

中学生标准学术能力诊断性测试 2021 年 3 月测试

理科数学试卷 (一卷)参考答案

一、选择题: 本题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

1	2	3	4	5	6	7	8	9	10	11	12
С	D	D	В	В	В	С	В	A	A	A	В

二、填空题:本题共4小题,每题5分,共20分.

13.
$$-\frac{1}{5} + \frac{3}{5}i$$

14.
$$\left[0,\frac{\pi}{3}\right], \left[\frac{5\pi}{6},\pi\right]$$

15.
$$\frac{2}{7}\sqrt{21}$$

16.
$$a \in (0,1) \cup (3,+\infty)$$

三、解答题: 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考题, 每个试题考生都必须作答. 第 22、23 题为选考题, 考生根据要求作答.

(一) 必考题: 共60分.

17. 解:

(2) 易知
$$b_n > 0$$
, $b_n = \frac{2^{2n-1}}{n^4}$, $b_{n+1} = \frac{2^{2n+1}}{(n+1)^4}$,

$$\therefore \frac{b_{n+1}}{b_n} = \frac{2^2 n^4}{(n+1)^4} = \left(\frac{\sqrt{2}n}{n+1}\right)^4 \dots 8 \ \%$$

经检验 $a_1 = 1$ 适合, $\therefore a_n = 2n - 1 \dots 6$ 分

$$\stackrel{\text{\psi}}{=} \frac{\sqrt{2}n}{n+1} > 1$$
时, $n > \sqrt{2} + 1$,

所以当 $1 \le n < 3$ 时, $b_n > b_{n+1}$,当 $n \ge 3$ 时, $b_n < b_{n+1}$10分

18. 解:

(1) 证明: 设平面 $PAD \cap \text{平面 } PBC = l$,

:: AD//BC, BC⊄ 平面 PAD, AD⊂ 平面 PAD, :: BC// 平面 PAD, ...

$$\therefore$$
 ∠PBC = $\frac{\pi}{2}$, ∴ PB \perp BC, ∴ PB \perp l4

又因为平面 PAD \bot 平面 PBC , :: PB \bot 平面 PAD ,可得 PB \bot PA ,得证.

.....6 分

(2) 解:连结BD,在 $\triangle BCD$ 中,易得 $BD = \sqrt{3}$, $\therefore BD \perp BC$,

又:: $PB \perp BC$,:: $\angle PBD$ 为二面角 P - BC - A 的平面角.......8 分

以D为原点,分别以 \overrightarrow{DA} , \overrightarrow{DB} 的方向为x轴,y轴正方向,建立空间直角坐标系,

$$A(2,0,0)$$
, $B(0,\sqrt{3},0)$, $C(-1,\sqrt{3},0)$,

 $:: BC \perp BD, BC \perp PD, BD \cap PD = D, :: BC \perp$ 平面 PBD ,

所以平面 PBD 1 平面 ABCD9 分

可设P(0, y, z). 由PA = 2PC可得:

$$(0-2)^2 + y^2 + z^2 = 4(0+1)^2 + 4(y-\sqrt{3})^2 + 4z^2$$
,

化简可得: $3v^2 - 8\sqrt{3}v + 3z^2 + 12 = 0$...①

由 (1) 知 $PB \perp PA$, \therefore (-2, y, z)·(0, y - $\sqrt{3}$, z) = 0, 化简得 $y^2 - \sqrt{3}y + z^2 = 0$...②

$$\therefore \sin \angle PBD = \frac{z}{PB} = \frac{2\sqrt{5}}{5}, \quad \text{III} \cos \angle PBD = \frac{\sqrt{5}}{5} \dots 12 \text{ } \text{?}$$

19. 解:

(1) 甲是无放回地抽取, 甲至多抽到一个黑球: 基本事件{没有抽到黑球, 抽到一个黑球},

$$\therefore P\{ 没有抽到黑球 \} = \frac{C_7^4}{C_4^4} = \frac{35}{210} = \frac{1}{6} \dots 1$$
分

(2) 解法一:

乙是有放回地抽取,抽到白球得10分,抽到黑球得20分,

所以抽取 4 次 {4 个白球, 3 个白球 1 个黑球, 2 个白球 2 个黑球, 1 个白球 3 个黑球, 4 个黑球},

对应的 X 取值有 $\{40,50,60,70,80\}$; 而每次抽到白球、黑球的概率分别为 $\frac{7}{10}$, $\frac{3}{10}$,

设 4 次取球取得黑球次数为r,则r的可能取值 0,1,2,3,46 分

$$\therefore P(X = 40 + 10r) = C_4^r \left(\frac{7}{10}\right)^{4-r} \left(\frac{3}{10}\right)^r$$
,即可得分布列如下:

X	40	50	60	70	80
P	2401	4116	2646	756	81
	10000	10000	10000	10000	10000

.....10 分

$$\therefore E(X) = 40 \times \frac{2401}{10000} + 50 \times \frac{4116}{10000} + 60 \times \frac{2646}{10000} + 70 \times \frac{756}{10000} + 80 \times \frac{81}{10000} = 52$$
......12 $\frac{1}{10000}$

解法二:

设 4 次取球取得黑球数为 Y ,则 X = 40 + 10Y ,且 $Y \sim B\left(4, \frac{3}{10}\right)$ ………8 分

$$EX = 40 + 10EY = 40 + 10 \times 4 \times \frac{3}{10} = 52 \dots 12 \text{ }$$

20. 解:

(1) 椭圆的右焦点F(2,0),

设 AB 所在的直线的方程为 y = k(x-2) ($k \neq 0$), 且 $A(x_1, y_1), B(x_2, y_2)$,

.....1 分

联立方程组
$$\begin{cases} y = k(x-2), \\ \frac{x^2}{5} + y^2 = 1, \end{cases}$$
 可得: $(5k^2 + 1)x^2 - 20k^2x + (20k^2 - 5) = 0$

......3 分

则
$$x_1 + x_2 = \frac{20k^2}{5k^2 + 1}$$
, $x_1x_2 = \frac{20k^2 - 5}{5k^2 + 1}$, 点 N 的坐标为 $\left(\frac{10k^2}{5k^2 + 1}, \frac{-2k}{5k^2 + 1}\right)$,

椭圆 C在 A, B 处的切线方程分别为 $\frac{x_1x}{5} + y_1y = 1, \frac{x_2x}{5} + y_2y = 1$,

联立方程组
$$\begin{cases} \frac{x_1 x}{5} + y_1 y = 1, \\ \frac{x_2 x}{5} + y_2 y = 1, \end{cases}$$

解得点
$$M$$
的坐标为 $\left(\frac{5(y_2-y_1)}{x_1y_2-x_2y_1}, \frac{x_1-x_2}{x_1y_2-x_2y_1}\right), M\left(\frac{5}{2}, -\frac{1}{2k}\right)$

所以点M 的坐标满足直线ON 的方程 $y = -\frac{1}{5k}x$,故O, M, N 三点共线

7 分

$$|FM| = \sqrt{1 + \frac{1}{k^2}} \left| \frac{5}{2} - 2 \right| = \frac{\sqrt{1 + k^2}}{2|k|} \dots 9$$

$$|FN| = \sqrt{1+k^2} \left| \frac{10k^2}{5k^2+1} - 2 \right| = \frac{2\sqrt{1+k^2}}{5k^2+1} \dots 10$$

$$\therefore \frac{|AB| \cdot |FM|}{|FN|} = \frac{\sqrt{5}}{2} \frac{k^2 + 1}{|k|} \ge \sqrt{5} ,$$

当且仅当|k|=1时,等号成立.....12分

21. 解:

①当
$$a \le 0$$
时, $f'(x) = \frac{1}{x+1} - a \ge 0$ 在 $x \in (0, +\infty)$ 时恒成立,

$$\therefore f(x) = \ln(x+1) - ax$$
 在 $(0,+\infty)$ 上递增, $\therefore f(x) > f(0) = 0$, 不符合题意,

.....2 分

②
$$\stackrel{\text{def}}{=} 0 < a < 1$$
 $\stackrel{\text{def}}{=} f'(x) = \frac{1}{x+1} - a \ge 0 \Leftrightarrow 0 < x \le \frac{1}{a} - 1$,

$$\therefore f(x) = \ln(x+1) - ax \, \left(\frac{1}{a} - 1 \right)$$
上递增,在 $\left(\frac{1}{a} - 1, +\infty \right)$ 上递减,

③当
$$a \ge 1$$
时, $f'(x) = \frac{1}{x+1} - a < 0$ 在 $x \in (0, +\infty)$ 时恒成立,

$$\therefore f(x) = \ln(x+1) - ax$$
 在 $(0,+\infty)$ 上递减, $\therefore f(x) < f(0) = 0$, 不符合题意.

6分

综上所述,a的取值范围是(0,1).

(2) 由 (1) 知
$$0 < a < 1$$
, $\therefore a = \frac{\ln(x_0 + 1)}{x_0}$,

设
$$g(x) = \ln(x+1) - \frac{2x}{x+2}, x > 0$$
,

$$g'(x) = \frac{1}{x+1} - \frac{4}{(x+2)^2} = \frac{x^2}{(x+1)(x+2)^2} \ge 0$$
,

$$g(x) = \ln(x+1) - \frac{2x}{x+2} > g(0) = 0$$
, $\exists x_0 > 2\left(\frac{1}{a} - 1\right) \dots 9$

另一方面: 证法一: 要证明 $x_0 < e^{\frac{1}{a}} - 1$, 只要证明 $\ln(x_0 + 1) < \frac{1}{a}$,

即证明
$$\ln(x_0+1) < \frac{x_0}{\ln(x_0+1)}$$
10 分

$$\because \ln(x_0+1) > 0, \quad \text{In } \ln(x_0+1) < \sqrt{x_0},$$

设
$$h(x) = \ln(x+1) - \sqrt{x}, x > 0$$

则
$$h'(x) = \frac{1}{x+1} - \frac{1}{2\sqrt{x}} < 0$$
,

证法二: 因为在
$$f(x)$$
 在 $\left(\frac{1}{a}-1,+\infty\right)$ 上递减,且 $e^{\frac{1}{a}}-1>\frac{1}{a}-1,x_0>\frac{1}{a}-1$,

要证明
$$x_0 < e^{\frac{1}{a}} - 1$$
,只要证明 $f(x_0) > f\left(e^{\frac{1}{a}} - 1\right)$,即证 $\frac{1}{a} - ae^{\frac{1}{a}} + a < 0$

.....10 分

$$\stackrel{\text{in}}{\approx} \varphi(x) = \frac{x^2 + 1}{e^x}, x > 1, \varphi'(x) = \frac{-(x - 1)^2}{e^x} < 0,$$

$$\therefore \varphi(x) = \frac{x^2 + 1}{e^x} < \varphi(1) = \frac{2}{e} < 1,$$

所以当
$$x > 1$$
时, $e^x > x^2 + 1$,

即当
$$0 < a < 1$$
时, $e^{\frac{1}{a}} > \frac{1}{a^2} + 1$,

$$\therefore x_0 < e^{\frac{1}{a}} - 1 \dots 12 \ \%$$

- (二)选考题:共10分.请考生在第22、23题中任选一题.作答如果多做,则按所做的第一题计分.
- 22. 解:

(2) 由曲线
$$C_1$$
 的参数方程为
$$\begin{cases} x = 2 + \frac{4k}{1+k^2}, \\ y = \frac{2(1-k^2)}{1+k^2}, \end{cases} (k 为参数),$$

得曲线 C_1 的普通方程为 $(x-2)^2 + y^2 = 4$,

它是一个以C(2,0)为圆心,半径等于2的圆,

.....4 分

曲线
$$C_2$$
 的极坐标方程为 $\rho = \frac{2}{\sqrt{3 + \cos 2\theta - \sin^2 \theta}}$.

则曲线
$$C_2$$
的参数方程为:
$$\begin{cases} x = \cos \beta, \\ y = 2\sin \beta, \end{cases} (\beta \text{ 为参数}),$$

$$:: A$$
 是曲线 C_1 上的点, B 是曲线 C_2 上的点, $:: \left|AB\right|_{\max} = \left|BC\right|_{\max} + 2$

.....8 ታ

设
$$B(\cos\beta, 2\sin\beta)$$
 ,则 $|BC| = \sqrt{(\cos\beta - 2)^2 + 4\sin^2\beta} = \sqrt{-3\cos^2\beta - 4\cos\beta + 8}$
 $= \sqrt{-3\left(\cos\beta + \frac{2}{3}\right)^2 + \frac{28}{3}}$,

23. 解:

(1)
$$f(x) = |x-a| + |x+b| + c \ge |x-a-x-b| + c = |a+b| + c = a+b+c=1$$

.....2 分

$$\therefore 2a^2 + 3b^2 + 6c^2 \ge 1$$
,即 $2a^2 + 3b^2 + 6c^2$ 的最小值为 1......5 分

(2)
$$\because \sqrt{a^2 + ab + b^2} = \sqrt{\left(a + \frac{b}{2}\right)^2 + \frac{3}{4}b^2} \ge \frac{\sqrt{2}}{2} \left(a + \frac{b}{2} + \frac{\sqrt{3}b}{2}\right) \dots 7$$