2020-2021 学年北京市高三定位考试

本试卷共 5 页,150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)

- 一、选择题共 10 小题,每小题 4 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。
- (1) 已知集合 $A = \{1,2,3\}, B = \{x \mid x(2-x) \ge 0\}$, 则 $A \cap B =$

 $(A) \{1,2\}$

 $(B) \{1,3\}$

(C) {2,3}

(D) {1,2,3}

(2) $\exists \exists a = \log_3 2, b = 2^{0.1}, c = 3^{\frac{1}{2}}, \exists b \in \mathbb{Z}$

(A) a > b > c

(B) b > a > c

(C) b>c>a

(D) c > b > a

(3) 在复平面内,复数 $z = \sin \theta + i \cos \theta$ 对应的点位于第二象限,则角 θ 的终边在

(A) 第一象限

(B) 第二象限

(C) 第三象限

(D) 第四象限

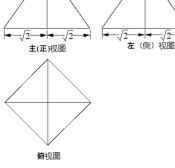
(4) 在 $(x-\sqrt{2})^4$ 的展开式中, x^2 的系数为

(A) 6

(B) 12

(C) 24

(D) 48


(5) 某四棱锥的三视图如图所示,该四棱锥的最长棱为

(A) 2

(B) $2\sqrt{2}$

(C) $\sqrt{6}$

(D) 4

数学试卷 第 1 页 (共 6 页)

- (6) 已知函数 f(x) = |x-1| + a|x+1|,则"a = -1"是"f(x)为奇函数"的
 - (A) 充分而不必要条件
- (B) 必要而不充分条件

(C) 充分必要条件

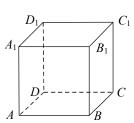
- (D) 既不充分也不必要条件
- (7) 已知直线 l: ax + by 3 = 0 经过点 (a,b-2) ,则原点到点 P(a,b) 的距离可以是
 - (A) 4

(B) 2

(C) $\frac{\sqrt{2}}{2}$

- (D) $\frac{1}{2}$
- (8) 等差数列 $\{a_n\}$ 的前 n 项和为 S_n . 已知 $a_1 = -5$, $a_3 = -1$. 记 $b_n = \frac{S_n}{a_n}$ $(n = 1, 2, \cdots)$,则数列 $\{b_n\}$ 的
 - (A) 最小项为b₃

(B) 最大项为b₃


(C) 最小项为b₄

- (D) 最大项为 b_4
- (9) 抛物线 $W: y^2 = 8x$ 的焦点为F. 对于W上一点P,若W的准线上只存在一个点Q,使得 $\triangle FPQ$ 为等腰三角形,则点P的横坐标为
 - (A) 2

(B) 4

(C) 5

- (D) 6
- (10) 在正方体 $ABCD A_lB_lC_lD_l$ 中,点 P 在正方形 ADD_lA_l 内,且不 在棱上,则

- (A) 在正方形 DCC_1D_1 内一定存在一点 Q ,使得 $PQ \square AC$
- (B) 在正方形 DCC_1D_1 内一定存在一点 Q, 使得 $PQ \perp AC$
- (C) 在正方形 DCC_1D_1 内一定存在一点 Q ,使得平面 PQC_1 \square 平面 ABC
- (D) 在正方形 DCC_1D_1 内一定存在一点 Q,使得 $AC \perp$ 平面 PQC_1

数学试卷 第 2 页 (共 6 页)

第二部分(非选择题 共110分)

—	填空题共5小题。	每小55分	共 25 分
— \	現 工 歌 大 ノ ハ 歌	可小砂り刀。	元 43 川。

- (11) 函数 $f(x) = \sqrt{1-2^x}$ 的定义域为 .
- (12) 已知双曲线 $W: \frac{x^2}{a^2} \frac{y^2}{4} = 1$ (其中a > 0) 的渐近线方程为 $y = \pm x$,则 $a = \underline{\hspace{1cm}}$,W 的右焦点坐标为_____.
- (13) 已知平面向量 $\mathbf{a} = (1,2)$ 与 $\mathbf{b} = (3,x)$ 的夹角为 $\frac{\pi}{4}$,则 $x = \underline{\qquad}$
- (14) 已知函数 $f(x) = \sin 2x$. 若非零实数 a,b,使得 f(x+a) = bf(x) 对 $x \in \mathbb{R}$ 都成立,则满足条件的一组值可以是 a = , b = . (只需写出一组)
- (15) 已知曲线 $W_1: x^2 + y^2 = m^2$, $W_2: x^4 + y^2 = m^2$, 其中m > 0.
 - ① 当m=1时,曲线W,与W,有4个公共点;
 - ② 当0 < m < 1时,曲线W围成的区域面积大于曲线 W_2 围成的区域面积;
 - ③ $\exists m > 1$,曲线 W_1 围成的区域面积等于 W_2 围成的区域面积;
 - ④ $\forall m>0$,曲线 W_1 围成的区域内整点(即横、纵坐标均为整数的点)个数不少于曲线 W_2 围成的区域内整点个数.

其中,所有正确结论的序号是 .

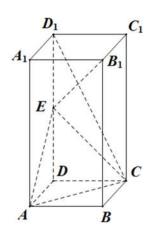
- 三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。
- (16) (本小题 14 分)

在 $\triangle ABC$ 中, $\cos C = -\frac{1}{8}$,再从条件①、条件②这两个条件中选择一个 作为已知,求:

- (I) sin B 的值;
- (II) $\triangle ABC$ 的面积.

条件①: a = 4, c = 6;

条件②: a = 4, $\triangle ABC$ 为等腰三角形.


注:如果选择条件①和条件②分别解答,按第一个解答计分.

数学试卷 第 3 页 (共 6 页)

(17) (本小题共 14 分)

如图,长方体 $ABCD - A_1B_1C_1D_1$ 中, AB = AD = 1, $AA_1 = 2$,点 $E 为 DD_1$ 的中点.

- (I) 求证: BD₁ // 平面 ACE;
- (Ⅱ) 求证: *EB*₁ ⊥ 平面 *ACE*;
- (III) 求二面角 $A-CE-C_1$ 的余弦值.

(18) (本小题 14 分)

某电商平台联合手机厂家共同推出"分期购"服务,付款方式分为四个档次: 1 期、2 期、3 期和 4 期. 记随机变量 x_1 、 x_2 分别表示顾客购买 H 型手机和 V 型手机的分期付款期数,根据以往销售数据统计, x_1 和 x_2 的分布列如下表所示:

x_1	1	2	3	4
P	0.1	0.4	0.4	0.1
x_2	1	2	3	4
P	0.4	0.1	0.1	0.4

- (I)若某位顾客购买H型和V手机各一部,求这位顾客两种手机都选择分4期付款的概率;
- (Ⅱ)电商平台销售一部 V型手机,若顾客选择分1期付款,则电商平台获得的利润为300元;若顾客选择分2期付款,则电商平台获得的利润为350元;若顾客选择分3期付款,则电商平台获得的利润为400元;若顾客选择分4期付款,则电商平台获得的利润为450元.记电商平台销售两部 V型手机所获得的利润为 X(单位:元),求 X 的分布列;
- (III) 比较 $D(x_1)$ 与 $D(x_2)$ 的大小. (**只需写出结论**)

数学试卷 第 4 页 (共 6 页)

(19) (本小题 14 分)

已知函数 $f(x) = (x+1)\ln x - ax + a$.

- (I) 若曲线 y = f(x) 在点 (1, f(1)) 处的切线倾斜角为 $\frac{\pi}{4}$, 求 a 的值;
- (II) 若 f(x) 在 $(0,+\infty)$ 上单调递增,求 a 的最大值;
- (III) 请直接写出 f(x) 的零点个数.
- (20) (本小题 14 分)

已知椭圆
$$C: \frac{x^2}{6} + y^2 = 1$$
.

- (I) 求椭圆C 的离心率;
- (II) 经过原点的直线与椭圆 C 交于 P,Q 两点,直线 PM 与直线 PQ 垂直,且与椭圆 C 的另一个交点为 M .
 - (i) 当点M为椭圆C的右顶点时,求证: $\triangle PQM$ 为等腰三角形;
 - (ii) 当点 P 不是椭圆 C 的顶点时,求直线 PQ 和直线 QM 的斜率之比.
- (21) (本小题 15 分)

对于给定的区间 [m,t] 和非负数列 $A: a_1, a_2, \dots, a_k$,若存在 x_0, x_1, \dots, x_k ,使 $|x_i - x_{i-1}| = a_i$, $i = 1, 2, \dots, k$ 成立,其中 $x_i \in [m,t]$, $i = 0, 1, \dots, k$,则称数列 A 可 "嵌入"区间 [m,t] .

- (I)分别指出下列数列是否可"嵌入"区间[0,2];
 - \bigcirc $A_1:2,3;$ \bigcirc $A_2:1,0,1.$
- (II) 已知数列 A 满足 $a_n = n(n = 1, 2, ..., k)$,若数列 A 可"嵌入"区间 $[1, m_0]$ $(m_0 \in \mathbb{N}^*)$,求数列 A 的项数 k 的最大值;
- (Ⅲ) 求证: 任取数列 $A: a_1, a_2, ..., a_{2021}$ 满足 $a_i \in [0,1] (i=1,2,...,2021)$,均可以"嵌入" 区间 [0,2].

(考生务必将答案答在答题卡上,在试卷上作答无效) 数学试卷 第 5 页 (共 6 页)