

中学生标准学术能力诊断性测试 2021 年 3 月测试

理科数学试卷 (一卷)

本试卷共150分,考试时间120分钟。

一、选择题: 本题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符 合题目要求的.

1.	己知抛物线	$C: y^2$	=2x,	则抛物线 C	的焦点	点到准线的	距离为
----	-------	----------	------	----------	-----	-------	-----

- A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. 1

D. 2

- 2. 已知集合 $M = \{x | x^2 5x + 4 \le 0\}, N = \{x | 2^x > 4\}$,则
 - A. $M \cup N = \mathbf{R}$

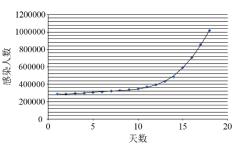
B. $M \cap N = \{x | 2 < x < 4\}$

- C. $M \cup N = \{x | x > 2\}$ D. $M \cap N = \{x | 2 < x \le 4\}$
- 3. 已知等差数列 $\{a_n\}$ 满足: $a_2 + a_5 + a_8 = 15$, 则 $a_3 + a_7 =$
 - A. 3

- B. 5
- c. 7

- D. 10
- 4. 己知向量 $\overrightarrow{OA} = (-1,2), \overrightarrow{OB} = (3,m)$. 若 $\overrightarrow{OA} \perp \overrightarrow{AB}$,则实数m的值为

- A. $\frac{3}{2}$ B. 4 C. $-\frac{3}{2}$
- 5. 某个国家某种病毒传播的中期, 感染人数y和时间x(单 程类型中最适宜作为感染人数 y 和时间 x 的回归方程类



型的是

A. y = a + bx

B. $y = a + be^x$

(第5题图)

C. $v = a + b \ln x$

- D. $v = a + b\sqrt{x}$
- 6. 已知 \triangle *ABC* 的三个内角 *A*, *B*, *C* 的对边边长分别为 *a*, *b*, *c* ,若 2a = 3b ,A = 2B ,则 $\cos B =$

 - A. $\frac{2}{3}$ B. $\frac{3}{4}$ C. $\frac{4}{5}$

第1页 共4页

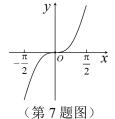
7. 已知函数
$$f(x)$$
 的局部图象如图所示,则下列选项中可能是函数 $f(x)$ 解析式的是

$$A. \quad y = x^2 \cos x$$

B.
$$y = x \cos x$$

$$C. \quad y = x^2 \sin x$$

D.
$$y = x \sin x$$



8. 已知实数
$$x, y$$
 满足
$$\begin{cases} x \le 2, \\ x + y \ge 2, \quad \bigcup \sqrt{x^2 + y^2} \end{cases}$$
 的最大值为
$$x + 2y \le 4,$$

- A. 2 B. $\sqrt{5}$

D. 5

- A. 27
- В. 35
- C. -8

D. -43

10. 已知函数
$$f(x) = \begin{cases} \cos \frac{\pi x}{2} - 1, x \ge 0, \\ -\log_a(-x), x < 0, \end{cases}$$
 ($a > 0$ 且 $a \ne 1$),若函数图象上关于原点对称的点至少

有3对,则实数a的取值范围是

A.
$$\left(0, \frac{\sqrt{6}}{6}\right)$$

B.
$$\left(\frac{\sqrt{6}}{6},1\right)$$

A.
$$\left(0, \frac{\sqrt{6}}{6}\right)$$
 B. $\left(\frac{\sqrt{6}}{6}, 1\right)$ C. $\left(0, \frac{\sqrt{5}}{5}\right)$ D. $\left(\frac{\sqrt{5}}{5}, 1\right)$

$$O. \left(\frac{\sqrt{5}}{5}, 1\right)$$

11. 在棱长为 $4\sqrt{2}$ 的正四面体 A-BCD 中,点 E,F 分别为直线 AB,CD 上的动点,点 P 为 EF 中

点,Q为正四面体中心(满足QA=QB=QC=QD),若 $PQ=\sqrt{2}$,则EF长度为

- A. $2\sqrt{6}$ B. $\sqrt{6}$ C. 3

- D. 2
- 12. 已知实数 a,b,c 满足 $a+b+c=1,a^2+b^2+c^2=1$,则 $a^3+b^3+c^3$ 的最小值是
 - A. $\frac{1}{3}$ B. $\frac{5}{9}$ C. $\frac{7}{9}$

D. 1

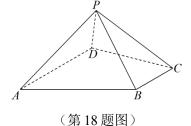
二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13.
$$\frac{1-i}{1+2i}$$
 (其中 i 是虚数单位)的共轭复数为_____.

14. 已知函数
$$f(x) = \cos x (\sqrt{3} \sin x - \cos x) - \frac{1}{2}, x \in [0, \pi]$$
,则函数 $f(x)$ 的单调递增区间为

- 15. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的焦点为 F_1, F_2, P 是双曲线上一点,且 $\angle F_1 P F_2 = \frac{\pi}{3}$. 若 $\triangle F_1PF_2$ 的外接圆和内切圆的半径分别为 R,r,且 R=4r,则双曲线的离心率为______.
- 16. 已知函数 $f(x) = \frac{1}{a^x 1} + \frac{1}{2}$ (a > 0且 $a \ne 1$), $g(x) = \frac{1 x}{1 + x}$. 若对任意的 $x \in [1, +\infty)$ 不等式 f(x)g(x-1) < 2-f(x) 恒成立,则实数 a 的取值范围为_____.
- 三、解答题: 本题共 6 小题, 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为 必考题,每个试题考生都必须作答. 第22、23 题为选考题,考生根据要求作答.
- (一) 必考题: 共60分.
- 17. (12 分) 已知数列 $\{a_n\}$ 的前n项和 S_n , 且 $S_n a_n = (n-1)^2$, $b_n = \frac{2^{a_n}}{S^2}$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 求数列 $\{b_n\}$ 的最小项的值.
- 18. (12 分) 如图, 四棱锥 *P ABCD* 中, *AD || BC*, 平面 *PAD* 上 平面 PBC. 若 $\angle BCD = \frac{\pi}{3}$, $\angle PBC = \frac{\pi}{2}$, AD = CD = 2, BC = 1.

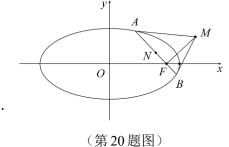
 - (1) 证明: *PB* ⊥ *PA*;
 - (2) 若 PA = 2PC, 求二面角 P BC A的余弦值.



19. (12分)袋中有大小完全相同的7个白球,3个黑球.

- (1) 若甲一次性抽取 4 个球, 求甲至多抽到一个黑球的概率;
 - (2) 若乙共抽取 4 次,每次抽取 1 个球,记录好球的颜色后再放回袋子中,等待下次抽取,且 规定抽到白球得10分,抽到黑球得20分,求乙总得分X的分布列和数学期望.
- 20. (12 分) 如图,已知椭圆 $C: \frac{x^2}{5} + y^2 = 1$ 的右焦点为F,原点为O,椭圆的动弦 AB 过焦点F且不垂直于坐标轴,弦 AB 的中点为 N ,椭圆 C 在点 A A B 处的两切线的交点为 M .

- (1) 求证: *O*,*M*,*N* 三点共线;
- (2) 求 $\frac{|AB|\cdot|FM|}{|FN|}$ 的最小值.



- 21. (12 分) 已知 $f(x) = \ln(x+1) ax$ 在 $(0,+\infty)$ 有零点 x_0 .
 - (1) 求实数a的取值范围:
 - (2) 求证: $2\left(\frac{1}{a}-1\right) < x_0 < e^{\frac{1}{a}}-1$.
- (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计 分. 作答时请写清题号.
- 22. (10分) [选修 4-4: 坐标系与参数方程]

在平面直角坐标系 xOy 中,曲线 C_1 的参数方程为 $\begin{cases} x = 2 + \frac{4n}{1+k^2}, \\ v = \frac{2(1-k^2)}{2}, \end{cases}$ (k 为参数). 以原点 O 为极

- 点, x 轴的非负半轴为极轴建立极坐标系, 曲线 C_2 的极坐标方程为 $\rho = \frac{2}{\sqrt{3+\cos^2\theta \sin^2\theta}}$
- (1) 直接写出曲线C2 的普通方程;
- (2) 设A是曲线 C_1 上的动点,B是曲线 C_2 上的动点,求|AB|的最大值.
- 23. (10分) [选修 4-5: 不等式选讲]

已知 a,b,c 均为正数, 函数 f(x) = |x-a| + |x+b| + c 的最小值为 1.

- (1) 求 $2a^2 + 3b^2 + 6c^2$ 的最小值;
- (2) 求证: $\sqrt{a^2 + ab + b^2} + \sqrt{b^2 + bc + c^2} + \sqrt{c^2 + ca + a^2} > \frac{3}{2}$.