巴蜀中学 2022 届高考适应性月考卷 (一) 数学参考答案

一、单项选择题(本大题共8小题,每小题5分,共40分)

题号	1	2	3	4	5	6	7	8
答案	D	A	D	С	В	C	D	В

【解析】

- 1. 命题 $\forall x \in (0, +\infty)$, $\ln x > x 1$ 的否定: $\exists x \in (0, +\infty)$, $\ln x \leq x 1$, 故选 D.
- 2. $f[f(0)] = f(3) = \log_2 8 = 3$, 故选 A.
- 3. $z = \frac{2-i}{3+i} = \frac{1}{2} \frac{1}{2}i$, 复平面内 z 对应的点为 $\left(\frac{1}{2}, -\frac{1}{2}\right)$, 故选 D.
- 4. $A = \left\{ x \middle| \frac{3+x}{3-x} > 0 \right\} = \left\{ x \middle| -3 < x < 3 \right\}, \quad B = \left\{ y \middle| y = 2^{|x|} + 1 \ge 2 \right\}, \quad A \cap B = [2, 3), \quad$ 故选 C.
- 5. 设 $z = a + bi(a, b \in \mathbf{R})$,则 z = a bi ,若 z + z = 0 ,则 a = 0 , z 不一定是纯虚数;若 z 是纯虚数,则 $z = bi(b \neq 0)$, z = -bi ,一定有 z + z = 0 成立.所以 " z + z = 0 " 是 " z 是纯虚数"的必要但非充分条件,故选 B.
- 6. 满足条件的集合 P 应同时含有 -3, 3 或 -2, 2 或 -1, 1 或 0 ,又因为集合 P 非空,所以集合 P 的个数为 2^4 -1 = 15 个,故选 C.
- 7. $0.4^{0.3} < 0.4^0 = 1$, $1 = 2^0 < 2^{0.4} < 2^{0.5} = \sqrt{2} < 1.5$, $\log_2 3 > \log_2 \sqrt{8} = \log_2 2^{\frac{3}{2}} = \frac{3}{2} = 1.5$, 故选 D.
- 8. $\[rac{\partial}{\partial y} g(x) = x^2 f(x) \]$, $\[rac{\partial}{\partial y} g'(x) = 2xf(x) + x^2 f'(x) = \frac{\ln x}{x} \]$, $\[\[\[\] \] g(x) = x^2 f(x) \]$, $\[\[\] \] f(x) = \frac{g(x)}{x^2} \]$, $\[\] \[\] f(x) = \frac{g(x)}{x^2} \]$

 $\frac{1-2\ln x}{x}$, \diamondsuit h'(x) = 0, ອ h'(x) = 0, e h'(x) = 0, eh'(x) = 0, e

所以 h(x) 在 $(0, \sqrt{e})$ 上单调递增,在 $(\sqrt{e}, +\infty)$ 上单调递减, $h(x) \leq h(\sqrt{e}) = \ln \sqrt{e} - 2g(\sqrt{e}) =$

 $\frac{1}{2} - 2ef(\sqrt{e}) = \frac{1}{2} - 2e \times \frac{1}{4e} = 0$,所以 $f'(x) \le 0$ 在 $(0, +\infty)$ 恒成立,则 f(x) 在 $(0, +\infty)$ 上单调递减,故选 B.

二、**多项选择题**(本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项 是符合题目要求的.全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分)

题号	9	10	11	12
答案	BCD	BD	ACD	AB

【解析】

- 9. 对选项 A: $f(x) = x^c$ 在 $(0, +\infty)$ 时减函数,所以 $a^c < b^c$,A 错误;对选项 B: $a > b > 0 \Rightarrow \frac{1}{a} < \frac{1}{b} \Rightarrow \frac{c}{a} > \frac{c}{b}$,B 正确;对选项 C: a > b > 0, $c^2 > 0 \Rightarrow ac^2 > bc^2$,C 正确;对选项 D: $\frac{c}{a} + \frac{a}{c} = -\left(-\frac{c}{a} \frac{a}{c}\right) \le -2\sqrt{\left(-\frac{c}{a}\right) \cdot \left(-\frac{a}{c}\right)} \le -2$,D 正确,故选 BCD.
- 10. 设数据 1: x_1 , x_2 , ..., x_n 的均值为 \overline{x} , 标准差为 s, 极差为 $R = x_{\max} x_{\min}$, 则数据 2: $2x_1 1$, $2x_2 1$, ..., $2x_n 1$ 的均值为 $2\overline{x} 1$, 方差为 $4s^2$, 所以选项 A,C 错误; 数据 2 的标准差为 $\sqrt{4s^2} = 2s$,极差为 $(2x_{\max} 1) (2x_{\min} 1) = 2(x_{\max} x_{\min}) = 2R$,所以选项 B,D 正确,故选 BD.
- 11. 由 f(x) 是奇函数, f(x+1) 是偶函数,可得 f(x) 关于 (0,0) 和直线 x=1 对称,从而 f(x) 的周期 T=4,所以选项 B 错误,选项 C 正确;对选项 A: 由对称性及奇函数的性质可知 f(2)=f(0)=0,A 正确;对选项 D: 有已知 f(x) 关于 (0,0) 和直线 x=1 对称,从而 f(x) 关于 (2,0) 对称,又因为 f(x) 的周期 T=4,可得 f(x) 关于 (-2,0) 对称,所以 f(x-2) 是奇函数,D 正确,故选 ACD.
- 12. $V = \frac{1}{3}(S + \sqrt{SS'} + S')h = \frac{1}{3}(4\pi + \sqrt{4\pi \cdot \pi r^2} + \pi r^2)\sqrt{4 r^2} = \frac{\pi}{3}(r^2 + 2r + 4)\sqrt{4 r^2} (0 < r < 2)$,对选项 A: r = 1, $V = \frac{\pi}{3}(1 + 2 + 4)\sqrt{3} = \frac{7\sqrt{3}}{3}\pi$,A 正确; $V' = \frac{\pi}{3}\frac{-3r^3 4r^2 + 4r + 8}{\sqrt{4 r^2}}$,设 $f(r) = -3r^3 4r^2 + 4r + 8$,则 $f'(r) = -9r^2 8r + 4$ 在区间 (0, 2) 上递减,设 f'(r) = 0 的两

根为 $r_1 < r_2$,由 韦 达 定 理 $r_1 r_2 = -\frac{4}{9} < 0$ 知 $r_2 \in (0, 2)$,且 当 $r \in (0, r_2)$, f'(r) > 0 ; $r \in (r_2, 2)$, f'(r) < 0 , f(r) 在 $(0, r_2)$, $(r_2, 2)$, 由 f(0) = 8 , f(1) = 5 , f(2) = -24 知, $\exists r_0 \in (1, 2)$,使得 $f(r_0) = 0$,当 $r \in (0, r_0)$, f(r) > 0 ,即 V' > 0 ; 当 $r \in (r_0, 2)$, f(r) < 0 , 即 V' < 0 , 所以当 V 在 $(0, r_0)$, $(r_0, 2)$, B 正确, C, D 错误, 故选 AB.

三、填空题(本大题共4小题,每小题5分,共20分)

题号	13	14	15	16
答案	6; 160	$x^{-2}, x^{-4}, \frac{1}{ x }$ 等(答案不唯一)	$\frac{10}{113}$	$(\sqrt{2}, 2)$

【解析】

- 13. 二项式系数之和为 $2^n = 64 = 2^6$,所以n = 6; 展开式的通项公式 $T_{k+1} = C_6^k x^{6-k} \left(\frac{2}{x}\right)^k = 2^k C_6^k x^{6-2k}$ (k = 0, 1, 2, 3, 4, 5, 6),令6 2k = 0,则k = 3,所以常数项为 $T_4 = 2^3 C_6^3 = 160$.
- 15. 记事件 A = "猎人第一次击中野兔",B = "猎人第二次击中野兔",C = "猎人第三次击中野兔",D = "野兔被击中",则 $P(D) = P(A+B+C) = P(A) + P(B) + P(C) = 0.8 + 0.2 \times 0.4 + 0.2 \times 0.6 \times 0.2 = 0.904$, $P(B|D) = \frac{P(BD)}{P(D)} = \frac{0.08}{0.904} = \frac{10}{113}$.
- 16. 临界法: 当 $\angle AOB = 90^{\circ}$ 时,渐近线方程为 $y = \pm x$,即 $\frac{b}{a} = 1$,离心率 $e = \frac{c}{a} = \sqrt{1 + \left(\frac{b}{a}\right)^2} = \sqrt{2}$,当直线 $y = \frac{\sqrt{3}}{3}(x+c)$ 与渐近线 $y = -\frac{b}{a}x$ 垂直时, $\frac{b}{a} = \sqrt{3}$, 离心率 $e = \frac{c}{a} = \sqrt{1 + \left(\frac{b}{a}\right)^2} = 2$, 所以当 $\triangle AOB$ 是锐角三角形时,离心率 $e \in (\sqrt{2}, 2)$.
- 四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)
- 17. (本小题满分 10 分)

解: (1) 因为 $\forall x \in \mathbf{R}$, $f(x) \leq f(1)$, 所以f(x)的对称轴为x = 1, 则 $-\frac{2}{2a} = 1$, 所以a = -1.

由(1) f(t) 在 $t \in [1, e]$ 单调递减,所以 $g(x) = f(e^x)$ 的最大值为 c+1,所以 c=0.

18. (本小题满分 12 分)

解: (1) 由己知可求得:
$$\bar{x} = 40$$
, $\bar{y} = 95$, 所以 $\hat{b} = \frac{38500 - 8 \times 40 \times 95}{18200 - 8 \times 40 \times 40} = \frac{8100}{5400} = 1.5$,

而 $\hat{a} = 95 - 1.5 \times 40 = 35$, 则线性回归方程为: $\hat{y} = 1.5x + 35$.

(2) 当 x = 65 时,带入回归方程得 $\hat{y} = 65 \times 1.5 + 35 = 132.5$,

所以预测他这次考试数学成绩为132.5分.(12分)

19. (本小题满分 12 分)

解: (1) 设正方形 ABCD 的边长为 2a, 取 AD 的中点 M, 连接 PM, MC.

由平面 $PAD \perp$ 平面 ABCD , $PD = PA = \sqrt{17}$,

则 $PM \perp AD$, 所以 $PM \perp$ 平面 ABCD , 则 $PM^2 = 17 - a^2$,

又 $PM \perp MC$, 所以 $PM^2 = 21 - 5a^2$, 则解出a = 1, PM = 4,

所以体积
$$V_{P-ABCD} = \frac{1}{3} \times 2^2 \times 4 = \frac{16}{3}$$
. (6分)

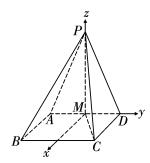
(2) 以 M 为坐标原点,平行于 AB 为 x 轴正方向, MD 为 y 轴正方向, MP 为 z 轴正方向, 建立如图所示的空间直角坐标系.

$$A(0, -1, 0)$$
, $B(2, -1, 0)$, $C(2, 1, 0)$, $P(0, 0, 4)$.

设
$$\overrightarrow{PO} = \lambda \overrightarrow{PB}$$
,则 $O(2\lambda, -\lambda, 4-4\lambda)$,

所以
$$\overrightarrow{AQ} = (2\lambda, 1-\lambda, 4-4\lambda)$$
, $\overrightarrow{AC} = (2, 2, 0)$,

设平面 QAC 的法向量 n = (x, y, z),



所以
$$2\lambda x + (1-\lambda)y + (4-4\lambda)z = 0$$
 且 $2x + 2y = 0$, 令 $x = 1$, 可得 $\vec{n} = \left(1, -1, \frac{3\lambda - 1}{4\lambda - 4}\right)$

而 \overrightarrow{MP} = (0, 0, 4) 为平面 ABCD 的一个法向量,

所以
$$\frac{\sqrt{19}}{19} = \frac{\left|4 \times \frac{3\lambda - 1}{4\lambda - 4}\right|}{4 \times \sqrt{2 + \left(\frac{3\lambda - 1}{4\lambda - 4}\right)^2}}$$
,解得 $\frac{3\lambda - 1}{4\lambda - 4} = \pm \frac{1}{3}$,

有
$$\lambda = -\frac{1}{5}$$
或 $\lambda = \frac{7}{13}$,由于点 Q 在线段 PB 上,所以 $\lambda = \frac{7}{13}$.

- 20. (本小题满分 12 分)
 - (1) 解: 由 $A_2(2, 0)$, 得 a = 2.

直线 AB 与直线 $l: 2x + \sqrt{3}y = 0$ 相互垂直,

则由
$$k_{A_lB} \bullet k_l = -1$$
,即 $\frac{b}{2} \bullet \left(-\frac{2}{\sqrt{3}}\right) = -1$,解得 $b = \sqrt{3}$.

(2) 证明: 设直线 $l:\; x=my+1 (m\neq 0)$,联立 l 和椭圆 C 的方程得: $(4+3m^2)y^2+6my-9=0$,

设
$$C(x_1, y_1)$$
, $D(x_2, y_2)$, 则有 $y_1 + y_2 = \frac{-6m}{4 + 3m^2}$, $y_1 y_2 = \frac{-9}{4 + 3m^2}$.

$$A_1C$$
: $y = \frac{y_1}{x_1 + 2}(x + 2)$, $\diamondsuit x = 0$, 则 $y_S = \frac{2y_1}{x_1 + 2}$, 同理: $y_T = \frac{-2y_2}{x_2 - 2}$.

所以
$$\frac{|OS|}{|OT|} = \frac{y_S}{-y_T} = \frac{y_1(x_2 - 2)}{y_2(x_1 + 2)} = \frac{y_1(my_2 - 1)}{y_2(my_1 + 3)}$$
.

将韦达结论代入分子:
$$2my_1y_2 - 3(y_1 + y_2) = 2m\frac{-9}{4 + 3m^2} - 3\frac{-6m}{4 + 3m^2} = 0$$
, 所以 $\frac{|OS|}{|OT|} = \frac{1}{3}$.

······(12 分)

21. (本小题满分 12 分)

解: (1) 设至少有 3 个单元正常工作的概率为
$$P_1$$
,则 $P_1 = C_4^3 \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right) + C_4^4 \left(\frac{1}{3}\right)^4 = \frac{1}{9}$.

······(4分)

(2) ① n=7 时,至少有 4 个单元正常工作芯片就能控制机床,

所以
$$P(7) = C_7^4 p^4 (1-p)^3 + C_7^5 p^5 (1-p)^2 + C_7^6 p^6 (1-p) + C_7^7 p^7$$
,由 $p = \frac{1}{2}$,

$$P(7) = C_7^4 \left(\frac{1}{2}\right)^7 + C_7^5 \left(\frac{1}{2}\right)^7 + C_7^6 \left(\frac{1}{2}\right)^7 + C_7^7 \left(\frac{1}{2}\right)^7 = (C_7^4 + C_7^5 + C_7^6 + C_7^7) \left(\frac{1}{2}\right)^7,$$

而
$$C_7^4 + C_7^5 + C_7^6 + C_7^7 = C_7^3 + C_7^2 + C_7^1 + C_7^0 = 2^6$$
,所以 $P(7) = \frac{1}{2}$.

.....(8分)

②若 $n=2k-1(k \in \mathbf{N}^*)$,

$$\mathbb{M} P(n) = C_n^k p^k (1-p)^{n-k} + C_n^{k+1} p^{k+1} (1-p)^{n-k-1} + \dots + C_n^n p^n = (C_n^k + C_n^{k+1} + \dots + C_n^n) \left(\frac{1}{2}\right)^n,$$

$$\overrightarrow{\text{III}} C_n^k + C_n^{k+1} + \dots + C_n^n = C_n^{k-1} + C_n^{k-2} + \dots + C_n^0 = 2^{n-1}$$
,

所以 $P(n) = \frac{1}{2}$,符合题意.

若
$$n = 2k(k \in \mathbf{N}^*)$$
 ,则 $P(n) = (C_n^k + C_n^{k+1} + \dots + C_n^n) \left(\frac{1}{2}\right)^n$,

而对立事件
$$\overline{P(n)} = (C_n^{k-1} + C_n^{k-2} + \dots + C_n^1 + C_n^0) \left(\frac{1}{2}\right)^n$$
,

且
$$C_n^{k+1} + \cdots + C_n^n = C_n^{k-1} + C_n^{k-2} + \cdots + C_n^0$$
,则 $P(n) - \overline{P(n)} = C_n^k \left(\frac{1}{2}\right)^n \neq 0$,所以 $P(n) \neq \frac{1}{2}$,

22. (本小题满分 12 分)

解: (1) 若选择①
$$m = \frac{1}{2}$$
, $f(x) = e^{x-1} - \frac{1}{2}x^2$, 则 $f'(x) = e^{x-1} - x$, $f''(x) = e^{x-1} - 1$,

由 f''(x) 单调递增,且 f''(1)=0 ,所以 f'(x) 在 (0,1) 上单调递减, $(1,+\infty)$ 上单调递增,

有 $f'(x) \ge f'(1) = 0$,则 f(x) 在 $(0, +\infty)$ 上单调递增,不存在极小值点.

若选择②
$$m=1$$
, $f(x)=e^{x-1}-x^2$, 则 $f'(x)=e^{x-1}-2x$, $f''(x)=e^{x-1}-2$,

由 f''(x) 单调递增,且 $f''(1+\ln 2)=0$,

所以 f'(x) 在 $(0, 1+\ln 2)$ 上单调递减, $(1+\ln 2, +\infty)$ 上单调递增,

有 $f'(x) \ge f'(1 + \ln 2) = -2 \ln 2 < 0$, 面 $f'(4) = e^3 - 8 > 0$,

(2) $\Rightarrow g(x) = 0$, $\hat{q} e^{x-1} - mx^2 + mx \ln(mx) = 0$, $\sum mx > 0$,

所以
$$\frac{e^{x-1}}{mx} - x + \ln(mx) = \frac{e^{x-1}}{e^{\ln(mx)}} - x + \ln(mx) = e^{x-\ln(mx)-1} - [x - \ln(mx)] = 0$$
, \diamondsuit $t = x - \ln(mx)$,

即转化为 $e^{t-1}-t=0$ 有解,设 $h(t)=e^{t-1}-t$,

则由 $h'(t) = e^{t-1} - 1$ 可得,h(t)在 $t \in (-\infty, 1)$ 单调递减,在 $t \in (1, +\infty)$ 单调递增,而h(1) = 0,

所以 $h(t) = e^{t-1} - t$ 由唯一零点 t = 1.

若 g(x) 在区间 $(0, +\infty)$ 存在零点, 即为 $1=x-\ln(mx)$ 在 $(0, +\infty)$ 有解.

整理得: $1 + \ln m = x - \ln x$,

设 $l(x) = x - \ln x$, 由 $l'(x) = 1 - \frac{1}{x}$ 知, l(x) 在 $x \in (0, 1)$ 单调递减,在 $x \in (1, +\infty)$ 单调递增,