2 = 4$, $b^2 = 3$, 故椭圆 C 的标准方程为 $\frac{x^2}{4} + \frac{y^2}{2} = 1$.

(2) 由 (1) 知 $A_2(2,0)$, 直线 l 的方程为 x=-2.

由题意知直线 A_0P 的斜率存在且不为 0,

设直线 A_2P 的方程为 $x = my + 2 (m \neq 0)$

联立
$$\begin{cases} x = -2, \\ x = my + 2, \end{cases}$$
 解得
$$\begin{cases} x = -2, \\ y = -\frac{4}{m}, \end{cases}$$
 即 $P\left(-2, -\frac{4}{m}\right), Q\left(-2, \frac{4}{m}\right).$
联立
$$\begin{cases} x = my + 2 \ (m \neq 0), \\ \frac{x^2}{4} + \frac{y^2}{3} = 1, \end{cases}$$
 消去 x 整理得 $(3m^2 + 4) y^2 + 12my = 0,$

联立
$$\begin{cases} x = my + 2 (m \neq 0), \\ \frac{x^2}{4} + \frac{y^2}{3} = 1, \end{cases}$$
 消去 x 整理得 $(3m^2 + 4) y^2 + 12my = 0,$

曲点
$$D$$
 异于点 A_2 可得 $D\left(\frac{-6m^2+8}{3m^2+4}, \frac{-12m}{3m^2+4}\right)$, 所以直线 DQ 的方程为
$$\left(\frac{-12m}{3m^2+4} - \frac{4}{m}\right)(x+2) - \left(\frac{-6m^2+8}{3m^2+4} + 2\right)\left(y - \frac{4}{m}\right) = 0,$$
 令 $y = 0$, 得 $x_E = \frac{-6m^2+4}{3m^2+2}$, 所以 $|A_2E| = \left|2 - \frac{-6m^2+4}{3m^2+2}\right| = \frac{12m^2}{3m^2+2}$, 所以 $|A_2E| = \left|2 - \frac{-6m^2+4}{3m^2+2}\right| = \frac{12m^2}{3m^2+2}$, 所以 $\Delta PA_2Q = \Delta PEQ$ 的面积之差为 $S_{\Delta PA_2Q} - S_{\Delta PEQ} = 2S_{\Delta PA_2E}$. 因为 $2S_{\Delta PA_2E} = 2 \times \frac{1}{2} \cdot \frac{12m^2}{3m^2+2} \cdot \left|\frac{-4}{m}\right| = \frac{48|m|}{3m^2+2} = \frac{48}{3|m|+\frac{2}{|m|}} \leqslant 4\sqrt{6},$ 当且仅当 $m = \pm \frac{\sqrt{6}}{3}$ 时取等号,故当 ΔPA_2Q 与 ΔPEQ 的面积之差取得最大值时,直线 A_2P 的方程为 $3x + \sqrt{6}y - 6 = 0$ 或 $3x - \sqrt{6}y - 6 = 0$.

19.

(1) $S_n = 2a_n - 1(n \in \mathbb{N}^*)$, $n \ge 2$ 时, $a_n = S_n - S_{n-1} = 2a_n - 1 - (2a_{n-1} - 1)$, 化为: $a_n = 1$ 时, $a_1 = 2a_1 - 1$,解得 $a_1 = 1$. 所以数列 $\{a_n\}$ 是等比数列,公比为 2 ,所以 $a_n = 2^{n-1}$, 数列 $\{b_n\}$ 满足 $n_{n+1} - (n+1)b_n = n(n+1)(n \in \mathbb{N}^*)$, 化为: $\frac{b_{n+1}}{n-1} - \frac{b_n}{n} = 1$,且 $b_1 = 1$,所以数列 $\{\frac{b_n}{n}\}$ 为等差数列,公差为1,首项为 $\frac{b_1}{1} = 1$,所以数列 $\{\frac{b_n}{n}\}$ 为等差数列,公差为1,首项为 $\frac{b_1}{1} = 1$,所以 $\frac{b_n}{n} = 1 + n - 1 = n$, $b_n = n^2$. $c_n = (-1)^{n-1} \cdot \frac{4(n+1)}{(2n+1)(2n+3)} = (-1)^{n-1} \cdot \left(\frac{1}{2n+1} + \frac{1}{2n+3}\right)$,

$$T_{2n} = \left(\frac{1}{3} + \frac{1}{5}\right) - \left(\frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{7} + \frac{1}{9}\right) + \dots - \left(\frac{1}{4n+1} + \frac{1}{4n+3}\right)$$

$$= \frac{1}{3} - \frac{1}{4n+3}$$

$$= \frac{4n}{12n+9}.$$

(3) $d_n = a_n \cdot \sqrt{b_n} = n \cdot 2^{n-1}$,

数列 $\{d_n\}$ 的前 n 项和为 $D_n = 1 + 2 \times 2 + 3 \times 2^2 + \dots + n \cdot 2^{n-1}$,

$$2D_n = 2 + 2 \times 2^2 + \dots + (n-1) \cdot 2^{n-1} + n \cdot 2^n,$$

$$2D_n = 2 + 2 \times 2^2 + \dots + (n-1) \cdot 2^{n-1} + n \cdot 2^n$$
,
所以 $-D_n = 1 + 2 + 2^2 + \dots + 2^{n-1} - n \cdot 2^n = \frac{2^n - 1}{2 - 1} - n \cdot 2^n$,

解得 $D_n = (n-1) \cdot 2^n + 1$,

$$S_n = 2a_n - 1 = 2^n - 1$$
,

对任意的 $n \in \mathbb{N}^*$,都有 $D_n \leq nS_n - a$,

所以
$$a \le n(2^n-1)-(n-1)\cdot 2^n-1=2^n-n-1$$
,

$$\Leftrightarrow d_n = 2^n - n - 1$$
, $\emptyset d_{n+1} - d_n = 2^{n+1} - (n+1) - 1 - (2^n - n - 1) = 2^n - 1 > 0$,

所以数列 $\{d_n\}$ 单调递增,

所以
$$a \leq (d_n)_{\min} = d_1 = 0$$
,

所以实数 a 的取值范围是 $(-\infty,0]$.

20.

(1) f(x) 的定义域为 $(0, +\infty)$,

由 (1) 知,
$$f(x) = \frac{\ln x}{x} + 1$$
,

因为
$$h(x) = 1 + x + \ln x$$
 为单调递增函数,且 $h\left(\frac{1}{e}\right) = \frac{1}{e} > 0$, $h\left(\frac{1}{e^2}\right) = \frac{1}{e^2} - 1 < 0$,

所以
$$\exists x_1 \in \left(\frac{1}{e^2}, \frac{1}{e}\right)$$
, 使得 $h(x_1) = 1 + x_1 + \ln x_1 = 0$,

当
$$x \in (0, x_1)$$
 时, $h(x) < 0$, 当 $x \in (x_1, +\infty)$ 时, $h(x) > 0$,

①当
$$x = x_1$$
 时, $1 + x + \ln x = 0$ 时, $0 \leqslant xe^x$ 对 $\forall x \in (0, +\infty)$ 恒成立,

所以 $a \in \mathbf{R}$;

当
$$x \neq x_1$$
 时,即 $1 + x + \ln x \neq 0$ 时,设 $\varphi(x) = \frac{xe^x}{1 + x + \ln x}$,

则

$$\varphi'(x) = \frac{(x+1)e^{x}(1+x+\ln x) - xe^{x}\left(1+\frac{1}{x}\right)}{(1+x+\ln x)^{2}}$$

$$= \frac{(x+1)e^{x}(1+x+\ln x) - e^{x}(x+1)}{(1+x+\ln x)^{2}}$$

$$= \frac{(x+1)e^{x}(\ln x + x)}{(1+x+\ln x)^{2}}.$$

$$\xi p(x) = \ln x + x,$$

因为 $p(x) = \ln x + x$ 为单调递增函数,且 $p\left(\frac{1}{e}\right) = \frac{1}{e} - 1 < 0, p(1) = 1 > 0$,

所以 $\exists x_2 \in \left(\frac{1}{2}, 1\right)$,使得 $p(x_2) = \ln x_2 + x_2 = 0$,

当 $x \in (0, x_2)$ 时, p(x) < 0, $\varphi'(x) < 0$, $\varphi(x)$ 是减函数,

当 $x \in (x_2, +\infty)$ 时,p(x) > 0, $\varphi'(x) > 0$, $\varphi(x)$ 是增函数, 所以 $\varphi(x)_{\min} = \varphi(x_2) = \frac{x_2 e^{x_2}}{1 + x_2 + \ln x_2} = x_2 e^{x_2}$,

又因为 $\ln x_2 + x_2 = 0$,

所以 $x_2 e^{x_2} = e^{x_2 + \ln x_2} = e^0 = 1$,

所以 $\varphi(x)_{\min} = \varphi(x_2) = 1$,

②当 $1 + x + \ln x > 0$ 时, $a \leq \frac{xe^x}{1 + x + \ln x}$ 对 $\forall x \in (x_1, +\infty)$ 恒成立,因为 $\varphi(x)$ 在 (x_1, x_2) 上是减函数,在 $(x_2, +\infty)$ 上是增函数,

所以 $a \leqslant \varphi(x_2) = 1$;

③当
$$1 + x + \ln x < 0$$
 时, $a \ge \frac{xe^x}{1 + x + \ln x}$ 对 $\forall x \in (0, x_1)$ 恒成立,

所以
$$\varphi(x)$$
在 $(0,x_1)$ 上是减函数,
因为 $\varphi(0) = \lim_{x \to 0} \frac{xe^x}{1 + x + \ln x}$,

所以 $a \geqslant \varphi(0) = 0$;

综上 $0 \le a \le 1$.

【解法三】

由 (1) 知,
$$f(x) = \frac{\ln x}{x} + 1$$
,

则
$$g(x) \geqslant af(x)$$
, 即 $e^{x} - \frac{a}{x} \geqslant \frac{a \ln x}{x} + a$ 对 $\forall x \in (0, +\infty)$ 恒成立,

所以 $xe^x - a \ge a \ln x + ax$ 对 $\forall x \in (0, +\infty)$ 恒成立,

即 $xe^x - a \ln x - ax - a \ge 0$ 对 $\forall x \in (0, +\infty)$ 恒成立,

设 $h(x) = xe^x - a \ln x - ax - a$, 则 $h(x) \ge 0$ 对 $\forall x \in (0, +\infty)$ 恒成立,

 $h(x) = e^{\ln x} e^x - a \ln x - ax - a = e^{\ln x + x} - a (\ln x + x) - a$

设 $\ln x + x = t$, $t \in \mathbf{R}$,

原问题转化为: $\varphi(t) = e^t - at - a \ge 0$ 对 $\forall t \in \mathbf{R}$ 恒成立,

(i) 若 a < 0, 当 $t \in (-\infty, 0)$ 时,

$$\varphi\left(t\right) = e^{t} - at - a < 1 - at - a,$$

则
$$h\left(\frac{1}{a}-1\right) < 1-a\left(\frac{1}{a}-1\right)-a=0$$
,不合题意;

(ii) 若 a = 0, 则 $\varphi(t) = e^t \ge 0$ 对 $\forall t \in \mathbf{R}$ 恒成立,符合题意;

(iii) 若
$$a > 0$$
,则 $\varphi'(t) = e^t - a$,

$$\diamondsuit \varphi'\left(t\right)>0, \ t>\ln a, \ \diamondsuit \varphi'\left(t\right)<0, \ t<\ln a,$$

所以当 $t \in (-\infty, \ln a)$ 时, $\varphi(t)$ 为减函数,

当 $t \in (\ln a, +\infty)$ 时, $\varphi(t)$ 为增函数,

所以 $\varphi(t) \geqslant \varphi(\ln a) = e^{\ln a} - a \ln a - a = -a \ln a \geqslant 0$.

即 $\ln a \leq 0$,即 $0 < a \leq 1$;

综上 $0 \le a \le 1$.

(3) 要证
$$x^2 f(x) > a \sin x + x^2 - 1$$
,

只需证
$$x^2 \left(\frac{\ln x}{x} + 1\right) > a \sin x + x^2 - 1$$

只需证 $x^2 \left(\frac{\ln x}{x} + 1\right) > a \sin x + x^2 - 1$, 即 $x \ln x + x^2 > a \sin x + x^2 - 1$, 即 $x \ln x + 1 > a \sin x$, 只需证 $\ln x + \frac{1}{x} > \frac{a \sin x}{x}$,

设 $F(x) = \ln x + \frac{1}{x}$, $G(x) = x - \sin x$, 因为 $F'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}$, 所以 F(x) 在 (0,1) 上单调递减,在 $(1,+\infty)$ 上单调递增,

所以 $F(x) \ge F(1) = 1$.

因为 $G'(x) = 1 - \cos x \ge 0$ 恒成立,

所以G(x)在 $(0,+\infty)$ 上单调递增,

所以 $G(x) \sim G(0) = 0$,则 $x > \sin x$,即 $\frac{\sin x}{x} < 1$,由 (2) 可知, $0 \le a \le 1$,所以 $\frac{a \sin x}{x} < 1$; 所以 $F(x) > \frac{a \sin x}{x}$,即 $\ln x + \frac{1}{x} > \frac{a \sin x}{x}$,得证.