椭圆

一、单选题

1. 已知椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{4} = 1(a > 2)$, 直线l: y = x - 2过C的一个焦点,则C的离心率为

B. $\frac{1}{3}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2\sqrt{2}}{2}$

2. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{25} = 1(a > 5)$ 的两个焦点为 F_1, F_2 ,且 $|F_1F_2| = 10$,弦MN 过点 F_2 ,则 ΔF_1MN 的周长为

A. 10

C. $10\sqrt{2}$

3. 已知椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 经过点 $(1, \frac{\sqrt{3}}{2}b)$,且C的离心率为 $\frac{1}{2}$,则C的方程是()

A. $\frac{x^2}{4} + \frac{y^2}{2} = 1$

B. $\frac{x^2}{8} + \frac{y^2}{6} = 1$

C. $\frac{x^2}{4} + \frac{y^2}{2} = 1$

D. $\frac{x^2}{Q} + \frac{y^2}{A} = 1$

4. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是

A. $\frac{4}{5}$ B. $\frac{3}{5}$ C. $\frac{2}{5}$

5. 已知椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{4} = 1(a > 0)$, F_1 , F_2 分别为椭圆C的左、右焦点, P为椭圆C上任一点, 若

 $|PF_1| + |PF_2| = 4\sqrt{2}$, $||F_1F_2|| =$

A. 4

B. 23

6. 已知 F_1 , F_2 分别为椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右焦点,过原点O且倾斜角为60°的直线l与椭圆

C的一个交点为 M,若 $MF_1 \perp MF_2$,则椭圆的离心率为(**维力高中数学** A 4 2 $\sqrt{3}$ B. $4-2\sqrt{3}$ C. $1-\sqrt{3}$

7. 已知 F_1 , F_2 是椭圆C: $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 的两个焦点,点M 在C上,则 $|MF_1| \cdot |MF_2|$ 的最大值为(

A. 13

B. 12

8. 已知椭圆 Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$, 直线x + y = 1与椭圆 Γ 交于M, N两点,以线段MN为直径的圆 经过原点.若椭圆 Γ 的离心率不大于 $\frac{\sqrt{3}}{2}$,则a的取值范围为(

A. $\left(0,\sqrt{10}\right]$

B. $\left(\frac{\sqrt{2}}{2}, \sqrt{10}\right)$ C. $\left(1, \frac{\sqrt{5}}{2}\right)$ D. $\left(1, \frac{\sqrt{10}}{2}\right)$

9. 设B是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的上顶点,若C上的任意一点P都满足 $|PB| \le 2b$,则C的离心率的 取值范围是(

- A. $\left| \frac{\sqrt{2}}{2}, 1 \right|$
- B. $\left\lceil \frac{1}{2}, 1 \right\rceil$ C. $\left\lceil 0, \frac{\sqrt{2}}{2} \right\rceil$ D. $\left\lceil 0, \frac{1}{2} \right\rceil$

10. 古希腊数学家阿基米德用"逼近法"得到椭圆面积的 4 倍除以圆周率等于椭圆的长轴长与短轴长的

积. 已知椭圆 C的中心在原点,焦点 F_1 , F_2 在 y 轴上,其面积为 $8\sqrt{3}\pi$,过点 F_1 的直线 I 与椭圆 C 交于点

A, B且 $\triangle F_2AB$ 的周长为 32, 则椭圆 C的方程为 (

A. $\frac{x^2}{64} + \frac{y^2}{2} = 1$

B. $\frac{y^2}{64} + \frac{x^2}{2} = 1$

C. $\frac{x^2}{64} + \frac{y^2}{48} = 1$

D. $\frac{y^2}{64} + \frac{x^2}{48} = 1$

11. 设 F_1 , F_2 分别是椭圆E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点,若椭圆E上存在点P满足 $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = c^2$,

则椭圆 E 离心率的取值范围为(

- A. $\left(0, \frac{\sqrt{3}}{3}\right]$ B. $\left[\frac{\sqrt{2}}{2}, 1\right]$ C. $\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{2}}{2}\right)$ D. $\left[\frac{\sqrt{3}}{3}, \frac{\sqrt{2}}{2}\right]$

12. P 为椭圆 $\frac{x^2}{100} + \frac{y^2}{01} = 1$ 上的一个动点, M, N 分别为圆 $C: (x-3)^2 + y^2 = 1$ 与圆

 $D:(x+3)^2+y^2=r^2(0< r<5)$ 上的动点,若|PM|+|PN|的最小值为17,则r=

- A. 1

13. 已知点 P在椭圆 τ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上,点 P在第一象限,点 P关于原点 O 的对称点为 A,点 P关于 x 轴的对称点为 Q, 设 $\overrightarrow{PD} = \frac{3}{4}\overrightarrow{PQ}$, 直线 AD 与椭圆 τ 的另一个交点为 B, 若 $PA \perp PB$, 则椭圆 τ 的 离心率 e= ()

- A. $\frac{1}{2}$ B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{3}}{2}$
- D. $\frac{\sqrt{3}}{2}$

二、多选题

14. 己知曲线 $C: mx^2 + ny^2 = 1$. ()

A. 若 m>n>0,则 C 是椭圆,其焦点在y轴上

B. 若 m=n>0,则 C 是圆,其半径为 \sqrt{n}

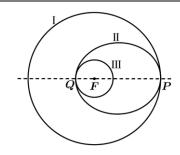
C. 若 mn<0,则 C 是双曲线,其渐近线方程为 $y=\pm\sqrt{-\frac{m}{n}}x$

- D. 若 m=0, n>0, 则 C 是两条直线
- 15. 已知椭圆 C: $\frac{x^2}{4} + \frac{y^2}{8} = 1$ 内一点 M(1,2), 直线 l 与椭圆 C 交于 A, B 两点,且 M 为线段 AB 的中点,则 下列结论正确的是()
- A. 椭圆的焦点坐标为(2,0)、(-2,0)
- B. 椭圆 C 的长轴长为 $4\sqrt{2}$
- C. 直线l的方程为x+y-3=0
- D. $|AB| = \frac{4\sqrt{3}}{3}$
- 16. 已知椭圆 $M: \frac{x^2}{25} + \frac{y^2}{20} = 1$ 的左、右焦点分别是 F_1 , F_2 , 左、右顶点分别是 A_1 , A_2 , 点P是椭圆上异于
- A_1 , A_2 的任意一点,则下列说法正确的是(
- A. $|PF_1| + |PF_2| = 5$
- B. 直线 PA_1 与直线 PA_2 的斜率之积为 $-\frac{4}{5}$
- C. 存在点P满足 $\angle F_1PF_2 = 90^\circ$
- D. 若 $\triangle F_1 PF_2$ 的面积为 $4\sqrt{5}$,则点P的横坐标为 $\pm\sqrt{5}$
- 17. 设椭圆 $\frac{x^2}{0} + \frac{y^2}{3} = 1$ 的右焦点为 F,直线 $y = m(0 < m < \sqrt{3})$ 与椭圆交于 A, B 两点,则下述结论正确的 是(
- A. AF+BF 为定值

- B. △ABF 的周长的取值范围是[6, 12]
- C. 当 $m=\sqrt{2}$ 时, $\triangle ABF$ 为直角三角形 D. 当m=1 时, $\triangle ABF$ 的面积为 $\sqrt{6}$
- 18. 已知曲线 $C: \frac{x^2}{9} + \frac{y^2}{m} = 1, F_1, F_2$ 分别为曲线C的左右焦点,则下列说法正确的是(
- A. 若m=-3,则曲线C的两条渐近线所成的锐角为 $\frac{\pi}{3}$
- B. 若曲线C的离心率e=2,则m=-27 潍坊高中数学
- C. 若m=3,则曲线C上不存在点P,使得 $\angle F_1PF_2 = \frac{\pi}{2}$
- D. 若m=3,P为C上一个动点,则 $\triangle PF_1F_2$ 面积的最大值为 $3\sqrt{2}$
- 19. 如图所示,"嫦娥五号"月球探测器飞行到月球附近时,首先在以月球球心F为圆心的圆形轨道I上绕 月飞行,然后在P点处变轨进入以F为一个焦点的椭圆轨道II上绕月飞行,最后在Q点处变轨进入以F为 圆心的圆形轨道III绕月飞行,设圆形轨道I的半径为R,圆形轨道III的半径为r,则以下说法正确的是 ()

潍坊高中数学 椭圆

- A. 椭圆轨道 II 上任意两点距离最大为 2R
- B. 椭圆轨道 II 的焦距为 R-r
- C. 若r不变,则R越大,椭圆轨道II的短轴越短
- D. 若R不变,则r越小椭圆轨道II的离心率越大



三、填空题

- 20. 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 离心率为 $\frac{1}{2}$, 过 F_2 的直线交椭圆于A, B两
- 点, ΔABF_1 的周长为8,则该椭圆的短轴长为_____.
- 21. 设 F_1 , F_2 为椭圆C: $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 的两个焦点,M为C上一点且在第一象限. 若 $\triangle MF_1F_2$ 为等腰三角形,则M的坐标为
- 22. 椭圆T: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个顶点A(a,0), B(0,b), 过A, B分别作AB的垂线交椭圆T于D, C (不同于顶点),若BC = 3AD,则椭圆T的离心率为
- 23. 在平面直角坐标系 xOy中,已知点 A, F 分别为椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右顶点、右焦点,过坐标原点 O 的直线交椭圆 C 于 P , Q 两点,线段 AP 的中点为 M ,若 Q , F , M 三点共线,则椭圆 C 的离
- 心率为____.
- 24. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,焦点 $F_1(-c,0)$, $F_2(c,0)$ (c > 0),若过 F_1 的直线和圆 $\left(x \frac{1}{2}c\right)^2 + y^2 = c^2$

相切,与椭圆在第一象限交于点 P,且 $PF_2 \perp x$ 轴,则该直线的斜率是______,椭圆的离心率是

四、解答题

- 25. 已知椭圆 C_1 : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的右焦点 F 与抛物线 C_2 的焦点重合, C_1 的中心与 C_2 的顶点重合.过 F 且与 x 轴重直的直线交 C_1 于 A,B 两点,交 C_2 于 C,D 两点,且 $|CD| = \frac{4}{3} |AB|$.
- (1) 求 C_1 的离心率;
- (2) 若 C_1 的四个顶点到 C_2 的准线距离之和为 12, 求 C_1 与 C_2 的标准方程.

- 26. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{\sqrt{6}}{3}$.
- (1) 证明: $a = \sqrt{3}b$;
- (2) 若点 $M\left(\frac{9}{10},-\frac{\sqrt{3}}{10}\right)$ 在椭圆C的内部,过点M的直线l交椭圆C于P、Q两点,M 为线段PQ的中点,

且 OP ⊥ OQ.

- ①求直线 l 的方程;
- ②求椭圆C的标准方程.

- 27. 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上的动点到其左焦点距离的最大值是最小值的3倍,且点 $P\left(1, \frac{3}{2}\right)$ 在椭圆上.
- (1) 求椭圆 E 的标准方程;
- (2) 过点G(0,1)作直线l与曲线交于A,B两点,求 $\triangle ABO$ 面积的最大值.

- 28. 在平面直角坐标系中,A(-2,0),B(2,0),设直线AC、BC的斜率分别为 k_1 、 k_2 且 $k_1 \cdot k_2 = -\frac{1}{2}$,
- (1) 求点C的轨迹E的方程;
- (2) 过 $F(-\sqrt{2},0)$ 作直线MN交轨迹E于M、N两点,若 $\triangle MAB$ 的面积是 $\triangle NAB$ 面积的2倍,求直线MN的方程.

- 29. 在平面直角坐标系 xOy 中,离心率为 $\frac{\sqrt{6}}{3}$ 的椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 过点 $M(1, \frac{\sqrt{6}}{3})$.
- (1) 求椭圆C的标准方程;
- (2) 若直线 x+y+m=0 上存在点G, 且过点G 的椭圆C的两条切线相互垂直, 求实数m 的取值范围.

- 30. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右焦点为F,上顶点为B,离心率为 $\frac{2\sqrt{5}}{5}$,且 $|BF| = \sqrt{5}$.
- (1) 求椭圆的方程;
- (2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P.若MP//BF,求直线l的方程.

1. C 2. D 3. A 4. B 5. A 6. D 7. C 8. D 9. C 10. B 11. D 12. B 13. C

14. ACD 15. BCD 16. BD 17. AD 18. ABD 19. BD

20.
$$2\sqrt{3}$$
 21. $(3,\sqrt{15})$ 22. $\frac{\sqrt{6}}{3}$ 23. $\frac{1}{3}$ 24. $\frac{2\sqrt{5}}{5}$

25. 【解析】(1) 因为椭圆 C_1 的右焦点坐标为: $F(\mathbf{c},\mathbf{0})$,所以抛物线 C_2 的方程为 $\mathbf{y}^2 = 4cx$,其中 $c = \sqrt{a^2 - b^2}$.

不妨设 A, C 在第一象限,因为椭圆 C_1 的方程为: $\frac{x^2}{c^2} + \frac{y^2}{c^2} = 1$,

所以当
$$x = c$$
时,有 $\frac{c^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow y = \pm \frac{b^2}{a}$,因此 A, B 的纵坐标分别为 $\frac{b^2}{a}$, $-\frac{b^2}{a}$;

又因为抛物线 C_2 的方程为 $y^2 = 4cx$,所以当x = c时,有 $y^2 = 4c \cdot c \Rightarrow y = \pm 2c$,

所以C,D的纵坐标分别为2c,-2c,故 $|AB| = \frac{2b^2}{c}$,|CD| = 4c.

由
$$|CD| = \frac{4}{3} |AB|$$
 得 $4c = \frac{8b^2}{3a}$,即 $3 \cdot \frac{c}{a} = 2 - 2(\frac{c}{a})^2$,解得 $\frac{c}{a} = -2$ (舍去), $\frac{c}{a} = \frac{1}{2}$.

所以 C_1 的离心率为 $\frac{1}{2}$.

(2) 由 (1) 知
$$a=2c$$
 , $b=\sqrt{3}c$, 故 $C_1:\frac{x^2}{4c^2}+\frac{y^2}{3c^2}=1$, 所以 C_1 的四个顶点坐标分别为 $(2c,0)$,

$$(-2c,0)$$
, $(0,\sqrt{3}c)$, $(0,-\sqrt{3}c)$, C_2 的准线为 $x=-c$.

由已知得3c+c+c+c=12,即c=2.

所以 C_1 的标准方程为 $\frac{x^2}{16} + \frac{y^2}{12} = 1$, C_2 的标准方程为 $y^2 = 8x$.

26. 【解析】(1)
$$:: e = \frac{c}{a} = \sqrt{\frac{c^2}{a^2}} = \sqrt{\frac{a^2 - b^2}{a^2}} - \sqrt{1 - \left(\frac{b}{a}\right)^2} = \sqrt{\frac{b}{3}}, :: \frac{b}{a} = \frac{\sqrt{3}}{3},$$
 因此, $a = \sqrt{3}b$;
(2) ①由(1) 知,椭圆 C 的方程为 $\frac{x^2}{3b^2} + \frac{y^2}{b^2} = 1$,即 $x^2 + 3y^2 = 3b^2$,

(2) ①由 (1) 知,椭圆
$$C$$
 的方程为 $\frac{x^2}{3b^2} + \frac{y^2}{b^2} = 1$,即 $x^2 + 3y^2 = 3b^2$,

当
$$\left(\frac{9}{10}, -\frac{\sqrt{3}}{15}\right)$$
在椭圆 C 的内部时, $\left(\frac{9}{10}\right)^2 + 3 \cdot \left(-\frac{\sqrt{3}}{10}\right)^2 < 3b^2$,可得 $b > \frac{3\sqrt{3}}{10}$.

设点
$$P(x_1, y_1)$$
、 $Q(x_2, y_2)$, 则
$$\begin{cases} \frac{x_1 + x_2}{2} = \frac{9}{10} \\ \frac{y_1 + y_2}{2} = -\frac{\sqrt{3}}{10} \end{cases}$$
, 所以, $\frac{y_1 + y_2}{x_1 + x_2} = -\frac{\sqrt{3}}{9}$,

由已知可得
$$\begin{cases} x_1^2 + 3y_1^2 = 3b^2 \\ x_2^2 + 3y_2^2 = 3b^2 \end{cases}$$
, 两式作差得 $(x_1 + x_2)(x_1 - x_2) + 3(y_1 + y_2)(y_1 - y_2) = 0$,

椭圆 潍坊高中数学

所以
$$\frac{y_1 - y_2}{x_1 - x_2} = -\frac{x_1 + x_2}{3(y_1 + y_2)} = -\frac{1}{3} \times \left(-\frac{9}{\sqrt{3}}\right) = \sqrt{3}$$
,

所以,直线
$$l$$
方程为 $y-\left(-\frac{\sqrt{3}}{10}\right)=\sqrt{3}\left(x-\frac{9}{10}\right)$,即 $y=\sqrt{3}x-\sqrt{3}$.

所以,直线l的方程为 $\sqrt{3}x-y-\sqrt{3}=0$;

②联立
$$\begin{cases} x^2 + 3y^2 = 3b^2 \\ y = \sqrt{3}(x-1) \end{cases}$$
, 消去 y 可得 $10x^2 - 18x + 9 - 3b^2 = 0$.

$$\Delta = 18^2 - 40(9 - 3b^2) = 120b^2 - 36 > 0$$
,

由韦达定理可得
$$x_1 + x_2 = \frac{9}{5}$$
, $x_1 x_2 = \frac{9 - 3b^2}{10}$,

$$abla : OP \perp OQ, \quad \overrightarrow{m} \overrightarrow{OP} = (x_1, y_1), \quad \overrightarrow{OQ} = (x_2, y_2),$$

$$\vec{OP} \cdot \vec{OQ} = x_1 x_2 + y_1 y_2 = x_1 x_2 + \sqrt{3} (x_1 - 1) \cdot \sqrt{3} (x_2 - 1) = 4x_1 x_2 - 3(x_1 + x_2) + 3$$

$$=\frac{2(9-3b^2)-27+15}{5}=\frac{6-6b^2}{5}=0$$

解得 $b^2 = 1$ 合乎题意,故 $a^2 = 3b^2 = 3$,

因此,椭圆 C 的方程为 $\frac{x^2}{3} + y^2 = 1$.

27. 【解析】(1) 由题意得,
$$\begin{cases} a+c=3(a-c) \\ a^2=b^2+c^2 \end{cases}, 解得 a=2, b=\sqrt{3},$$

$$\frac{1}{a^2}+\frac{9}{4b^2}=1$$

∴ 椭圆的标准方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$.

(2) 易知直线l的斜率存在. 设直线l的方程为y = kx + 1, $A(x_1, y_1)$, $B(x_2, y_2)$,

联立
$$\left\{ \frac{y = kx + 1}{x^2 + y^2} \right\}$$
, 消去 y 得 $\left(3 + 4k^2 \right) x^2 + 8kx - 8 = 0$, 则 $x_1 + x_2 = \frac{-8k}{3 + 4k^2}$, $x_1 x_2 = \frac{-8}{3 + 4k^2}$,

$$d = \frac{1}{\sqrt{k^2 + 1}}$$

$$\therefore S_{\triangle ABO} = \frac{1}{2} \times d \times \sqrt{1 + k^2} |x_1 - x_2| = \frac{2\sqrt{6} \, \text{?} \, \sqrt{1 + 2k^2}}{3 + 4k^2}$$

$$\diamondsuit \sqrt{1+2k^2} = t$$
, $Qk^2 \ge 0$, $\therefore t \ge 1$,

$$\therefore S_{VABO} = \frac{2\sqrt{6}t}{2t^2 + 1} = \frac{2\sqrt{6}}{2t + \frac{1}{t}},$$

易证
$$y = 2t + \frac{1}{t}$$
 在 $[1, +\infty)$ 上单调递增, $\therefore 2t + \frac{1}{t} \ge 3$,

$$\therefore S_{\text{VABO}} \leq \frac{2\sqrt{6}}{3}$$
, $\therefore \text{VABO}$ 面积的最大值为 $\frac{2\sqrt{6}}{3}$.

28. 【解析】(1) 由题意,设
$$C(x,y)$$
,则 $k_1 = \frac{y}{x+2}$, $k_2 = \frac{y}{x-2}$,

又由
$$k_1 k_2 = \frac{y^2}{x^2 - 4} = -\frac{1}{2}$$
,整理得 $\frac{x^2}{4} + \frac{y^2}{2} = 1$,

由点
$$A,B,C$$
不共线,所以 $y \neq 0$,所以点 C 的轨迹方程为 $\frac{x^2}{4} + \frac{y^2}{2} = 1(y \neq 0)$.

(2) 设
$$M(x_1, y_1)$$
, $N(x_2, y_2)$,

易知直线 MN 不与x 轴重合,设直线 $MN: x = my - \sqrt{2}$,

联立方程组
$$\begin{cases} x = my - \sqrt{2} \\ \frac{x^2}{4} + \frac{y^2}{2} = 1 \end{cases}, \quad 整理得得(m^2 + 2)y^2 - 2\sqrt{2}my - 2 = 0,$$

易知
$$\Delta > 0$$
,且 $y_1 + y_2 = \frac{2\sqrt{2}m}{m^2 + 2}$, $y_1 y_2 = \frac{-2}{m^2 + 2} < 0$

曲
$$S_{\triangle MAB}=2S_{\triangle NAB}$$
 ,故 $\left|y_{1}\right|=2\left|y_{2}\right|$,即 $y_{1}=-2\,y_{2}$,

解得
$$m^2 = \frac{2}{7}$$
,即 $m = \pm \frac{\sqrt{14}}{7}$,

所以直线 MN 的方程为 $x - \frac{\sqrt{14}}{7}y + \sqrt{2} = 0$ 或 $x + \frac{\sqrt{14}}{7}y + \sqrt{2} = 0$.

29. 【解析】(1) 由题意,
$$\begin{cases} \frac{c}{a} = \frac{\sqrt{6}}{3}, & \text{解得 } a^2 = 3b^2, \ \mathbb{X} \frac{1}{a^2} + \frac{2}{3b^2} = 1, \ \text{解得} \begin{cases} a^2 = 3, \\ b^2 = 1, \end{cases}$$

所以椭圆 C的标准方程为 $\frac{x^2}{3} + y^2 = 1$.

- (2) ①当过点G 的椭圆C的一条切线的斜率不存在时,另一条切线必垂直于Y轴,易得 $G(\pm\sqrt{3},\pm1)$
- ②当过点 G 的椭圆 C 的切线的斜率均存在时,设 $G(x_0, y_0), x_0 \neq \pm \sqrt{3}$

切线方程为 $y = k(x - x_0) + y_0$,

椭圆

代入椭圆方程得 $(3k^2+1)x^2-6k(kx_0-y_0)x+3(kx_0-y_0)^2-3=0$,

$$\Delta = [6k(kx_0 - y_0)]^2 - 4(3k^2 + 1)[3(kx_0 - y_0)^2 - 3] = 0$$
,

化简得:
$$(kx_0 - y_0)^2 - (3k^2 + 1) = 0$$
, 由此得 $(x_0^2 - 3)k^2 - 2x_0y_0k + y_0^2 - 1 = 0$,

设过点G的椭圆C的切线的斜率分别为 k_1,k_2 ,所以 $k_1k_2 = \frac{{y_0}^2 - 1}{{x_0}^2 - 3}$.

因为两条切线相互垂直,所以 $\frac{{y_0}^2-1}{{x_0}^2-3}=-1$,即 ${x_0}^2+{y_0}^2=4(x_0\neq\pm\sqrt{3})$,

由①②知G在圆 $x_0^2 + y_0^2 = 4$ 上,又点G在直线x + y + m = 0上,

所以直线 x+y+m=0 与圆 $x^2+y^2=4$ 有公共点,

所以
$$\frac{|m|}{\sqrt{1+1}} \le 2$$
,所以 $-2\sqrt{2} \le m \le 2\sqrt{2}$.

综上所述, m 的取值范围为[$-2\sqrt{2},2\sqrt{2}$].

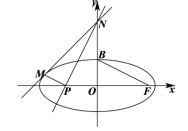
30.【解析】(1) 易知点
$$F(c,0)$$
、 $B(0,b)$,故 $|BF| = \sqrt{c^2 + b^2} = a = \sqrt{5}$,

因为椭圆的离心率为
$$e = \frac{c}{a} = \frac{2\sqrt{5}}{5}$$
, 故 $c = 2$, $b = \sqrt{a^2 - c^2} = 1$,

因此,椭圆的方程为 $\frac{x^2}{5} + y^2 = 1$;

(2) 设点
$$M(x_0, y_0)$$
为椭圆 $\frac{x^2}{5} + y^2 = 1$ 上一点,

先证明直线 MN 的方程为 $\frac{x_0x}{5} + y_0y = 1$,



联立
$$\begin{cases} \frac{x_0x}{5} + y_0y = 1 \\ \frac{x^2}{5} + y^2 = 1 \end{cases}$$
 , 消去 y 并整理得 $x^2 - 2x_0x + x_0^2 = 0$, $\Delta = 4x_0^2 - 4x_0^2 = 0$,

因此,椭圆 $\frac{x^2}{5}$ + y^2 =1在点 $M(x_0, y_0)$ 处的切线方程为 $\frac{x_0x}{5}$ + y_0y =1.

在直线
$$MN$$
 的方程中,令 $x=0$,可得 $y=\frac{1}{y_0}$,由题意可知 $y_0>0$,即点 $N\left(0,\frac{1}{y_0}\right)$,

直线 BF 的斜率为 $k_{BF} = -\frac{b}{c} = -\frac{1}{2}$, 所以, 直线 PN 的方程为 $y = 2x + \frac{1}{y_0}$

在直线
$$PN$$
 的方程中,令 $y=0$,可得 $x=-\frac{1}{2y_0}$,即点 $P\left(-\frac{1}{2y_0},0\right)$,

因为
$$MP//BF$$
,则 $k_{MP}=k_{BF}$,即 $\frac{y_0}{x_0+\frac{1}{2y_0}}=\frac{2y_0^2}{2x_0y_0+1}=-\frac{1}{2}$,整理可得 $(x_0+5y_0)^2=0$,

所以,
$$x_0 = -5y_0$$
,因为 $\frac{x_0^2}{5} + y_0^2 = 6y_0^2 = 1$, $\therefore y_0 > 0$,故 $y_0 = \frac{\sqrt{6}}{6}$, $x_0 = -\frac{5\sqrt{6}}{6}$,

所以,直线
$$l$$
的方程为 $-\frac{\sqrt{6}}{6}x + \frac{\sqrt{6}}{6}y = 1$,即 $x - y + \sqrt{6} = 0$.