数列的概念、通项公式

一、单选题

- 1. 下列说法正确的是()
- A. 数列 1, 3, 5, 7 与数集{1, 3, 5, 7}是一样的
- B. 数列 1, 2, 3 与数列 3, 2, 1 是相同的
- C. 数列 $\left\{1+\frac{1}{n}\right\}$ 是递增数列
- D. 数列 $\left\{1+\frac{\left(-1\right)^n}{n}\right\}$ 是摆动数列
- 2. 设 S_n 是数列 $\left\{a_n\right\}$ 的前n项和,若 $S_n=n^2+2n$,则 $a_{2021}=$ ().
- A. 4043
- B. 4042
- C. 4041
- D. 2021
- 3. 数列 $\{a_n\}$ 中, $a_{n+1}=2a_n+1$, $a_1=1$,则 $a_6=$ ()
- **A.** 32
- **B.** 62
- C. 63
- D. 64
- 4. 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_n-a_{n+1}=2a_{n+1}\cdot a_n(n\in \mathbf{N}^*)$,则 $a_5=($
- A. $\frac{1}{9}$
- B. 9
- C. $\frac{1}{10}$
- D. 10
- 5. 已知数列 $\{a_n\}$ 的通项公式为 $a_n = -3n^2 + 88n$,则数列 $\{a_n\}$ 各项中最大项是(
- A. 第13项
- B. 第14项
- C. 第15项
- D. 第16项
- 6. 已知数列 $\{a_n\}$ 的前n项和为 S_n , $S_n = 2a_n 2$, 若存在两项 a_n , a_m , 使得 $a_n \cdot a_m = 64$, 则 $\frac{1}{m} + \frac{16}{n}$ 的最小

值为(

- A. $\frac{21}{5}$

B. 25 **潍坊**寫中数学 D. 17 3

- 7. 在数列 $\{a_n\}$ 中, $a_1 = 2$, $a_{n+1} = a_n + \ln(1 + \frac{1}{n})$,则 $a_n = \frac{1}{n}$
- A. $2 + \ln n$
- B. $2 + (n-1) \ln n$ C. $2 + n \ln n$
- D. $1 + n + \ln n$
- 8. 若数列 $\{a_n\}$ 满足 $a_1=3$, $a_n=3a_{n-1}+3^n$ $(n\geq 2)$, 则数列 $\{a_n\}$ 的通项公式 $a_n=$ ()
- A. 2×3^n

- C. $n \cdot 3^n$ D. $\frac{n}{3^n}$
- 9. 已知数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_n \in \{0,1,2,3\}$, $a_n \neq a_{n+1}$, $a_n = a_{n+3}$,则 S_{100} 可能的不同取值的个数为

()

B. 6

C. 8

D. 12

10. 数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_1=1$, $a_{n+1}=3S_n(n..1)$,则 a_n 等于()

A. $3 \times 4n$

B. $3\times4n+1$

C. $\begin{cases} 1, (n=1) \\ 3 \times 4^{n-2}, (n..2) \end{cases}$

D. $\begin{cases} 1, (n=1) \\ 3 \times 4^{n-2} + 1, (n..2) \end{cases}$

11. 已知数列 $\{a_n\}$ 的前n项和为 S_n ,且 $S_{n+1}+S_n=\frac{n^2-19n}{2}(n\in N^*)$,若 $a_{10}< a_{11}$,则 S_n 取最小值时n的值为

()

A. 10

B. 9

C. 11

D. 12

12. 已知数列 $\{a_n\}$ 满足 $a_1 = 1, a_{n+1} = \frac{a_n}{1 + \sqrt{a_n}} (n \in \mathbb{N}^*)$.记数列 $\{a_n\}$ 的前n项和为 S_n ,则(

A. $\frac{3}{2} < S_{100} < 3$ B. $3 < S_{100} < 4$ C. $4 < S_{100} < \frac{9}{2}$ D. $\frac{9}{2} < S_{100} < 5$

13. 设 $a,b \in \mathbf{R}$, 数列 $\left\{a_{n}\right\}$ 中, $a_{1} = a, a_{n+1} = a_{n}^{2} + b$, $n \in \mathbf{N}^{*}$,则 ()

A. $\stackrel{\triangle}{=} b = \frac{1}{2}, a_{10} > 10$

B. $\stackrel{\triangle}{=} b = \frac{1}{4}, a_{10} > 10$

C. $\triangleq b = -2, a_{10} > 10$

D. $\stackrel{\text{def}}{=} b = -4, a_{10} > 10$

二、多选题

14. 已知 S_n 是 $\{a_n\}$ 的前 n 项和, $a_1 = 2$, $a_n = 1 - \frac{1}{a_{n-1}} (n \ge 2)$,则下列选项错误的是()

A. $a_{2021} = 2$

B. $S_{2021} = 1012$

C. $a_{3n} \cdot a_{3n+1} \cdot a_{3n+2} = 1$

D. $\{a_n\}$ 是以3为周期的周期数列

15. 南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为"三角垛". "三角 垛"的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列 $\{a_n\}$,则

- A. $a_4 = 12$

- B. $a_{n+1} = a_n + n + 1$ C. $a_{100} = 5050$ D. $2a_{n+1} = a_n \cdot a_{n+2}$

16. 数列{F_n}: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... 称为斐波那契数列, 是由十三世纪意大利数学家列昂 纳多·斐波那契以兔子繁殖为例子而引入的,故又称为"兔子数列"。该数列从第三项开始,每项等于其前相 邻两项之和.记数列 $\{F_n\}$ 的前 n 项和为 S_n ,则下列结论正确的是(

A. $S_5 = F_7 - 1$

B. $S_5 = S_6 - 1$

C. $S_{2019}=F_{2021}-1$

- D. $S_{2019}=F_{2020}-1$
- 17. 数列 $\{a_n\}$ 满足 $a_1=1$, $a_n=a_{n+1}+\ln(1+a_{n+1})(n \in N^*)$, 则(
- A. 存在 n 使 $a_n \le 0$

B. 任意 n 使 $a_n > 0$

C. $a_n < a_{n+1}$

D. $a_n > a_{n+1}$

三、填空题

- 19. 在数列 $\{a_n\}$ 中, $a_1 = a$, $a_{n+1} = (a_n + 1)\cos n\pi$, S_n 是数列 $\{a_n\}$ 的前n 项和,若 $S_{2019} = -2019$,则a =

- 22. 将正奇数按如图所示的规律排列:

1

- 3
- 9 11 13 15
- 21 23 25 27 31 19

潍坊高中数学

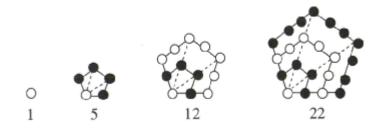
则 2019 在第_____行,从左向右第_____个数

17

23. 已知数列 $\{a_n\}$ 中各项是从 1、0、-1 这三个整数中取值的数列, S_n 为其前 n 项和,定义 $b_n = (a_n + 1)^2$, 且数列 $\{b_n\}$ 的前 n 项和为 T_n ,若 $S_{30} = -1$, $T_{30} = 51$,则数列 $\{a_n\}$ 的前 30 项中 0 的个数为______个.

- 24. 数列 $\{a_n\}$ 满足 $a_1 + 2a_2 + 3a_3 + \cdots + na_n = 2^n 1(n \in N^*)$, 则 $a_3 = \underline{\hspace{1cm}}$, $a_n = \underline{\hspace{1cm}}$
- 25. 毕达哥拉斯学派是古希腊哲学家毕达哥拉斯及其信徒组成的学派,他们把美学视为自然科学的一个组 成部分. 美表现在数量比例上的对称与和谐,和谐起于差异的对立,美的本质在于和谐. 他们常把数描绘

成沙滩上的沙粒或小石子,并由它们排列而成的形状对自然数进行研究. 如图所示,图形的点数分别为 $1,5,12,22,\cdots$,总结规律并以此类推下去,第8个图形对应的点数为______,若这些数构成一个数列,记 为数列 $\{a_n\}$,则 $a_1+\frac{a_2}{2}+\frac{a_3}{3}+\cdots+\frac{a_{21}}{21}=_____.$



四、解答题

26. 已知数列 $\{a_n\}$ 满足: $a_1=2$, $a_n+a_{n-1}=4n-2(n\geq 2)$.

(I) 求数列 $\{a_n\}$ 的通项公式;

(II) 若数列 $\{b_n\}$ 满足: $b_1+3b_2+7b_3+\cdots+\left(2^n-1\right)b_n=a_n$, 求数列 $\{b_n\}$ 的通项公式.

- 27. 设各项均为正的数列 $\{a_n\}$ 的前n项和为 S_n , 且 $4S_n = (a_n + 1)^2$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = S_n \cos \frac{2n\pi}{3}$, 求数列 $\{b_n\}$ 的前3n项的和 T_{3n} .

- 28. 已知数列 $\{a_n\}$ 中, $a_2 = \frac{1}{3}$, $a_n = a_{n+1} + 2a_n a_{n+1}$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = \frac{3^n}{a_n}$, 且数列 $\{b_n\}$ 的前n项和为 T_n , 求 T_n .

- 29. 已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=\begin{cases} a_n+1,n$ 为奇数, a_n , n为偶数.
 - (1) 求 a_2 , a_3 , a_4 , 并求 a_n ;
- (2) 求 $\{a_n\}$ 的前 100 项和 S_{100} .

- 30. 在数列 $\{a_n\}$ 中, $a_{n+1}=3a_n+2$ (n>0且 $n\in N^*$), $a_1=2$.

潍坊高中数学

- (2) 归纳猜想数列 $\{a_n\}$ 的通项公式,并证明;
- (3) 求数列 $\{a_n\}$ 的前n项和 S_n .

参考答案

1. D 2. A 3. C 4. A 5. C 6. A 7. A 8. C 9. D 10. C 11. A 12. A 13. A

14. AC 15. BC 16. AC 17. BD

18. 6 19. 1010 20.
$$\frac{1}{2n+1}$$
 21. 8 22. 32 49. 23. 7 24. $\frac{4}{3}$ $a_n = \frac{2^{n-1}}{n}$ 25. 92 336

26. 【解析】(I) 由
$$a_n + a_{n-1} = 4n - 2(n \ge 2)$$
 可化为 $(a_n - 2n) + (a_{n-1} - 2n + 2) = 0$.

$$\Leftrightarrow c_n = a_n - 2n$$
, $\text{III} c_n + c_{n-1} = 0$, $\text{III} c_n = -c_{n-1}$.

因为
$$a_1 = 2$$
, 所以 $c_1 = a_1 - 2 = 0$,

所以
$$c_n = 0$$
,

即
$$a_n - 2n = 0$$
, 故 $a_n = 2n$.

可知
$$b_1 + 3b_2 + 7b_3 + \cdots + (2^{n-1} - 1)b_{n-1} = a_{n-1}(n \ge 2)$$
 ,

两式作差得
$$(2^n-1)b_n = a_n - a_{n-1} = 2(n \ge 2)$$
,

$$\mathbb{RI}\,b_n=\frac{2}{2^n-1}\big(n\geq 2\big)\,.$$

又当
$$n=1$$
时, 也 $b_1=a_1=2$ 满足上式,

故
$$b_n = \frac{2}{2^n - 1}$$
.

27. 【解析】(1) 令
$$n=1$$
, 则 $4S_1=4a_1=\left(a_1+1\right)^2$, 可得 $\left(a_1-1\right)^2=0$, 得 $a_1=1$;

当
$$n \ge 2$$
 时,由 $4S_n = (a_n + 1)^2 = a_n^2 + 2a_n + 1$ 可得 $4S_{n-1} = a_{n-1}^2 + 2a_{n-1} + 1$,

两式相减得
$$a_n^2 - a_{n-1}^2 - 2a_n - 2a_{n-1} = 0$$
, 即 $(a_n + a_{n-1})(a_n - a_{n-1} - 2) = 0$,

由数列
$$\{a_n\}$$
的各项为正,可得 $a_n - a_{n-1} = 2$,

所以数列 $\{a_n\}$ 是以1为首项,2为公差的等差数列.

即数列 $\{a_n\}$ 的通项公式为 $a_n=1+2(n-1)=2n-1$;

(2) 由
$$a_n = 2n - 1$$
 得 $S_n = \frac{n(1 + 2n - 1)}{2} = n^2$,则有 $b_n = n^2 \cos \frac{2n\pi}{3}$,

潍坊高中数学

因为
$$b_{3n} + b_{3n-1} + b_{3n-2} = (3n)^2 \cos 2n\pi + (3n-1)^2 \cos \left(2n\pi - \frac{2\pi}{3}\right) + (3n-2)^2 \cos \left(2n\pi - \frac{4\pi}{3}\right)$$

$$=9n^2-\frac{(3n-1)^2+(3n-2)^2}{2}=9n-\frac{5}{2},$$

因此,
$$T_{3n} = \frac{n\left(\frac{13}{2} + 9n - \frac{5}{2}\right)}{2} = \frac{9n^2 + 4n}{2}$$
.

28. 【解析】(1) 因为
$$a_n = a_{n+1} + 2a_n a_{n+1}$$
, 令 $n = 1$, 则 $a_1 = a_2 + 2a_1 a_2$, 又 $a_2 = \frac{1}{3}$,

所以 $a_1 = 1$,

对
$$a_n = a_{n+1} + 2a_n a_{n+1}$$
 两边同时除以 $a_n a_{n+1}$, 得 $\frac{1}{a_{n+1}} - \frac{1}{a_n} = 2$,

又因为
$$\frac{1}{a_1}=1$$
, 所以 $\left\{\frac{1}{a_n}\right\}$ 是首项为 1, 公差为 2 的等差数列,

所以
$$\frac{1}{a_n} = 1 + 2(n-1) = 2n-1$$
, 故 $a_n = \frac{1}{2n-1}$;

(2) 由 (1) 得:
$$b_n = (2n-1) \cdot 3^n$$

所以
$$T_n = 1 \cdot 3^1 + 3 \cdot 3^2 + 5 \cdot 3^3 + \dots + (2n-1) \cdot 3^n$$
,

$$\text{III } 3T_n = 1 \cdot 3^2 + 3 \cdot 3^3 + 5 \cdot 3^4 + \dots + (2n-1) \cdot 3^{n+1}$$

两式相减得
$$-2T_n = 3 + 2(3^2 + 3^3 + \dots + 3^n) - (2n-1) \cdot 3^{n+1}$$

所以
$$-2T_n = 3 + 2 \times \frac{3^2 - 3^{n+1}}{1 - 3} + (1 - 2n) \cdot 3^{n+1} = (2 - 2n) \cdot 3^{n+1} - 6$$

故
$$T_n = (n-1)\cdot 3^{n+1} + 3$$

29. 【解析】: (1) $a_2 = a_1 + 1 = 2$, $a_3 = a_2 = 2$ $a_3 = a_3 + 1 = 3$ 文字

当
$$k \in \mathbb{N}^*$$
时,由题意,得 $a_{2k} = a_{2k-1} + 1$, $a_{2k+1} = a_{2k}$.

于是
$$a_{2k+1} = a_{2k-1} + 1$$
,即 $a_{2k+1} - a_{2k-1} = 1$.

所以,
$$\{a_{2k-1}\}$$
是以1为首项,1为公差的等差数列,

所以
$$a_{2k-1} = a_1 + (k-1) \cdot 1 = k$$
, 即 n 为奇数时, $a_n = \frac{n+1}{2}$.

当
$$n$$
 为偶数时, $a_n = a_{n-1} + 1 = \frac{(n-1)+1}{2} + 1 = \frac{n+2}{2}$.

所以,
$$a_n = \begin{cases} \frac{n+1}{2}, n$$
为奇数,
$$\frac{n+2}{2}, n$$
为偶数.

(2)
$$\not\equiv 1$$
: $S_{100} = (a_1 + a_3 + \dots + a_{99}) + (a_2 + a_4 + \dots + a_{100})$

$$=(1+2+3+\cdots+50)+(2+3+4+\cdots+51)$$

$$= \frac{(1+50)\times 50}{2} + \frac{(2+51)\times 50}{2} = 2600$$

法 2: 由 (1), 当
$$k \in \mathbb{N}^*$$
 时, $a_{2k-1} = k$, $a_{2k} = k+1$.

$$\Leftrightarrow b_k = a_{2k-1} + a_{2k}$$
, $\bigcup b_k = 2k+1$.

$$S_{100} = (a_1 + a_2) + (a_3 + a_4) + \dots + (a_{99} + a_{100}) = b_1 + b_2 + \dots + b_{50}$$

$$=\frac{b_1+b_{50}}{2}\times 50=\frac{3+101}{2}\times 50=2600.$$

30. 【解析】(1)
$$a_1 = 2$$
, 令 $n = 1$ 得, $a_2 = 3a_1 + 2 = 8$,

令
$$n = 2$$
得, $a_3 = 3a_2 + 2 = 26$,

故猜想 $a_n = 3^n - 1$.证明如下:

因为
$$a_{n+1} = 3a_n + 2$$
,所以 $a_{n+1} + 1 = 3(a_n + 1)$,所以 $\frac{a_{n+1} + 1}{a_n + 1} = 3$.

又因为 $a_1+1=3$,所以数列 $\{a_n+1\}$ 是以3为首项,3为公比的等比数列.

所以
$$a_n + 1 = 3^n$$
, 即 $a_n = 3^n - 1$;

(3)
$$S_n = (3+3^2+3^3+...+3^n)-(1+1+1+...+1)=\frac{3(1-3^n)}{1-3}-n=\frac{3^{n+1}}{2}-n-\frac{3}{2}$$