

## 中学生标准学术能力诊断性测试 2021 年 1 月测试

## 文科数学试卷 (一卷)



本试卷共150分,考试时间120分钟。

一、选择题: 本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符 合题目要求的.

- 1. 己知集合  $A = \{1,2,3\}, B = \{4,5,6,7,8\}, C = \{y | y = 2x, x \in A\}, 则 B \cap C = \{x | y = 2x, x \in A\},$ 
  - A.  $\{4,6\}$
- B. {4,8} C. {6,8}
- D.  $\{4,6,8\}$
- 2. 已知  $F_1$  和  $F_2$  是双曲线  $y^2 \frac{x^2}{8} = 1$  的两个焦点, $|F_1F_2| = 1$ 
  - A.  $\sqrt{7}$

- B. 3
- C.  $2\sqrt{7}$
- D. 6
- 3. 有两条不同的直线 m,n,以及两个不同的平面  $\alpha,\beta$ ,下列说法正确是
  - A. 若 $m//\alpha$ , $\alpha$ // $\beta$ ,则m// $\beta$
- C. 若 $m \perp \alpha, n//\alpha$ ,则 $m \perp n$
- D. 若 $\alpha \perp \beta, m \perp \alpha, n//\beta$ , 则 $m \perp n$
- 4. 己知h > 0,则"a > b + 1"是" $\sqrt{a} > \sqrt{h} + 1$ "的
  - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 5. 正项等比数列  $\{a_n\}$ 中,  $a_2 = 1, a_3 \cdot a_5 = 16$ ,则  $\frac{a_2 + a_4}{a_1 + a_2}$  的值是
  - A. 2

C. 8

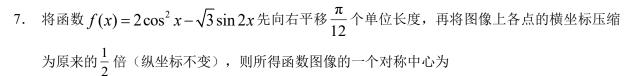
- D. 16

- 6. 某几何体的三视图如图所示,则该几何体的表面积是
  - A.  $\frac{15}{4}$

C. 6

- B.  $6 + 2\sqrt{6}$
- D.  $4+2\sqrt{6}$
- (第6 题图)

第1页 共4页



- A.  $(\frac{\pi}{12},0)$  B.  $(-\frac{\pi}{12},1)$  C.  $(-\frac{\pi}{12},0)$  D.  $(\frac{\pi}{12},1)$
- 8. 已知 $|\vec{a}| = |\vec{b}| = 1$ ,向量 $\vec{c}$ 满足 $|\vec{c} \vec{b} + \vec{a}| = |\vec{a} + \vec{b}|$ ,则 $|\vec{c}|$ 的最大值为
- B.  $2\sqrt{2}$  C. 3

- D.  $3\sqrt{2}$
- 9. 四面体 ABCD, AB, AC, AD 两两垂直, P, Q, R 分别是 AB, AC, AD 上的点, 且 AP < AQ < AR, 设二面角 A-PQ-R, A-QR-P, A-RP-Q 的平面角分别为  $\alpha$ ,  $\beta$ ,  $\gamma$ , 则
  - A.  $\alpha > \beta > \gamma$  B.  $\alpha > \gamma > \beta$  C.  $\beta > \gamma > \alpha$  D.  $\gamma > \beta > \alpha$

- 10. 已知  $a,b,c \in \left[\frac{1}{2},1\right]$ ,则  $\frac{a^2+2b^2+c^2}{ab+bc}$  的取值范围是

  - A. [2,3] B.  $\left|\frac{5}{2},3\right|$  C.  $\left|2,\frac{5}{2}\right|$  D. [1,3]
- 11. 已知椭圆  $\frac{x^2}{4} + \frac{y^2}{b^2} = 1(0 < b < 2)$ ,  $F_1, F_2$  分别为椭圆的左、右焦点, P 为椭圆上一点, M(2,1),  $MF_1$  平分角  $\angle PF_1F_2$  ,则  $\Delta MPF_1$  与  $\Delta MPF_2$  的面积之和为

- A. 1 B.  $\frac{3}{2}$  C. 2
- 12. 数列 $\{a_n\}$ 满足 $a_1 = a, a_{n+1} = a_n^2 + a(a \in \mathbf{R})$ ,且 $|a_n| \le 2$ ,则a的取值范围是

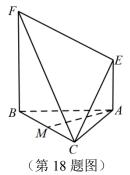
- A. [-2,2] B. [-2,0] C.  $\left|0,\frac{1}{4}\right|$  D.  $\left|-2,\frac{1}{4}\right|$
- 二、填空题:本题共4小题,每小题5分,共20分.
- 13. 已知复数 z 满足1+2zi=i , 其中 i 是虚数单位,则|z|=\_\_\_\_\_.
- 14. 设 $m \in \mathbb{R}$ , 过定点 A 的动直线 x + my = 0 与过定点 B 的动直线 mx y 2m + 4 = 0 交于点 P(x,y),则 $|PA|\cdot|PB|$ 的最大值是 .



- 15. 已知  $\triangle ABC$  内角 A,B,C 所对的边分别为 a,b,c ,线段 BC 上的点 D 满足 AD=CD ,  $\tan B = \frac{12}{5}, c = 14, BD = 13$ ,则  $\tan C = \underline{\hspace{1cm}}$
- 16.  $f(x)=x^4-6x^3+rx^2-6x+1$ 在(0,3]有且仅有三个零点,则实数r的取值范围是\_\_\_\_\_
- 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

## (一) 必考题: 共60分.

- 17.  $(12 \, \beta)$  甲、乙、丙三人各打靶一次,若甲打中的概率为 $\frac{1}{3}$ ,乙、丙打中的概率均为 $\frac{t}{4}$ (1 < t < 4),若甲、乙、丙都打中的概率是 $\frac{9}{48}$ .
  - (1) 求t的值;
  - (2) 设 $\xi$ 表示甲、乙两人中中靶的人数,求 $\xi$ 的数学期望.
- 18. (12 分) 在如图所示的几何体中,EA 上平面 ABC,FB 上平面 ABC,  $BA \perp AC$ ,且 2AB = 2AC = 2AE = BF,M 是 BC 的中点.
  - (1) 求证:  $AM \perp FC$ ;
  - (2) 求CE与平面FBC所成角.



- 19. (12 分) 已知数列  $\{a_n\}$ 的各项均为正数,其前n项和为 $S_n$ ,且 $a_n + \frac{1}{2} = \sqrt{2S_n + \frac{1}{4}}, n \in N^*$ .
  - (1) 求数列 $\{a_n\}$ 的通项公式;
  - (2) 记  $b_n = \frac{a_{2n+1}}{a_{2n-1}} + \frac{a_{2n-1}}{a_{2n+1}} \left( n \in N^* \right)$ , 数列  $\left\{ b_n \right\}$ 的前 n 项和为  $T_n$ ,若对任意正整数 n,都有  $T_n \geq 2n + m$ ,求实数 m 的取值范围.
- 20. (12 分)已知抛物线  $y^2=2px$ ,焦点  $F\left(\frac{p}{2},0\right)$ ,抛物线上动点 A满足到抛物线内定点 P(1,1) 的 距离与到焦点 F 的距离和 |PA|+|AF| 的最小值为 2 .

- (1) 求抛物线的方程;
- (2) 以 PA 为边作平行四边形 PABC ,使得 B,C 均在抛物线上,求平行四边形 PABC 的面积 S 的最小值.
- 21. (12 分) 设函数  $f(x) = ax^2 x \ln x$ , 其中  $a \in \mathbb{R}$ .
  - (1) 当a = 1时,求曲线y = f(x)在点(1, f(1))处的切线方程;
  - (2) 若关于x的方程f'(x) = -1在区间 $(0,+\infty)$ 上有两个不同的根 $x_1,x_2$ .
    - (i) 求a的取值范围;
    - (ii) 证明:  $x_1x_2 > e^2$ .
- (二)选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答. 如果多做,则按所做的第一题计分. 作答时请写清题号.
- 22. (10分)[选修4-4: 极坐标与参数方程]

在直角坐标系 xOy 中,已知直线 l 过点 P(-1,-2) ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为  $\rho-\rho\cos^2\theta-8\cos\theta=0$  .

- (1) 求C的直角坐标方程;
- (2) 若l与C交于A,B两点,求 $\frac{|AB|^2}{|PA|^2 \cdot |PB|^2}$ 的最大值.
- 23. (10分)[选修 4—5:不等式选讲]

已知不等式 $|x-5|+|x-7| \le 4$ 的解集为[a,b].

- (1) 求*a*,*b*的值;
- (2) 若x > 0, y > 0, bx + 3y = a, 求 $\frac{1}{2x} + \frac{1}{y}$ 的最小值.

第4页 共4页

第3页 共4页