平面向量

一、单选题

- 1. 已知向量 $\vec{a} = (2.3), \vec{b} = (3.2), \quad \text{则} |\vec{a} \vec{b}| =$
- A. $\sqrt{2}$

B. 2

C. $5\sqrt{2}$

- D. 50
- 2. 在 $\triangle ABC$ 中,D是 AB 边上的中点,则 \overrightarrow{CB} = ()
- A. $2\overrightarrow{CD} + \overrightarrow{CA}$
- B. $\overrightarrow{CD} 2\overrightarrow{CA}$
- C. $2\overrightarrow{CD} \overrightarrow{CA}$
- D. $\overrightarrow{CD} + 2\overrightarrow{CA}$
- 3. 已知非零向量 \vec{a} , \vec{b} , \vec{c} ,则" \vec{a} · \vec{c} = \vec{b} · \vec{c} "是" \vec{a} = \vec{b} "的(
- A. 充分不必要条件

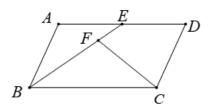
B. 必要不充分条件

C. 充分必要条件

- D. 既不充分又不必要条件
- 4. 已知向量 $\vec{a}\vec{b}$ \vec{a} , \vec{b} 满足 $|\vec{a}|=5$, $|\vec{b}|=6$, $\vec{a}\cdot\vec{b}=-6$, 则 $\cos\langle\vec{a},\vec{a}+\vec{b}\rangle=$ (
- A. $-\frac{31}{35}$
- B. $-\frac{19}{35}$ C. $\frac{17}{35}$
- 5. 已知向量 \vec{a} 、 \vec{b} 满足| \vec{a} |=1,| \vec{b} |=2,| $\vec{2a}$ + \vec{b} |= $\sqrt{3}$ | $\vec{2a}$ - \vec{b} |,则 \vec{a} 与 \vec{b} 夹角为(
- A. 30°
- B. 45°
- C. 60°
- D. 120°
- 6. 已知向量 $\vec{a} = (1,3)$, $\vec{b} = (3,2)$,向量 \vec{a} 在向量 \vec{b} 上的投影等于(
- A. $\frac{9\sqrt{10}}{10}$
- B. 9
- D. $\frac{9\sqrt{13}}{13}$
- 7. 设向量 \vec{a} 与 \vec{b} 的夹角为 θ ,定义 \vec{a} 与 \vec{b} 的"向量积": $\vec{a} \times \vec{b}$ 是一个向量,它的模 $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta$,若

 $\vec{a} = (-\sqrt{3}, -1), \vec{b} = (1, \sqrt{3}), \quad \text{则} |\vec{a} \times \vec{b}|$ ()維坊高中数学

- A. $\sqrt{3}$
- B. 2
- C. $2\sqrt{3}$
- D. 4
- 8. 如图,平行四边形 ABCD 中,E 是 AD 的中点,F 在线段 BE 上,且 BF = 3FE ,记 \vec{a} = \vec{BA} , \vec{b} = \vec{BC} ,则 $\overrightarrow{CF} = ($



A.
$$\frac{2}{3}\vec{a} + \frac{1}{3}\vec{b}$$

B.
$$\frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$$

A.
$$\frac{2}{3}\vec{a} + \frac{1}{3}\vec{b}$$
 B. $\frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$ C. $-\frac{1}{4}\vec{a} + \frac{3}{8}\vec{b}$ D. $\frac{3}{4}\vec{a} - \frac{5}{8}\vec{b}$

D.
$$\frac{3}{4}\vec{a} - \frac{5}{8}\vec{b}$$

- 9. 已知平面向量 \overrightarrow{a} , \overrightarrow{b} , 其中 $|\overrightarrow{b}| = 2$, 向量 \overrightarrow{a} 与 $\overrightarrow{b} = a$ 的夹角为150°, 则 $|\overrightarrow{a}|$ 的最大值为())
- A. $2\sqrt{3}$

- D. $\frac{4\sqrt{3}}{2}$
- 10. 已知向量 $\mathbf{a} = (2,7)$, b = (x,-3), 且a = b的夹角为钝角,则实数x的取值范围为

A.
$$(-\infty, \frac{21}{2})$$

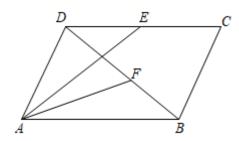
B.
$$\left(-\frac{6}{7}, \frac{21}{2}\right)$$

C.
$$(-\infty, \frac{6}{7})$$

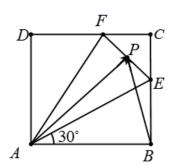
D.
$$(-\infty, -\frac{6}{7}) \bigcup (-\frac{6}{7}, \frac{21}{2})$$

11. 如图,在平行四边形 ABCD中,点 E 是 CD 的中点,点 F 为线段 BD 上的一动点,若

$$\overrightarrow{AF} = x\overrightarrow{AE} + y\overrightarrow{DC}(x > 0, y > 0)$$
,则 $\frac{2-3x}{4y^2+1}$ 的最大值为(



- B. $\frac{3}{4}$
- C. 1
- D. 2
- 12. 如图,在正方形 ABCD中,边长为 $\frac{\sqrt{3}}{2}$, E E BC 边上的一点, $\angle EAB = 30^{\circ}$,以 A 为圆心, AE 为半径 画弧交CD于点F,P是弧EF上(包括边界点)任一点,则 \overrightarrow{AP} . \overrightarrow{BP} 的取值范围是(



- A. $\left[1-\frac{\sqrt{3}}{2},\frac{1}{2}\right]$ B. $\left[\frac{1}{4},1-\frac{\sqrt{3}}{4}\right]$ C. $\left[\frac{1}{2},\frac{\sqrt{3}}{2}\right]$ D. $\left[\frac{\sqrt{3}}{2},1\right]$

二、多选题

- 13. 已知向量 $\overset{1}{a} = (2,-1), \overset{1}{b} = (-3,2), \overset{1}{c} = (1,1), 则 ()$
- A. \vec{a}/\vec{b}

B. $(\vec{a} + \vec{b}) \perp \vec{c}$

C.
$$\vec{a} + \vec{b} = \vec{c}$$

D.
$$\vec{c} = 5\vec{a} + 3\vec{b}$$

- 14. 已知正方形 ABCD 的边长为 2,向量 \vec{a} , \vec{b} 满足 \overline{AB} = $2\vec{a}$, \overline{AD} = $2\vec{a}$ + \vec{b} ,则(
- $A. \quad \left| \vec{b} \right| = 2\sqrt{2}$
- B. $\vec{a} \perp \vec{b}$
- C. $\vec{a} \cdot \vec{b} = 2$ D. $(4\vec{a} + \vec{b}) \perp \vec{b}$
- 15. 在直角梯形 ABCD中,CD//AB, $AB \perp BC$,CD=1,AB=BC=2,E 为线段 BC 的中点,则(
- A. $\overrightarrow{AC} = \overrightarrow{AD} + \frac{1}{2} \overrightarrow{AB}$

B. $\overrightarrow{DE} = \frac{3}{4} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{AD}$

C. $\overrightarrow{AB} \cdot \overrightarrow{CD} = 2$

- D. $\overrightarrow{AE} \cdot \overrightarrow{AC} = 6$
- 16. 已知O为坐标原点,点 $P_1(\cos\alpha,\sin\alpha)$, $P_2(\cos\beta,-\sin\beta)$, $P_3(\cos(\alpha+\beta),\sin(\alpha+\beta))$,A(1,0),则 ()

A.
$$\left| \overrightarrow{OP_1} \right| = \left| \overrightarrow{OP_2} \right|$$

B.
$$|\overrightarrow{AP_1}| = |\overrightarrow{AP_2}|$$

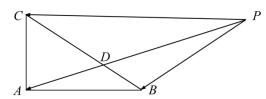
C.
$$\overrightarrow{OA} \cdot \overrightarrow{OP_3} = \overrightarrow{OP_1} \cdot \overrightarrow{OP_2}$$

D.
$$\overrightarrow{OA} \cdot \overrightarrow{OP_1} = \overrightarrow{OP_2} \cdot \overrightarrow{OP_3}$$

三、填空题

- 17. 已知向量 $\vec{a} = (2,5), \vec{b} = (\lambda,4), \ \vec{a}_{a//b}, \ \$ 则 $\lambda =$ ______.
- 18. 已知向量 $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 1$, $|\vec{b}| = |\vec{c}| = 2$, $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} =$ ______.
- 19. 已知向量 $\vec{a} = (1,3), \vec{b} = (3,4)$,若 $(\vec{a} \lambda \vec{b}) \perp \vec{b}$,则 $\lambda =$ ______.
- 20. 设向量 $\vec{a} = (m,1), \vec{b} = (1,2)$,且 $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$,则 m =______.
- 21. 在 $\triangle ABC$ 中, AB=3 , BC=2 , $AC=\sqrt{7}$,则 $\overline{BA}\cdot\overline{BC}=$
- 22. 已知 \vec{a} , 为单位向量,且 $\vec{a}\cdot\vec{b}$ =0,若 \vec{c} =2 \vec{a} - $\sqrt{5}\vec{b}$,则 $\cos < \vec{a}$, $\vec{c} >=$
- 23. 在 $\triangle ABC$ 中, $\angle BAC = \frac{2\pi}{3}$,已知 BC 过上的中线 AD = 3 ,则 $\triangle ABC$ 面积的最大值为_
- 24. 在 $\triangle ABC$ 中,AB=4,AC=3, $\angle BAC=90^\circ$,D 在边 BC上,延长 AD 到 P,使得 AP=9,若

 $\overrightarrow{PA} = m\overrightarrow{PB} + (\frac{3}{2} - m)\overrightarrow{PC}$ (*m* 为常数),则 *CD* 的长度是_____.



25. $\vec{a} = (2,1)$, $\vec{b} = (2,-1)$, $\vec{c} = (0,1)$, $y = (\vec{a}+\vec{b})\cdot\vec{c} =$; $\vec{a}\cdot\vec{b} =$ _____.

26. 已知正方形 ABCD 的边长为 2,点 P满足 $\overrightarrow{AP} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$,则 $|\overrightarrow{PD}| = \underline{\qquad}$; $\overrightarrow{PB} \cdot \overrightarrow{PD} = \underline{\qquad}$

四、解答题

- 28. 己知向量 $\bar{a} = (1,\cos\alpha)$, $\bar{b} = (\frac{1}{3},\sin\alpha)$, $\alpha \in (0,\pi)$
- (1) 若 $\bar{\alpha} \perp \bar{b}$, 求 $\sin 2\alpha$ 的值;
- (2) 若 \bar{a}/\bar{b} , 求 $\frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha}$ 值.
- 29. 在 $\triangle ABC$ 中, BC 的中点为 D , 设向量 $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$.
- (1) 用 \vec{a} , \vec{b} 表示向量 \overrightarrow{AD} ;
- (2) 若向量 \vec{a} , \vec{b} 满足 $|\vec{a}| = 3$, $|\vec{b}| = 2$, $\langle \vec{a}, \vec{b} \rangle = 60^{\circ}$, 求 $\overrightarrow{AB} \cdot \overrightarrow{AD}$ 的值.

- 30. 在 $\triangle ABC$ 中, $2\cos^2\frac{A-B}{2}\cos B \sin(A-B)\sin B + \cos(A+C) = -\frac{3}{5}$.
- (1) 求 cosA 的值:
- (2) 若 $a=4\sqrt{2}$, b=5, 求 \overrightarrow{BA} 在 \overrightarrow{AC} 方向上的投影.

参考答案

1. A 2. C 3. B 4. D 5. C 6. D 7. B 8. D 9. C 10. D 11. A 12. B

13. BD 14. AD 15. ABD 16. AC

17.
$$\frac{8}{5}$$
 18. $-\frac{9}{2}$ 19. $\frac{3}{5}$ 20. -2 21. 3 22. $\frac{2}{3}$. 23. $9\sqrt{3}$. 24. $\frac{18}{5}$

25. 0 3 26. $\sqrt{5}$ -1 27. 1 $\frac{11}{20}$

28. 【解析】(1) 由 $\vec{a} \perp \vec{b}$ 得, $\vec{a} \cdot \vec{b} = \frac{1}{3} + \sin \alpha \cos \alpha = 0$,

$$\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha = -\frac{1}{3} ,$$

$$\sin 2\alpha = -\frac{2}{3}$$

(2) 由 $\vec{a}//\vec{b}$ 得,

$$\sin \alpha = \frac{1}{3}\cos \alpha, \tan \alpha = \frac{1}{3}$$
,

$$\therefore \frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha} = \frac{\tan \alpha + 1}{\tan \alpha - 1} = \frac{\frac{1}{3} + 1}{\frac{1}{2} - 1} = \frac{\frac{4}{3}}{\frac{2}{3}} = -2.$$

29. 【解析】(1)
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \vec{a} + \frac{1}{2}\overrightarrow{BC} = \vec{a} + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AC}) = \vec{a} - \frac{1}{2}\vec{a} + \frac{1}{2}\vec{b} = \frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$$
,

所以
$$\overrightarrow{AD} = \frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$$
;

$$(2) \ \overrightarrow{AB} \cdot \overrightarrow{AD} = \vec{a} \cdot \left(\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}\right) = \frac{1}{2}\vec{a}^2 + \frac{1}{2}\vec{a} \cdot \vec{b} = \frac{1}{2} \times 3^2 + \frac{1}{2} \times 3 \times 2 \times \cos 60^\circ = 6,$$

所以 $\overrightarrow{AB} \cdot \overrightarrow{AD} = 6$.

30. 【解析】(1) 由
$$2\cos^{-2}\frac{A-B}{2}\cos B - \sin(A-B)\sin B + \cos(A+C) = -\frac{3}{5}$$

可得 $cos(A-B)cos B - sin(A-B)sin B = -\frac{3}{5}$,

$$\square cos(A-B+B)=-\frac{3}{5},$$

即
$$\cos A = -\frac{3}{5}$$
,

(2) 由余弦定理可知
$$(4\sqrt{2})^2 = 5^2 + c^2 - 2 \times 5c \times (-\frac{3}{5})$$
,

解得
$$c=1$$
, $c=-7$ (舍去).

向量
$$\overrightarrow{BA}$$
在 \overrightarrow{AC} 方向上的投影: $|\overrightarrow{BA}|\cos(\pi - A) = -c\cos A = \frac{3}{5}$.