空间点线面之间的位置关系

一、单选题

- 1. 下列命题正确的是()
- A. 三点确定一个平面
- B. 三条相交直线确定一个平面
- C. 对于直线a、b、c, 若a//b, b//c, 则a//c
- D. 对于直线a、b、c,若 $a \perp b$, $b \perp c$,则a//c
- 2. 已知直线l, a, b, 平面 α , β , 则 $l \perp \alpha$ 的一个充分条件可以是 ()
- A. $a \subset \alpha$, $b \subset \alpha$, $a \perp l$, $b \perp l$
- B. $\beta \perp \alpha$, $l//\beta$

C. $l \perp \beta$, $\beta / / \alpha$

- D. $a//\alpha$, $l \perp a$
- 3. 如图,在多面体 ABC-DEFG中,平面 ABC //平面 DEFG, EF //DG,且 AB = DE, DG = 2EF,则

()

A. BF // 平面 ACGD

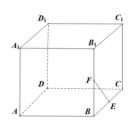
B. CF//平面 ABED

C. BC//FG

- D. 平面 ABED / / 平面 CGF
- 4. 在正方体 $ABCD A_iB_iC_iD_i$ 中, $P 为 B_iD_i$ 的中点,则直线 PB 与 AD_i 所成的角为 ()

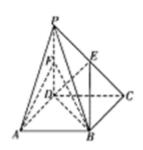
- 5. 如图,在正方体 $ABCD A_lB_lC_lD_l$ 中, $E \setminus F$ 分别为 $BC \setminus BB_l$ 的中点,则下列直线中与直线 EF 相交的

是()

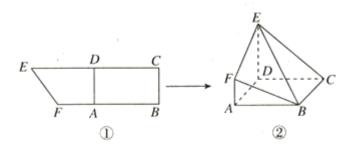


- A. 直线 *AA*,
- B. 直线 A_1B_1 C. 直线 A_1D_1 D. 直线 B_1C_1

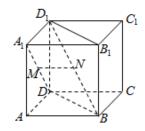
- 6. 在正方体 $ABCD A_1B_1C_1D_1$ 中,M 为棱 A_1D_1 上的动点,O 为底面 ABCD 的中心,E,F 分别是
- A_1B_1 , C_1D_1 的中点, 下列平面中与OM 扫过的平面平行的是
- A. 平面 ABB_1A_1 B. 平面 BCC_1B_1 C. 平面 BCFE D. 平面 DCC_1D_1
- 7. 《九章算术》中,将四个面都为直角三角形的四面体称之为"鳖臑". 在如图所示的四棱锥 P-ABCD 中,PD上平面ABCD,底面ABCD是正方形,且PD=CD,点E,F分别为PC,PD的中点,则图中的 鳖臑有



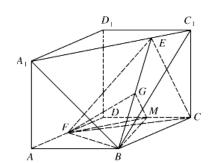
- A. 2个
- B. 3个
- C. 4个
- D. 5个
- 8. 如图所示,在直角梯形 BCEF 中, $\angle CBF = \angle BCE = 90^\circ$, A, D 分别是 BF, CE 上的点, AD // BC ,且 AB = DE = 2BC = 2AF (如图①). 将四边形 ADEF 沿 AD 折起, 连接 BE, BF, CE (如图②). 在折起的 过程中,下列说法中错误的个数是(



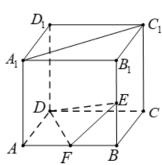
- ① AC // 平面 BEF;
- ② B, C, E, F 四点不可能共面;
- ③若 $EF \perp CF$,则平面 $ADEF \perp$ 平面 ABCD ;
- ④平面 BCE 与平面 BEF 可能垂直.
- **A.** 0
- B. 1
- C. 2
- D. 3
- 9. 如图已知正方体 $ABCD A_iB_iC_iD_i$, M, N 分别是 A_iD , D_iB 的中点,则()
- A. 直线 A_1D 与直线 D_1B 垂直, 直线 MN // 平面 ABCD
- B. 直线 A_iD 与直线 D_iB 平行, 直线 $MN \perp$ 平面 BDD_iB_i



- C. 直线 A_iD 与直线 D_iB 相交,直线 MN // 平面 ABCD
- D. 直线 A_iD 与直线 D_iB 异面,直线 $MN \perp$ 平面 BDD_iB_i
- 10. 如图,四边形 ABCD, A_1ADD_1 , C_1CDD_1 均为正方形.动点 E 在线段 A_1C_1 上,F,G,M分别是 AD,
- BE, CD的中点,则下列选项正确的是(
- A. GM//CE
- C. 存在点 E,使得平面 BEF// 平面 CC_1D_1D
- D. 存在点 E, 使得平面 BEF \bot 平面 $AA_{1}C_{1}C$

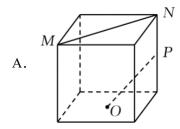


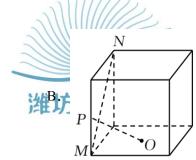
- 11. 如图,在直四棱柱 ABCD $A_1B_1C_1D_1$ 中,底面 ABCD 为矩形, $AB = \sqrt{2} AD$, E, F 分别为 BB_1 , AB 的 中点,则(
- A. AC_1 //平面 DEF 且 $A_1C_1 \perp DF$
- B. *A*₁*C*₁//平面 *DEF* 且 *A*₁*C*₁ 与 *DF* 不垂直
- C. A_1C_1 与平面 DEF 相交且 $A_1C_1 \perp DF$
- D. A_1C_1 与平面 DEF 相交且 A_1C_1 与 DF 不垂直

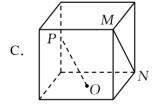


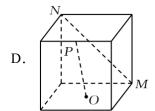
二、多选题

12. 如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点. 则满足 $MN \perp OP$



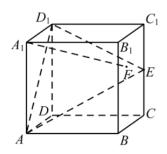




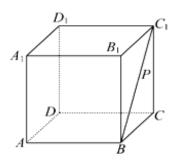


- 13. 设m, n是不同的直线, α , β , γ 是三个不同的平面,则正确命题是(
- A. 若 $m \perp \alpha$, $n \perp \beta$, $\alpha //\beta$, 则m //n B. 若 $\alpha \cap \gamma = m$, $\beta \cap \gamma = n$, m //n, 则 $\alpha //\beta$

- C. 若 $\alpha \perp \gamma$, $\beta \perp \gamma$, 则 $\alpha //\beta$
- D. 若 $\alpha//\beta$, $\beta//\gamma$, $m \perp \alpha$, 则 $m \perp \gamma$
- 14. 在正方体 AC_1 中,E 是棱 CC_1 的中点,F 是侧面 BCC_1B_1 内的动点,且 A_1F 与平面 D_1AE 的垂线垂直,如图所示,下列说法正确的是()



- A. 点F的轨迹是一条线段
- B. A_iF 与 BE 是异面直线
- C. A_iF 与 D_iE 不可能平行
- D. 三棱锥 $F ABD_1$ 的体积为定值
- 15. 如图,点P在正方体 $ABCD-A_iB_iC_iD_i$ 的面对角线 BC_i 上运动,则其中正确的结论是()
- A. 三棱锥 $C_1 AB_1P$ 的体积不变
- B. $A_1P//$ 平面 ACD_1
- C. DP与平面 BCC_1B_1 所成角的正弦值最大值为 $\frac{1}{3}$
- D. 平面 PDB₁ ^ 平面 ACD₁



三、填空题

16. 已知 l, m 是平面 α 外的两条不同直线. 给出下列三个论断:

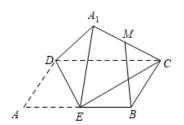
 $(1)l \perp m$; $(2)m // \alpha$; $(3)l \perp \alpha$.

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: _____.

- 17. 在棱长为4的正方体 $ABCD-A_iB_iC_iD_i$ 中,E,F分别是BC和 C_iD_i 的中点,经过点A,E,F的平面把正方体 $ABCD-A_iB_iC_iD_i$ 截成两部分,则截面与 BCC_iB_i 的交线段长为_____.
- 18. 如图,长为 4,宽为 2 的矩形纸片 ABCD 中,E 为边 AB 的中点,将 $\angle A$ 沿直线 DE 翻转至 $\triangle A$ DE (A, eq 平面 ABCD),若 M 为线段 A,C 的中点,则在 $\triangle ADE$ 翻转过程中,下列正确的命题序号是
- ① MB// 平面 A₁DE;

潍坊高中数学 空间中点线面的位置关系

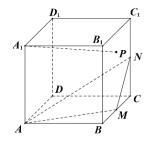
- ②异面直线 BM 与 A_1E 所成角是定值;
- ③三棱锥 $A_i ADE$ 体积的最大值是 $2\sqrt{2}$;
- ④一定存在某个位置, 使 $DE \perp A_1C$



- 19. 在正方体 $ABCD A_iB_iC_iD_i$ 中,O 是底面正方形 ABCD 的中心,M 和 N 分别是棱 D_iD 和 A_iB_i 的中点, 现有下面四个结论:
- ①直线 $ON \perp$ 平面ACM; ②直线ON / / 平面 AA_iD_iD ;
- ③直线 $BC_1 \perp$ 平面 CDN; ④直线 BD_1 与平面 ACM 相交.

则其中正确结论的序号是

20. 已知正方体 $ABCD - A_iB_iC_iD_i$ 的棱长为 2, 点 M,N 分别是棱 BC,CC_i 的中点,则异面直线 AN 与 BC 所 成角的余弦值为 ; 若动点 P在正方形 BCC_1B_1 (包括边界)内运动,且 PA_1 // 平面 AMN,则线段 PA₁的长度范围是



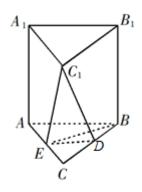
四、解答题

21. 如图,在直三棱柱 $ABC-A_1B_1C_1$ 中, D, E 分别为 BCAC的中点,AB=BC.

求证: (1) A_1B_1 //平面 DEC_1 ;

(2) $BE \perp C_1E$.

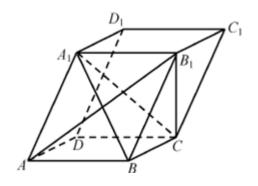
潍坊高中数学



22. 在平行六面体 $ABCD - A_1B_1C_1D_1$ 中, $AA_1 = AB$, $AB_1 \perp B_1C_1$.

求证: (1) AB//平面 A_1B_1C ;

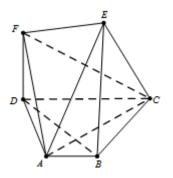
(2) 平面 $ABB_1A_1 \perp$ 平面 A_1BC .



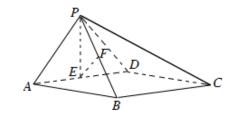
23. 如图,在多面体EFABCD中,AB//CD, $AB \perp BC$, $EB \perp$ 平面ABCD,BE//DF,

CD = 2BC = 4AB = 4, BE = 2DF = 4.

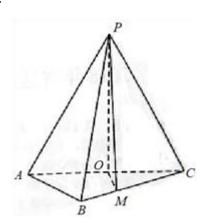
- (I) 求证: AC ⊥ EF;
- (II) 求三棱锥A-CDF的体积.



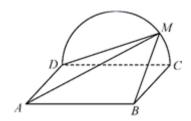
- 24. 如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形,平面 PAD \bot 平面 ABCD , $PA \bot PD$, PA = PD ,
- $E \times F$ 分别为 $AD \times PB$ 的中点.
- (I) 求证: $PE \perp BC$;
- (II) 求证: 平面 PAB 上平面 PCD;
- (III) 求证: EF//平面PCD.



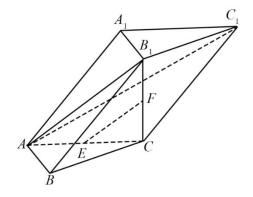
- 25. 如图,在三棱锥 P-ABC中, $AB=BC=2\sqrt{2}$, PA=PB=PC=AC=4, O为 AC 的中点.
 - (1) 证明: PO L 平面 ABC;
 - (2) 若点M 在棱BC上,且MC = 2MB,求点C到平面POM 的距离.



- 26. 如图,矩形 ABCD 所在平面与半圆弧 CD 所在平面垂直,M 是 CD 上异于 C ,D 的点.
- (1) 证明: 平面 AMD L 平面 BMC;
- (2) 在线段 AM 上是否存在点 P ,使得 MC // 平面 PBD ? 说明理由.

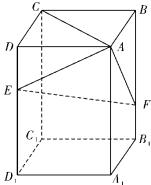


- 27. 在三棱柱 ABC- $A_1B_1C_1$ 中, $AB\perp AC$, $B_1C\perp$ 平面 ABC,E,F 分别是 AC, B_1C 的中点.
- (1) 求证: *EF*//平面 *AB*₁*C*₁;
- (2) 求证: 平面 *AB*₁*C* 上平面 *ABB*₁.



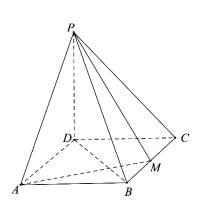
28. 如图,在长方体 $ABCD-A_lB_lC_lD_l$ 中,点E,F 分别在棱 DD_l , BB_l 上,且 $2DE=ED_l$, $BF=2FB_l$. 证明:

- (1) 当AB = BC时, $EF \perp AC$;
- (2) 点 C_1 在平面AEF内.

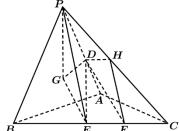


- 29. 如图,四棱锥 P-ABCD 的底面是矩形,PD 上底面 ABCD,M 为 BC 的中点,且 PB \bot AM .
- (1) 证明: 平面 *PAM* _ 平面 *PBD*;

(2) 若 *PD* = *DC* = 1, 求四棱锥 *P* - *ABCD* 的体积.



- 30. 如图,在三棱锥 P-ABC 中, $\triangle PAB$ 是正三角形,G 是 $\triangle PAB$ 的重心,D,E,H 分别是 PA,BC,PC 的中点,点 F 在 BC 上,且 BF=3FC .
- (1) 求证: 平面 DFH // 平面 PGE;
- (2) 若 $PB \perp AC$, AB = AC = 2, $BC = 2\sqrt{2}$, 求三棱锥 P DEG 的体积.



参考答案

- 1. C 2. C 3. A 4. D 5. D 6. C 7. C 8. B 9. A 10. B 11. C
- 12. BC 13. AD 14. ABD 15. BD
- 16. 如果 $l \perp \alpha$, m / α , 则 $l \perp m$ 或如果 $l \perp \alpha$, $l \perp m$, 则 m / α .
- 17. $\frac{10}{3}$ 18. ①②③ 19. ②③ 20. $\frac{2}{3}$ [$\frac{3\sqrt{2}}{2}$, $\sqrt{5}$]
- 21. 【解析】(1) 因为 D, E 分别为 BC, AC 的中点,

所以 ED // AB.

在直三棱柱 $ABC-A_1B_1C_1$ 中, $AB//A_1B_1$,

所以 A₁B₁ // ED.

又因为 ED \subset 平面 DEC_1 , A_1B_1 \subset 平面 DEC_1 ,

所以 A_1B_1 //平面 DEC_1 .

(2) 因为 AB=BC, E 为 AC 的中点, 所以 $BE\perp AC$.

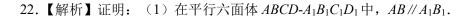
因为三棱柱 $ABC-A_1B_1C_1$ 是直棱柱, 所以 CC_1 上平面 ABC.

又因为 BE 一平面 ABC, 所以 $CC_1 \perp BE$.

因为 C_1C C平面 A_1ACC_1 , ACC平面 A_1ACC_1 , $C_1C\cap AC=C$,

所以 BE 上平面 A_1ACC_1 .

因为 C_1E C平面 A_1ACC_1 , 所以 $BE \perp C_1E$.



因为AB \Box 平面 A_1B_1C , A_1B_1 \Box 平面 A_1B_1C ,

所以 AB // 平面 A_1B_1C .

(2) 在平行六面体 ABCD- $A_1B_1C_1D_1$ 中,四边形 ABB_1A_1 为平行四边形.

又因为 AA₁=AB, 所以四边形 ABB₁A₁ 为菱形维坊高中数学

因此 $AB_1 \perp A_1B$.

又因为 $AB_1 \perp B_1 C_1$, $BC // B_1 C_1$,

所以 $AB_1 \perp BC$.

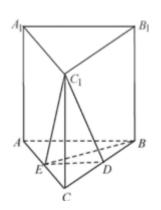
又因为 $A_1B\cap BC=B$, $A_1B\subset$ 平面 A_1BC , $BC\subset$ 平面 A_1BC ,

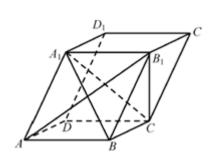
所以 AB_1 上平面 A_1BC .

因为 AB_1 ⊂平面 ABB_1A_1 ,

所以平面 ABB_1A_1 上平面 A_1BC .

23. 【解析】(I) :: *EB* ⊥ 平面 *ABCD* , *AC* ⊂ 平面 *ABCD* :: *EB* ⊥ *AC*





 $\therefore AB \perp BC, AB / CD$ $\therefore \angle ABC = \angle BCD = 90^{\circ}$

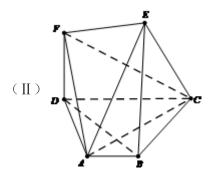
$$\mathbb{X}CD = 2BC = 4AB = 4$$
 $\therefore \frac{AB}{BC} = \frac{BC}{CD} = \frac{1}{2}$ $\therefore \triangle ABC \sim \triangle BCD$

则 $\angle CAB = \angle DBC$

$$\therefore \angle ABD + \angle DBC = 90^{\circ}$$
 $\therefore \angle ABD + \angle CAB = 90^{\circ}$ $\therefore AC \perp BD$

又
$$EB \cap BD = B$$
 :: $AC \perp$ 平面 $DBEF$

又
$$EF$$
 二平面 $DBEF$:: $AC \perp EF$



三棱锥 A-CDF 的体积:

24. 【解析】(I) : PA = PD, 且 E 为 AD的中点, $: PE \bot AD$.

∵底面 ABCD 为矩形, ∴ BC//AD, ∴ PE ⊥ BC:

(II) ∵底面 ABCD 为矩形, ∴ AB ⊥ AD.

:: PD ○平面 PCD, :: 平面 PAB ⊥平面 PCD;

(III) 如图,取PC中点G,连接FG,GD.

:: F,G 分别为 PB 和 PC 的中点,

∴
$$FG//BC$$
, $\coprod FG = \frac{1}{2}BC$.

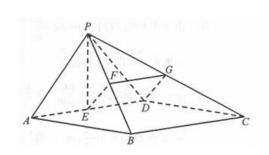
∵四边形 ABCD 为矩形,且 E 为 AD 的中点,

$$\therefore ED//BC, DE = \frac{1}{2}BC,$$

∴ ED//FG, 且 ED = FG, ∴四边形 EFGD 为平行四边形,

∴ EF//GD, 又EF ⊄平面PCD, GD ⊂ 平面PCD, ∴ EF// 平面PCD.

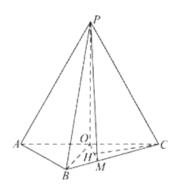
25. 【解析】(1) 因为 AP=CP=AC=4,O为 AC的中点,所以 $OP \perp AC$,且 $OP=2\sqrt{3}$.



连结 OB. 因为 $AB=BC=\frac{\sqrt{2}}{2}AC$,所以 $\triangle ABC$ 为等腰直角三角形,且 $OB\perp AC$, $OB=\frac{1}{2}AC=2$.

由 $OP^2 + OB^2 = PB^2$ 知, $OP \perp OB$.

由 $OP \perp OB$, $OP \perp AC$ 知 $PO \perp$ 平面 ABC.



(2) 作 $CH \perp OM$, 垂足为 H. 又由 (1) 可得 $OP \perp CH$, 所以 $CH \perp$ 平面 POM.

故 CH 的长为点 C 到平面 POM 的距离.

由题设可知
$$OC = \frac{1}{2}AC = 2$$
, $CM = \frac{2}{3}BC = \frac{4\sqrt{2}}{3}$, $\angle ACB = 45^{\circ}$.

所以
$$OM = \frac{2\sqrt{5}}{3}$$
, $CH = \frac{OC \cdot MC \cdot \sin \angle ACB}{OM} = \frac{4\sqrt{5}}{5}$.

所以点 C 到平面 POM 的距离为 $\frac{4\sqrt{5}}{5}$.

26. 【解析】(1) 由题设知, 平面 CMD L 平面 ABCD, 交线为 CD.

因为 $BC \perp CD$, $BC \subseteq$ 平面 ABCD, 所以 $BC \perp$ 平面 CMD, 故 $BC \perp DM$.

因为M为CD上异于C,D的点,且DC为直径,所以 $DM \perp CM$.

又 $BC\cap CM=C$, 所以 $DM\perp$ 平面 BMC.

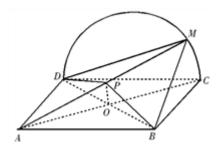
而 DM \subset 平面 AMD, 故平面 AMD \bot 平面 BMC.

(2) 当 P 为 AM 的中点时,MC//平面 PBD 推坊高中数学

证明如下:连结 AC 交 BD 于 O. 因为 ABCD 为矩形,所以 O 为 AC 中点.

连结 OP, 因为 P 为 AM 中点, 所以 MC//OP.

MC⊄平面 *PBD*, *OP*⊂平面 *PBD*, 所以 *MC*// 平面 *PBD*.



27. 【解析】(1) 由于E,F分别是 AC,B_1C 的中点,所以 $EF//AB_1$.

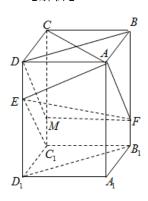
由于 $EF \subset \mathbb{Y}$ 中面 AB_1C_1 , $AB_1 \subset \mathbb{Y}$ 面 AB_1C_1 , 所以 $EF // \mathbb{Y}$ 平面 AB_1C_1 .

(2) 由于 $B_1C \perp$ 平面ABC, AB 平面ABC, 所以 $B_1C \perp AB$.

由于 $AB \perp AC$, $AC \cap B_1C = C$, 所以 $AB \perp$ 平面 AB_1C ,

由于AB 中面 ABB_1 , 所以平面 AB_1C 上平面 ABB_1 .

28. 【解析】



(1) 因为长方体 $ABCD - A_1B_1C_1D_1$,所以 $BB_1 \perp$ 平面 $ABCD : AC \perp BB_1$,

因为长方体 $ABCD - A_iB_iC_iD_i$, AB = BC, 所以四边形 ABCD 为正方形: $AC \perp BD$

因为 $BB_1 I BD = B, BB_1 \setminus BD \subset$ 平面 BB_1D_1D ,因此 $AC \perp$ 平面 BB_1D_1D ,

因为EF 二平面 BB_1D_1D ,所以 $AC \perp EF$;

(2) 在 CC_1 上取点M使得 $CM = 2MC_1$,连DM,MF,

因为 $D_1E = 2ED$, $DD_1//CC_1$, $DD_1 = CC_1$,所以 $ED = MC_1$, $ED//MC_1$,

所以四边形 DMC_1E 为平行四边形, :: $DM //EC_1$

因为MF//DA,MF=DA,所以M、F、A、D四点共面,所以四边形MFAD为平行四边形,

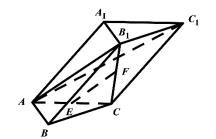
 $\therefore DM//AF$, $\therefore EC_1//AF$, 所以 E、 C_1 、 A、 F 四点共面,

因此 C_1 在平面AEF内

29. 【解析】(1) 因为PD⊥底面ABCD, AM ⊂平面ABCD,

所以 $PD \perp AM$,

 $\mathbb{Z}PB\perp AM$, $PB\cap PD=P$,



潍坊高中数学

所以AM 上平面PBD,

而 $AM \subset$ 平面 PAM ,

所以平面 PAM L平面 PBD.

(2) 由 (1) 可知, $AM \perp$ 平面 PBD, 所以 $AM \perp BD$,

从而 $\triangle DAB \sim \triangle ABM$, 设 BM = x, AD = 2x,

则
$$\frac{BM}{AB} = \frac{AB}{AD}$$
,即 $2x^2 = 1$,解得 $x = \frac{\sqrt{2}}{2}$,所以 $AD = \sqrt{2}$.

因为PD上底面ABCD,

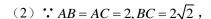
故四棱锥
$$P - ABCD$$
 的体积为 $V = \frac{1}{3} \times (1 \times \sqrt{2}) \times 1 = \frac{\sqrt{2}}{3}$.

30. 【解析】(1) 证明: 连结 BG, 由题意可得 BG 与 GD 共线, 且 BG = 2GD,

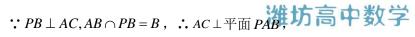
 \therefore *E* 是 *BC* 的中点, *BF* = 3*FC*, \therefore *F* 是 *CE* 的中点,

$$\therefore \frac{BG}{GD} = \frac{BE}{EF} = 2,$$

- ∴ GE //DF, GE Ì 平面 PGE; DF ⊄平面 PGE;
- ∴ DF / / 平面 PGE,
- $: H \in PC$ 的中点,
- ∴ FH //PE, PE ⊂ 平面 PGE, FH ⊄ 平面 PGE;
- :. FH / / 平面 PGE,
- $:: DF \cap FH = F$, $DF \subset \mathbb{P}$ 面 DEF, $FH \subset \mathbb{P}$ 面 DEF,
- ∴平面 DFH / / 平面 PGE:



$$\therefore AB^2 + AC^2 = 8 = BC^2, \quad \therefore AB \perp AC,$$



$$\therefore$$
 $\triangle PAB$ 是正三角形, $\therefore S_{\triangle PAB} = \frac{\sqrt{3}}{4} AB^2 = \sqrt{3}$,

:
$$V_{P-DEG} = V_{E-PDG} = \frac{1}{3}V_{E-PBD} = \frac{1}{6}V_{E-PAB} = \frac{1}{12}V_{C-PAB}$$
.

$$= \frac{1}{12} \times \frac{1}{3} S_{APAB} \cdot AC = \frac{1}{12} \times \frac{1}{3} \times \frac{1}{2} \times 2 \times 2 \times \frac{\sqrt{3}}{2} \times 2 = \frac{\sqrt{3}}{18}$$

即三棱锥 P-DEG 的体积为 $\frac{\sqrt{3}}{18}$.

