等比数列及其前 n 项和

一、单选题

			11:34			 .	
1.	已知数列 $\{a_n\}$	为等比数列,	其前 n 项和为 S_n ,	$ \Xi a_2 a_6 = -2a_7 $,	$S_2 = -6$,	则 $a_{\epsilon}=$ ().

- A. -2 或 32 B. -2 或 64
- C. 2或-32

2. 在等比数列
$$\{a_n\}$$
中,若 a_2 , a_9 是方程 $x^2-x-6=0$ 的两根,则 $a_5 \cdot a_6$ 的值为

- A. 6
- В. -6
- C. -1
- D. 1

3. 记
$$S_n$$
为等比数列 $\{a_n\}$ 的前 n 项和.若 $S_2 = 4$, $S_4 = 6$,则 $S_6 = ($)

4. 记
$$S_n$$
 为等比数列 $\{a_n\}$ 的前 n 项和.若 a_5 — a_3 =12, a_6 — a_4 =24,则 $\frac{S_n}{a_n}$ = ()

- A. $2^{n}-1$
- B. $2-2^{1-n}$
- C. $2-2^{n-1}$
- D. $2^{1-n}-1$

5. 已知数列
$$\{a_n\}$$
的前 n 项和为 S_n ,满足 $S_n=2a_n-1$,则 $\{a_n\}$ 的通项公式 $a_n=$

- A. 2n-1
- B. 2^{n-1}
- C. $2^n 1$ D. 2n + 1

6. 已知正项等比数列
$$\{a_n\}$$
满足 $a_9 = a_8 + 2a_7$,若存在两项 a_m , a_n ,使得 $a_m a_n = 2a_1^2$,则 $\frac{1}{m} + \frac{4}{n}$ 的最小值为

- A. $2\sqrt{2}$
- B. $\frac{8}{3}$
- C. 3
- D. $3\sqrt{2}$

7. 数列
$$\{a_n\}$$
 中, $a_1=2$, $a_{m+n}=a_ma_n$, 若 $a_{k+1}+a_{k+2}+\cdots+a_{k+10}=2^{15}-2^5$,则 $k=($

8. 已知等比数列
$$\{b_n\}$$
的前 n 项和为 S_n ,且满足公比 $0 < q < 1$, $b_1 < 0$,则下列说法不正确的是(

 $A. S_n$ 一定单调递减

C. 式子 b_n - $S_n \ge 0$ 恒成立

D. 可能满足 $b_k = S_k$,且 $k \neq 1$

9. 等比数列
$$\{a_n\}$$
的各项均为正数,已知向量 $\vec{a}=(a_4,a_5)$, $\vec{b}=(a_7,a_6)$,且 $\vec{a}\cdot\vec{b}=4$,则

 $\log_2 a_1 + \log_2 a_2 + \ldots + \log_2 a_{10} = ($

- A. 12
- B. 10
- C. 5
- D. $2 + \log_2 5$

10. 在递增的数列
$$\{a_n\}$$
中, $a_{n+1}^2 = a_n \cdot a_{n+2}$,若 $a_1 + a_m = 130, a_2 \cdot a_{m-1} = 256$,且前 m 项和 $S_m = 170$,则 $m = 170$,则

等比数列及其前 N 项和

C. 5

D. 6

11. 已知 S_n 是等比数列 $\{a_n\}$ 的前 n 项和,若存在 $m \in \mathbb{N}^*$,满足 $\frac{S_{2m}}{S_m} = 9$, $\frac{a_{2m}}{a_m} = \frac{5m+1}{m-1}$,则数列 $\{a_n\}$ 的公比为

A. –2

B. 2

C. -3 D. 3

12. 设数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_1=1$, $S_{n+1}=2S_n+1$,则 $S_7=($

B. 127

C. 128

13. 为了更好地解决就业问题,国家在2020年提出了"地摊经济"为响应国家号召,有不少地区出台了 相关政策去鼓励"地摊经济".某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价 廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为 资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为(

 $(\mathfrak{P}(1.2)^{11} = 7.5, (1.2)^{12} = 9)$

A. 24000 元 B. 26000 元 C. 30000 元 D. 32000 元

二、多选题

14. 已知正项等比数列 $\{a_n\}$ 满足 $a_1 = 2$, $a_4 = 2a_2 + a_3$, 若设其公比为q, 前n项和为 S_n , 则()

A. q=2

B. $a_n = 2^n$ C. $S_{10} = 2047$ D. $a_n + a_{n+1} < a_{n+2}$

15. 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_n \cdot a_{n+1}=2^n$, $n \in \mathbb{N}_+$,则下列说法正确的是()

A. $a_4 = 4$

B. $\{a_{2n}\}$ 是等比数列

C. $a_{2n} - a_{2n-1} = 2^{n-1}$

D. $a_{2n-1} + a_{2n} = 2^{n+1}$

16. 已知 $n, m \in \mathbb{N}^*$,将数列 $\{4n+1\}$ 与数列 $\{5^m\}$ 的公共项从小到大排列得到数列 $\{a_n\}$,则()

A. $a_n = 5n$

B. $a_n = 5^n$

C. $\{a_n\}$ 的前 n 项和 $\frac{5(5^n-1)}{4}$

D. $\{a_n\}$ 的前 n 项和为 $\frac{5(25^n-1)}{24}$

17. 已知 S_n 是数列 $\{a_n\}$ 的前 n 项和,且 $a_1 = 1$, $\frac{1}{a_{n+1} \cdot a_n} = 2^n$,则(

A. 数列 $\{a_n\}$ 是等比数列

B. *a*_{n+1} ≤ *a*_n 恒成立

C. $S_n < 3 恒成立$

D. $S_n \leq 2$ 恒成立

18. (多选题)设等比数列 $\{a_n\}$ 的公比为q,其前n项和为 S_n ,前n项积为 T_n ,并满足条件

$$a_1 > 1, a_{2019} a_{2020} > 1$$
, $\frac{a_{2019} - 1}{a_{2020} - 1} < 0$,下列结论正确的是()

A. $S_{2019} < S_{2020}$

- B. $a_{2019}a_{2021}-1<0$
- C. T_{2020} 是数列 $\{T_n\}$ 中的最大值
- D. 数列 $\{T_n\}$ 无最大值

三、填空题

- 19. 记 S_n 为等比数列 $\{a_n\}$ 的前 n 项和.若 $a_1 = 1$, $S_3 = \frac{3}{4}$, 则 $S_4 = \underline{\hspace{1cm}}$.
- 20. 已知等比数列 $\{a_n\}$ 的公比为q,且 $16a_1$, $4a_2$, a_3 成等差数列,则q的值是______.
- 21. 设数列 $\{a_n\}$ 的前n项和为 S_n ,写出 $\{a_n\}$ 的一个通项公式 $a_n = _____$,满足下面两个条件: ① $\{a_n\}$ 是单调递减数列; ② $\{S_n\}$ 是单调递增数列.
- 22. 已知数列 $\{a_n\}$ 的前n项和为 $S_n, a_1 = 1, S_n = 2a_{n+1}$,则 $S_n = _____$.
- 24. 英国著名物理学家牛顿用"作切线"的方法求函数零点时,给出的"牛顿数列"在航空航天中应用广泛,

若数列 $\{x_n\}$ 满足 $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$,则称数列 $\{x_n\}$ 为牛顿数列 如果函数 $f(x)=x^2-4$,数列 $\{x_n\}$ 为牛顿数

列,设 $a_n = \ln \frac{x_n + 2}{x_n - 2}$,且 $a_1 = 1$, $x_n > 2$.则 $a_{2021} = \underline{}$,数列 $\{a_n\}$ 的前n项和为 S_n ,则 $S_{2021} = \underline{}$

四、解答题

- 25. 记 S_n 为数列 $\{a_n\}$ 的前n项和,已知 $S_n=n^2$,等比数列 $\{b_n\}$ 满足 $b_1=a_1$, $b_3=a_5$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求 $\{b_n\}$ 的前n项和 T_n .

等比数列及其前 N 项和

- 26. 已知公比大于1的等比数列 $\{a_n\}$ 满足 $a_2 + a_4 = 20, a_3 = 8$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) $\vec{x} a_1 a_2 a_2 a_3 + ... + (-1)^{n-1} a_n a_{n+1}$.

- 27. 已知正项等比数列 $\{a_n\}$ 的前n项和为 S_n , 且 $S_2=18$, $S_4=90$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 令 $b_n = 15 \log_2\left(\frac{1}{3}a_n\right)$, 记数列 $\{b_n\}$ 的前n项和为 T_n , 求 T_n 及 T_n 的最大值.

- 28. 已知公比大于1的等比数列 $\{a_n\}$ 满足 $a_2 + a_4 = 20, a_3 = 8$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 记 b_m 为 $\{a_n\}$ 在区间 $(0,m](m \in \mathbb{N}^*)$ 中的项的个数,求数列 $\{b_m\}$ 的前100项和 S_{100} .

- 29. 已知数列 $\{a_n\}$ 的前n项和为 S_n ,满足 $a_{n+1}=2a_n+1$,且 $a_1+2a_2=a_3$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 求使得 $S_n \leq 121$ 成立的n的最大值.

- 30. 已知等差数列 $\{a_n\}$ 的公差为d>1,前n项和为 S_n ,满足 $S_3=9$, a_1,a_2,a_5 成等比数列.
- (1) 求数列 $\{a_n\}$ 的通项公式
- (2) 若 $b_n = 2^{n-1}$, 判断 $a_n = b_n (n \in N^*)$ 的大小, 并说明理由.

等比数列及其前 N 项和 潍坊高中数学

参考答案

1. B 2. B 3. A 4. B 5. B 6. C 7. C 8. D 9. C 10. B 11. B 12. B 13. D

14. ABD 15. ABC 16. BC 17. BC 18. AB

19.
$$\frac{5}{8}$$
. 20. 4 21. $\left(\frac{1}{2}\right)^n$ (答案不唯一) 22. $\left(\frac{3}{2}\right)^{n-1}$ 23. 16 21 24. 2^{2020} $2^{2021}-1$

25. 【解析】(1) 当n=1时, $a_1=S_1=1$,

$$= n^2 - (n-1)^2$$

$$=2n-1$$
,

因为 a_1 =1适合上式,

所以
$$a_n = 2n - 1 (n \in \mathbb{N}^*)$$
.

(2) 由 (1) 得
$$b_1 = 1$$
, $b_3 = 9$,

设等比数列 $\{b_n\}$ 的公比为q,则 $b_3 = b_1 \cdot q^2 = 9$,解得 $q = \pm 3$,

$$\stackrel{\text{def}}{=} q = 3 \text{ Fe}, \quad T_n = \frac{1 \cdot (1 - 3^n)}{1 - 3} = \frac{3^n}{2} - \frac{1}{2},$$

$$\stackrel{\text{def}}{=} q = -3 \text{ Hz}, \quad T_n = \frac{1 \cdot \left[1 - (-3)^n\right]}{1 - (-3)} = \frac{1}{4} - \frac{(-3)^n}{4}.$$

26. 【解析】(1) 设等比数列
$$\{a_n\}$$
的公比为 $q(q>1)$,则 $\begin{cases} a_2 + a_4 = a_1q + a_1q^3 = 20 \\ a_3 = a_1q^2 = 8 \end{cases}$,

整理可得: $2q^2-5q+2=0$,

$$\therefore q > 1, q = 2, a_1 = 2$$
,

数列的通项公式为: $a_n = 2 \cdot 2^{n-1} = 2^n$.

(2)由于:
$$(-1)^{n-1} a_n a_{n+1} = (-1)^{n-1} \times 2^n \times 2^{n+1} = (-1)^{n-1} 2^{2n+1}$$
, 故:

$$a_1 a_2 - a_2 a_3 + \ldots + (-1)^{n-1} a_n a_{n+1}$$

$$= 2^3 - 2^5 + 2^7 - 2^9 + \ldots + (-1)^{n-1} \cdot 2^{2n+1}$$

$$=\frac{2^{3}\left[1-\left(-2^{2}\right)^{n}\right]}{1-\left(-2^{2}\right)}=\frac{8}{5}-\left(-1\right)^{n}\frac{2^{2n+3}}{5}.$$

27. 【解析】(1) 设数列 $\{a_n\}$ 的公比为q(q>0),若q=1,有 $S_4=4a_1$, $S_2=2a_1$,而 $S_4=90 \neq 2S_4=36$,故 $q\neq 1$,

故数列 $\{a_n\}$ 的通项公式为 $a_n = 6 \times 2^{n-1} = 3 \times 2^n$.

(2)
$$\boxplus b_n = 15 - \log_2 2^n = 15 - n$$
,

$$\text{III } T_n = \frac{n(14+15-n)}{2} = -\frac{n^2}{2} + \frac{29n}{2}.$$

由二次函数
$$y = -\frac{x^2}{2} + \frac{29x}{2}$$
 的对称轴为 $x = -\frac{\frac{29}{2}}{2 \times \left(-\frac{1}{2}\right)} = \frac{29}{2}$,

故当n=14或 15 时 T_n 有最大值,其最大值为 $\frac{14\times15}{2}=105$.

28. 【解析】(1) 由于数列 $\{a_n\}$ 是公比大于1的等比数列,设首项为 a_1 ,公比为q,依题意有

$$\begin{cases} a_1q + a_1q^3 = 20 \\ a_1q^2 = 8 \end{cases}$$
,解得解得 $a_1 = 2, q = 2$,或 $a_1 = 32, q = \frac{1}{2}$ (舍),

所以 $a_n = 2^n$,所以数列 $\{a_n\}$ 的通项公式为 $a_n = 2^n$.

(2) 由于
$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$, $2^7 = 128$,所以

 b_1 对应的区间为: (0,1], 则 $b_1 = 0$;

 b_2,b_3 对应的区间分别为: (0,2],(0,3],则 $b_2=b_3=1$,即有2个1;

 b_4, b_5, b_6, b_7 对应的区间分别为: (0,4], (0,5], (0,6], (0,7], 则 $b_4 = b_5 = b_6 = b_7 = 2$, 即有 $2^2 \land 2$;

 b_8,b_9,\cdots,b_{15} 对应的区间分别为: $(0,8],(0,9],\cdots,(0,15]$,则 $b_8=b_9=\cdots=b_{15}=3$,即有 2^3 个3;

 $b_{16}, b_{17}, \dots, b_{31}$ 对应的区间分别为: $(0.16], (0.17], \dots, (0.31]$, 则 $b_{16} = b_{17} = \dots = b_{31} = 4$, 即有 $2^4 \land 4$;

 $b_{32},b_{33},\cdots,b_{63}$ 对应的区间分别为: $(0,32],(0,33],\cdots,(0,63]$,则 $b_{32}=b_{33}=\cdots=b_{63}=5$,即有 2^5 个5;

 $b_{64}, b_{65}, \dots, b_{100}$ 对应的区间分别为: $(0,64], (0,65], \dots, (0,100]$, 则 $b_{64} = b_{65} = \dots = b_{100} = 6$, 即有 37 个 6.

所以 $S_{100} = 1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + 4 \times 2^4 + 5 \times 2^5 + 6 \times 37 = 480$.

29. 【解析】(1)
$$a_{n+1} = 2a_n + 1$$
,即 $a_{n+1} + 1 = 2a_n + 2$, $\frac{a_{n+1} + 1}{a_n + 1} = 2$,

因为 $a_1 + 2a_2 = a_3$, $a_3 = 2a_2 + 1$, 所以 $a_1 = 1$, $a_1 + 1 = 2$,

则数列 $\{a_n+1\}$ 是以2为首项、2为公比的等比数列, $a_n+1=2^n$, $a_n=2^n-1$.

(2) 因为 $a_n = 2^n - 1$,

所以
$$S_n = 2^1 + 2^2 + \dots + 2^n - n = \frac{2(1-2^n)}{1-2} - n = 2^{n+1} - n - 2$$
,

因为 $S_n \le 121$, 所以 $2^{n+1} - n - 2$? 121, $2^{n+1} - n \le 123$,

因为 $n \in \mathbb{N}^*$, 所以解得 $1 \le n \le 6$, 使得 $S_n \le 121$ 成立的n的最大值为6.

30. 【解析】(1) 根据题中条件,可得
$$\begin{cases} S_3 = 3(a_1 + d) = 9 \\ a_2^2 = a_1 a_5 \\ d > 1 \end{cases}$$
,即
$$\begin{cases} a_1 + d = 3 \\ (a_1 + d)^2 = a_1(a_1 + 4d), \\ d > 1 \end{cases}$$

解得
$$\begin{cases} a_1 = 1 \\ d = 2 \end{cases}$$
, 所以 $a_n = 1 + 2(n-1) = 2n - 1$;

(2) 由 (1) 知 $a_n = 2n-1$,

则
$$b_n - a_n = 2^{n-1} - 2n + 1$$
, $\Leftrightarrow f(n) = 2^{n-1} - 2n + 1$,

则
$$f(n+1)-f(n)=2^n-2(n+1)+1-2^{n-1}+2n-1=2^{n-1}-2$$
,

当 $n \ge 3$ 时, $f(n+1)-f(n)=2^{n-1}-2>0$, 即 $f(n)=2^{n-1}-2n+1$ 在 $n \ge 3$ 上单调递增;

所以 $f(n) \ge f(3) = 4-6+1=-1$;

$$\nabla f(1) = 2^{1-1} - 2 + 1 = 0$$
, $f(2) = 2 - 4 + 1 = -1$, $f(3) = 4 - 6 + 1 = -1$, $f(4) = 8 - 8 + 1 = 1$,

所以当 $n \ge 4$ 时,f(n) > 0,即 $b_n > a_n$;

当n = 2或3时, f(n) < 0, 即 $b_n < a_n$;

综上, 当 $n \le 3$ 时, $b_n \le a_n$; 当 $n \ge 4$ 时, $b_n > a_n$.