2020-2021 学年北京市高三定位考试

数学参考答案

一、选 担(1)		、题,每小题 4 分, (2)D	共 40 分) (3) D	(4) B	(5) C
(6)	C	(7) B	(8) C	(9) D	(10) A
二、填写	≧题(共5小鳥	题,每小题 5 分,	共 25 分)		
(11) $(-\infty,0]$		(12) 2	$(2\sqrt{2},0)$	
(13) 1		$(14) 2\pi$	1(答案不唯一)	
(15	134				
三、解智	S题(共 6 小是	题,共 85 分)			
(16) (共14分)				
解:	选条件①:	a=4, $c=6$			
(])在△ABC	中,因为 $c^2 = a^2 + a^2$	$-b^2 - 2ab\cos C$,	3 分
	$\mathbb{E}\cos C =$	$-\frac{1}{8}$, $a = 4$, $c = 6$	5		
	所以36=	$= 16 + b^2 - 8b(-\frac{1}{8})$			
	所以b=4	4 , $b = -5$ (舍).			5 分
	由正弦定	E理得 $\sin B = \frac{b \sin C}{c}$			8分
	因为 cos ($C = -\frac{1}{8}$, $C \in (0, \pi)$)		
	所以sin ($C = \sqrt{1 - \cos^2 C} = \frac{3x}{3}$	$\frac{\sqrt{7}}{8}$.		9分
	所以 sin E	$B = \frac{\sqrt{7}}{4} .$			10 分
(I	[)因为S _{△ABC}	$C = \frac{1}{2}ab\sin C$			13 分
	在△ABC	+, a=4, b=4	$\sin C = \frac{3\sqrt{7}}{8}$		
	所以 $S_{\triangle ABC}$	$c_{\rm g}=3\sqrt{7}$.			14 分

数学参考答案 第 1 页 (共 7 页)

选条件②: a = 4, $\triangle ABC$ 为等腰三角形.

(I) 在 $\triangle ABC$ 中,因为 $\cos C = -\frac{1}{8}$,

所以C为钝角.

因为 $\triangle ABC$ 为等腰三角形,

所以C为顶角.

所以c=6.

因为
$$\cos C = -\frac{1}{8}$$
, $C \in (0,\pi)$

(II) 因为
$$S_{\triangle ABC} = \frac{1}{2}ab\sin C$$
 ……13 分

在
$$\triangle ABC$$
中, $a=4$, $b=4$, $\sin C=\frac{3\sqrt{7}}{8}$

(17) (共14分)

解:(I)连接BD交AC于点O,连接EO.

因为 $ABCD - A_iB_iC_iD_i$ 为长方体,

所以 ABCD 为矩形.

所以点O为BD中点.

又因为E为 DD_1 中点,

所以 BD_1 \square 平面 ACE5 分

(II) 以 D 为坐标原点,分别以DA,DC,DD 为x,y,z 轴建立空间直角坐标

系.6分

则 $A(1,0,0), C(0,1,0), E(0,0,1), B_1(1,1,2)$,

所以
$$\overrightarrow{EB}_1 = (1,1,1)$$
, $\overrightarrow{EA} = (1,0,-1)$, $\overrightarrow{EC} = (0,1,-1)$.

所以
$$\left\{ \overrightarrow{EB_1} \cdot \overrightarrow{EA} = 0, \atop \overrightarrow{EB_1} \cdot \overrightarrow{EC} = 0. \right\}$$

所以
$$\left\{ egin{aligned} EB_1 oldsymbol{\perp} EA, \ EB_1 oldsymbol{\perp} EC. \end{aligned}
ight.$$

(III) 因为 $ABCD - A_1B_1C_1D_1$ 为长方体,

所以BC ⊥ 平面 DCC₁D₁

所以
$$\cos\langle \overrightarrow{EB_1}, \overrightarrow{BC} \rangle = \frac{\overrightarrow{EB_1} \cdot \overrightarrow{BC}}{|\overrightarrow{EB_1}||\overrightarrow{BC}|} = -\frac{\sqrt{3}}{3}$$
.

数学参考答案 第 3 页 (共 7 页)

$$P(X = 600) = 0.4 \times 0.4 = 0.16$$

$$P(X = 650) = C_2^1 \times 0.4 \times 0.1 = 0.08$$

$$P(X = 700) = 0.1 \times 0.1 + C_2^1 \times 0.4 \times 0.1 = 0.09$$

$$P(X = 750) = C_2^1 \times 0.4 \times 0.4 + C_2^1 \times 0.1 \times 0.1 = 0.34$$

$$P(X = 800) = 0.1 \times 0.1 + C_2^1 \times 0.1 \times 0.4 = 0.09$$

$$P(X = 850) = C_2^1 \times 0.1 \times 0.4 = 0.08$$

$$P(X = 900) = 0.4 \times 0.4 = 0.16$$

所以 X 的分布列为

X	600	650	700	750	800	850	900
P	0.16	0.08	0.09	0.34	0.09	0.08	0.16

-----11 分

 $(\iiint) D(x_1) < D(x_2).$

-----14 分

(19) (共14分)

解: (I) 因为 $f(x) = (x+1) \ln x - ax + a$,

由题设知 $f'(1) = \tan \frac{\pi}{4} = 1$,

(II) 设g(x) = f'(x).

 $\Leftrightarrow g'(x) = 0, x = 1.$

因为当 $x \in (0,1)$ 时,g'(x) < 0,g(x)单调递减;

当
$$x \in (1, +\infty)$$
时, $g'(x) > 0$, $g(x)$ 单调递增,

所以g(x)的最小值为g(1) = 2 - a,

因为 f(x) 在 $(0,+\infty)$ 上单调递增,

数学参考答案 第 4 页 (共 7 页)

所以 $f'(x) \ge 0$ 对 $x \in (0, +\infty)$ 成立. 所以 $2-a \ge 0$. 所以a的最大值为2. (Ⅲ) 当 $a \le 2$ 时,f(x) 只有 1 个零点. 当a > 2时, f(x)有3个零点. ……14分 (20) (共14分) **解:**(I)因为椭圆方程 $C: \frac{x^2}{6} + y^2 = 1$, 所以 $a^2 = 6$ $b^2 = 1$. 所以 $c^2 = 5$. 所以离心率 $e = \frac{c}{a} = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{30}}{6}$. (II) (i) $\forall P(x_1, y_1), O(-x_1, -y_1) \ x_1 \neq \pm \sqrt{6}$. 由题设知, $M(\sqrt{6},0)$. 因为 $PO \perp PM$, 所以点 $P(x_1, y_1)$ 在以线段OM为直径的圆上, 所以有 $(x_1 - \frac{\sqrt{6}}{2})^2 + y_1^2 = (\frac{\sqrt{6}}{2})^2$. $\sqrt{\frac{x_1^2}{\epsilon} + y_1^2} = 1$. 解得 $x_1 = \frac{\sqrt{6}}{5}$, $x_1 = \sqrt{6}$ (舍). 所以 $x_1^2 = \frac{6}{25}$, $y_1^2 = \frac{24}{25}$. 所以 $PQ = 2\sqrt{x_1^2 + y_1^2} = \frac{\sqrt{120}}{5} = \frac{2\sqrt{30}}{5}$. $\mathbb{Z}PM = \sqrt{(x_1 - \sqrt{6})^2 + {y_1}^2} = \frac{\sqrt{120}}{5} = \frac{2\sqrt{30}}{5}$ 所以PO = PM, 即 $\triangle POM$ 为等腰三角形. (ii) 法 1: 设 $M(x_2, y_2)$, 且 $x_2 \neq \pm x_1, x_2 \neq \pm \sqrt{6}, x_2 \neq 0$. 记直线 PQ,PM,QM 的斜率分别为 k_{PO},k_{PM},k_{OM} . 所以 $k_{PQ} = \frac{y_1}{x_1}, k_{PM} = \frac{y_2 - y_1}{x_2 - x_1}, k_{QM} = \frac{y_2 + y_1}{x_2 + x_2}.$ -----11 分 因为 $PO \perp PM$, 所以 $k_{PO} \cdot k_{PM} = -1$. ……12分 $X = \sum_{PM} k_{PM} \cdot k_{QM} = \frac{y_2 - y_1}{x_2 - x_1} \cdot \frac{y_2 + y_1}{x_2 + x_1} = \frac{y_2^2 - y_1^2}{x_2^2 - x_1^2}.$

数学参考答案 第 5 页 (共 7 页)

因为
$$\left\{ \frac{x_1^2}{6} + y_1^2 = 1, \\ \frac{x_2^2}{6} + y_2^2 = 1, \right.$$

所以
$$k_{PM} \cdot k_{QM} = -\frac{1}{6}$$
.

(ii) 法 2: 因为点 P 不是椭圆 C 的顶点,

所以直线PQ,PM,QM的斜率都存在且不为0,

设直线 PM 的方程为 $y = kx + m(km \neq 0)$

由 $\Delta > 0$, 所以 $6k^2 + 1 - m^2 > 0$.

设 $P(x_1, y_1), M(x_2, y_2), PM$ 的中点 $T(x_0, y_0)$.

所以
$$x_0 = \frac{x_1 + x_2}{2} = \frac{-6km}{1 + 6k^2}$$

因为OT//QM,

所以
$$k_{QM} = k_{OT} = \frac{y_0}{x_0} = -\frac{1}{6k}$$

又因为 $PQ \perp QM$,

所以
$$k_{PQ} = -\frac{1}{k}$$
.

(21) (共15分)

(II) 因为
$$a_k = k = |x_k - x_{k-1}| \le m_0 - 1$$
,

当
$$m_0$$
 为奇数时,取 $x_i = \begin{cases} \frac{m-i+1}{2}, i \in [0,m-1] \\ \frac{m+i+2}{2}, i \in [0,m-1] \\ 1 \end{cases}$ 有数.

当
$$m_0$$
 为偶数时,取 $x_i = \begin{cases} \frac{m+i+2}{2}, i \in [0,m-1] \mathbb{1}i$ 为偶数,
$$\frac{m-i+1}{2}, i \in [0,m-1] \mathbb{1}i$$
为奇数.

此时k可取 m_0-1 ,所以 $k_{\max}=m_0-1$.

……10分

(III) 设数列 $A: a_1, a_2, ..., a_{2021}$ 满足 $a_i \in [0,1] (i=1,2,...,2021)$,

构造数列 $x_0, x_1, \dots, x_{2021}$ 如下:

根据 x_{i+1} 的定义知道,

当 $x_i \leq 1$ 时,因为 $a_{i+1} \in [0,1]$,所以 $x_{i+1} \in [0,2]$.

当 $x_i > 1$ 时,因为 $a_{i+1} \in [0,1]$,所以 $x_{i+1} \in [0,2]$.

$$\overline{\text{fff}} \mid x_{i+1} - x_i \mid = \begin{cases} \mid x_i + a_{i+1} - x_i \mid, \ x_i \leqslant 1, \\ \mid x_i - a_{i+1} - x_i \mid, \ x_i > 1, \end{cases}$$

所以
$$|x_{i+1} - x_i| = \begin{cases} a_{i+1}, x_i \leq 1, \\ a_{i+1}, x_i > 1, \end{cases}$$

所以任取数列 $A: a_1, a_2, ..., a_{2021}$ 满足 $a_i \in [0,1] (i=1,2,...,2021)$,均可以"嵌入" 区间 [0,2] .