2022 届星云教学联盟高三年级第一次线上联考

数学试题参考答案与评分标准

- 一、选择题
 - 1. A
- 2. C
- 3. D
- 4. B

- 5. D
- 6. D
- 7. C
- 8. B

- 二、选择题
 - 9. AC
- 10. ABD
- 11. BC
- 12. AD

- 三、填空题
 - 13. $\frac{1}{4}$
 - 15. $\frac{\sqrt{2}}{2}$

- 14. $\frac{e^x}{r^3}$ (答案不唯一)
- 16. $\frac{\sqrt{3}}{2}$ $\left[\frac{11-6\sqrt{3}}{3}, \frac{19}{3}\right]$

- 四、解答题
- 17. 解:

(1) 由
$$\frac{1}{\tan B} + \frac{1}{\tan C} = \frac{2a}{c}$$
 及正弦定理得

$$\frac{\cos B}{\sin B} + \frac{\cos C}{\sin C} = \frac{2\sin A}{\sin C},$$
 (1 \(\frac{\frac{1}}{2}\))

所以 $\sin B \cos C + \cos B \sin C = 2 \sin A \sin B$.

结合 $A+B+C=\pi$, 得

$$\sin A = \sin(\pi - B - C) = \sin(B + C)$$

 $= \sin B \cos C + \cos B \sin C = 2 \sin A \sin B$.

因为
$$A,B,C \in (0,\pi)$$
,所以 $\sin A > 0$, $\sin B > 0$, $\sin C > 0$. (2分)

于是
$$\sin B = \frac{1}{2}$$
,所以 $B = \frac{\pi}{6}$ 或 $\frac{5\pi}{6}$. (3分)

因为
$$\tan A = 4\sqrt{3} > \sqrt{3}$$
,所以 $A > \frac{\pi}{3}$. (4分)

所以
$$B = \frac{\pi}{6}$$
. (5分)

(2) 由
$$\tan A = 4\sqrt{3}$$
, 得 $\sin A = \frac{4\sqrt{3}}{7}$, $\cos A = \frac{1}{7}$. (6分)

由正弦定理得

$$\frac{a}{\sin A} = \frac{b}{\sin B} \,, \tag{7\,\%}$$

所以
$$a = 8\sqrt{3}$$
 . (8分)

由(1)知

$$\sin C = \sin(A+B) = \sin A \cos B + \cos A \sin B = \frac{13}{14}$$
 (9 $\%$)

由三角形面积公式得

$$S = \frac{1}{2}ab\sin C = 26\sqrt{3}$$
 (10 $\%$)

18. 解:

(1) 由
$$\{a_n\}$$
 是常数列及 $a_{n+1} = a_n^2$ 得 $a_n^2 = a_n$. (1分)

所以 $a_n = 0$ 或 $a_n = 1$.

因此
$$a=0$$
 或 1. (3分)

(2) (i) 由
$$a = 2$$
 及 $a_{n+1} = a_n^2$ 得 $a_n \ge 2$. (4分)

所以
$$\log_2 a_{n+1} = \log_2 a_n^2 = 2\log_2 a_n$$
,且 $\log_2 a_n > 0$. (5分)

所以
$$\{\log_2 a_n\}$$
是以1为首项,公比为2的等比数列. (7分)

(ii) 由(i) 知 $\log_2 a_n = 2^{n-1}$. 所以

$$b_n = \frac{\log_2 a_{n+1}}{(\log_2 a_{n+1} - 1)(\log_2 a_{n+2} - 1)} = \frac{2^n}{(2^n - 1)(2^{n+1} - 1)} = \frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1}.$$
 (10 分)

所以数列 $\{b_n\}$ 的前n项和

$$S_n = (\frac{1}{1} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{7}) + \dots + (\frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1}) = 1 - \frac{1}{2^{n+1} - 1} = \frac{2^{n+1} - 2}{2^{n+1} - 1}.$$
 (12 $\%$)

19. 解:

(1) 连接 SO. 根据圆锥的性质得 SO 上平面 ABC.

因为 $BC \subset$ 平面ABC,所以 $BC \perp SO$. (1分)

因为
$$\odot O$$
 的内接三角形 $\triangle ABC$ 为等边三角形,所以 $BC \perp OA$. (2分)

因为
$$SO \cap OA = O$$
,所以 $BC \perp$ 平面 SOA . (3分)

而
$$SA \subset \text{平面 } SOA$$
,因此 $SA \perp BC$. (4分)

(2) 由(1) 知 SO、OA、BC 两两垂直.

以O为原点建立如图所示的空间直角坐标系. (5分)

由圆锥的侧面展开图恰好为半圆得

$$\pi \cdot SA = 2\pi \cdot OA$$

所以
$$SA = 2OA = 4$$
. (6分)

在 Rt $\triangle SOA$ 中,由勾股定理得 $SO = \sqrt{SA^2 - OA^2} = 2\sqrt{3}$.

于是
$$A(0,0,2)$$
 , $B(-\sqrt{3},-1,0)$, $C(\sqrt{3},-1,0)$, $S(0,0,2\sqrt{3})$. (7分)

由 D 是底面 $\odot O$ 上可设 $D(2\cos\theta, 2\sin\theta, 0)(\theta \in \mathbf{R})$.

于是
$$\vec{SD} = (2\cos\theta, 2\sin\theta, -2\sqrt{3})$$
, $\vec{BC} = (2\sqrt{3}, 0, 0)$, $\vec{CS} = (-\sqrt{3}, 1, 2\sqrt{3})$.

曲
$$\overrightarrow{DE} = 2\overrightarrow{ES}$$
 得 $\overrightarrow{SE} = \frac{1}{3}\overrightarrow{SD} = (\frac{2}{3}\cos\theta, \frac{2}{3}\sin\theta, -\frac{2\sqrt{3}}{3})$.

所以 $\overrightarrow{CE} = \overrightarrow{CS} + \overrightarrow{SE} = (\frac{2}{3}\cos\theta - \sqrt{3}, \frac{2}{3}\sin\theta + 1, \frac{4\sqrt{3}}{3})$.

平面 ABC 的一个法向量为 $n_1 = (0,0,1)$.

设平面 EBC 的法向量为 $\pmb{n}_2 = (x,y,z)$. 由 $\pmb{n}_2 \cdot \overrightarrow{BC} = \pmb{n}_2 \cdot \overrightarrow{CE} = 0$ 得

$$\begin{cases} 2x = 0 \\ (\frac{2}{3}\cos\theta - \sqrt{3})x + (\frac{2}{3}\sin\theta + 1)y + \frac{4\sqrt{3}}{3}z = 0 \end{cases}.$$

解得
$$\begin{cases} x = 0 \\ (2\sin\theta + 3)y = -4\sqrt{3}z \end{cases}$$
 , 不妨取 $\mathbf{n}_2 = (0, -4\sqrt{3}, 2\sin\theta + 3)$. (9分)

设二面角 A-BC-E 为 φ . 由图可知

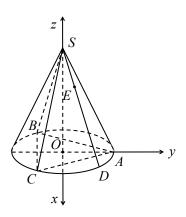
$$\cos \varphi = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} = \frac{2\sin \theta + 3}{\sqrt{1} \times \sqrt{48 + (2\sin \theta + 3)^2}}.$$
 (10 \(\frac{\psi}{1}\))

记 $t = 2\sin\theta + 3 \in [1,5]$, 则

$$\cos \varphi = \frac{t}{\sqrt{48 + t^2}} = \sqrt{\frac{1}{\frac{48}{t^2} + 1}} \ge \sqrt{\frac{1}{48 + 1}} = \frac{1}{7}.$$
 (11 \(\frac{\psi}{1}\))

当且仅当 $\sin\theta = -1$, 即点 D位于劣弧 BC 中点时, 等号成立.

因此二面角
$$A-BC-E$$
 余弦值的最小值是 $\frac{1}{7}$. (12 分)



20. 解:

(1) 选择的回归模型是
$$\hat{A} = b \lg p + a$$
. (1分)

由题设数据,利用最小二乘法得到

$$\hat{b} = \frac{\sum_{i=1}^{10} A_i q_i - 10\overline{Aq}}{\sum_{i=1}^{10} q_i^2 - 10\overline{q}^2} = \frac{84000 - 10 \times 360 \times 10}{2500 - 10 \times 10^2} = 32,$$
(4 \(\frac{1}{12}\))

$$\hat{a} = A - \hat{bq} = 360 - 32 \times 10 = 40$$
. (6 \(\frac{1}{2}\))

因此中间变量 A 与降雨重现期 p 的线性回归方程为 $\hat{A} = 32 \lg p + 40$.

结合题设知暴雨强度i、降雨历时t、降雨重现期p具有的函数关系是

$$i = \frac{32 \lg p + 40}{(t+20)^{0.85}} \,. \tag{8 \(\frac{1}{2}\)}$$

(2) 由题设可取 i=3.4 mm/min,t=60 min 代入(1)中函数关系,得

$$3.4 = \frac{32 \lg p + 40}{(60 + 20)^{0.85}}.$$

所以
$$p = 10^{\frac{3.4 \times 40 - 40}{32}} = 1000$$
 (年).

因此可以认为"今年河南的暴雨千年一遇". (12分)

21. 解:

$$f(x)$$
 的定义域是 $(0,+\infty)$. 求导得 $f'(x) = a \ln x - x + \frac{1}{x}$. (1分)

令
$$g(x) = f'(x)$$
, 得 $g'(x) = -\frac{x^2 - ax + 1}{x^2}$. (2分)

注意到 f(1) = f'(1) = 0.

(1) 当
$$a = 2$$
 时,注意到 $g'(x) = -\frac{x^2 - 2x + 1}{x^2} = -\frac{(x - 1)^2}{x^2} \le 0$,且等号成

立当且仅当x=1.

因此
$$f'(x)$$
 在 $(0,+\infty)$ 上单调递减.

(3分)

所以在(0,1)上f'(x) > f(1) = 0,在 $(1,+\infty)$ 上f'(x) < f(1) = 0.

因此 f(x) 在 (0,1) 上单调递增,在 $(1,+\infty)$ 上单调递减.

于是
$$f(x) \leq f(1) = 0$$
. (4 分)

(2)(i)①若 $a \leq 0$,则f'(x)在 $(0,+\infty)$ 上单调递减.

由 (1) 知 f(x) 在 (0,1) 上单调递增,在 (1,+ ∞) 上单调递减, f(x) 有且仅有 1 个极值点,不合题意.

②若 0 < a < 2, 因为二次函数 $y = x^2 - ax + 1$ 的判别式 $\Delta = a^2 - 4 < 0$, 所以 g'(x) < 0 恒成立, f'(x) 在 $(0,+\infty)$ 上单调递减.

由 (1) 知 f(x) 在 (0,1) 上单调递增,在 (1,+ ∞) 上单调递减, f(x) 有且仅有 1 个极值点,不合题意.

③若 a=2,由(1)知 f(x)在(0,1)上单调递增,在(1,+ ∞)上单调递减, f(x)有且仅有1个极值点,不合题意. (5分)

④若
$$a > 2$$
, 令 $g'(x) = 0$, 得 $x = \frac{a \pm \sqrt{a^2 - 4}}{2}$.

记
$$x_A = \frac{a - \sqrt{a^2 - 4}}{2}$$
 , $x_B = \frac{a + \sqrt{a^2 - 4}}{2}$, 结合二次函数 $y = x^2 - ax + 1$ 的

图象可知, 在 (x_A,x_B) 上g'(x)>0, 在 $(0,x_A)$ $\bigcup (x_B,+\infty)$ 上g'(x)<0.

所以
$$g(x)$$
在 $(0,x_A)$, $(x_B,+\infty)$ 上分别单调递减,在 (x_A,x_B) 上单调递增. (6分)

因此 $f'(x_A) < f'(1) = 0$, $f'(x_B) > f'(1) = 0$.

当
$$x \in (0,1)$$
 时,因为 $\ln x \le x - 1 < x$,所以 $\ln x = -2 \ln \sqrt{\frac{1}{x}} > -2 \sqrt{\frac{1}{x}}$.

则
$$f'(x_0) > -\frac{2a}{\sqrt{x_0}} - x_0 + \frac{1}{x_0} = (\frac{1}{4x_0} - x_0) + (\frac{3}{4x_0} - \frac{2a}{\sqrt{x_0}}) > 0$$
.

由零点存在性定理, $\exists 唯一 x_1 \in (0, x_4)$, $f'(x_1) = 0$.

即
$$f'(x)$$
 在 $(0,1)$ 上有且仅有一个变号零点 x_1 . (7分)

当
$$x \in (1,+\infty)$$
 时,因为 $f'(\frac{1}{x_1}) = a \ln \frac{1}{x_1} - \frac{1}{x_1} + x_1 = -(a \ln x_1 - x_1 + \frac{1}{x_1}) = 0$,

且 f'(x) 在 $(x_B, +\infty)$ 上单调递减, 所以 f'(x) 在 $(1, +\infty)$ 上有且仅有一个变号零点

 $\frac{1}{x_1}$.

此时 $x_1, x_2 = 1, x_3 = \frac{1}{x_1}$ 是 f(x) 的极值点.

综上, 实数
$$a$$
 的取值范围是 $(2,+\infty)$. (8分)

(ii) 由(i) 知 f(x)恰好有 3 个极值点当且仅当 a > 2.

此时我们有
$$\frac{x_1}{x_2} + \frac{x_2}{x_3} + \frac{x_3}{x_1} = x_3^2 + \frac{2}{x_3}$$
. (9分)

设 $h(x) = x^2 + \frac{2}{x}$,则我们只需要证明 $h(x_3) > a^2 - 4a + 7$.

求导得 $h'(x) = 2x - \frac{2}{x^2}$, 所以 h(x) 在 $(1,+\infty)$ 上单调递增.

注意到
$$x_3 > x_B = \frac{a + \sqrt{a^2 - 4}}{2} > a - 1 > 1$$
,所以 $h(x_3) > (a - 1)^2 + \frac{2}{a - 1}$. (10 分)

因此我们只需要证明 $(a-1)^2 + \frac{2}{a-1} > a^2 - 4a + 7$.

实际上,上式等价于 $(a-2)^2 > 0$,显然成立. 因此原不等式得证. (12 分)

22. 解:

(1) 令
$$c = \sqrt{a^2 + b^2}$$
 为 C 的半焦距,由题设得 $\begin{cases} \frac{c}{a} = 2 \\ a + c = 3 \end{cases}$ (2分)

解得
$$\begin{cases} a=1 \\ b=\sqrt{3} \end{cases}$$
. 所以 C 的标准方程是 $x^2 - \frac{y^2}{3} = 1$. (4分) $c=2$

(2) (i) 由题设得
$$B(-x_0,-y_0)$$
, $E(-\frac{5}{3}x_0,y_0)$.

所以直线 *BF* 的方程是 $y = -3\frac{y_0}{x_0}x - 4y_0$. 把它代入 $x^2 - \frac{y^2}{3} = 1$ 得

$$\left(\frac{9y_0^2}{x_0^2} - 3\right)x^2 + \frac{24y_0^2}{x_0}x + (16y_0^2 + 3) = 0.$$
 (5 \(\frac{1}{2}\))

直线 BF 与 C 有 2 个交点,则 $\frac{9y_0^2}{x_0^2} - 3 \neq 0$.

曲韦达定理得
$$x_F \cdot (-x_0) = \frac{16y_0^2 + 3}{\frac{9y_0^2}{x_0^2} - 3}$$
,解得 $x_F = \frac{16y_0^2 + 3}{3x_0 - \frac{9y_0^2}{x_0}}$. (7分)

所以
$$y_F = -3\frac{y_0}{x_0}x - 4y_0 > 0$$
 , 得 $x_F < -\frac{4}{3}x_0 < 0$ 已经成立.

因此只需要
$$x_F = \frac{16y_0^2 + 3}{3x_0 - \frac{9y_0^2}{x_0}} < -\frac{4}{3}x_0$$
,解得 $x_0 > \frac{3\sqrt{2}}{4}$.

所以
$$x_0$$
的取值范围是 $(\frac{3\sqrt{2}}{4},+\infty)$. (8分)

(ii)由(i)可知

$$k_{AF} = \frac{y_0 + 3\frac{y_0}{x_0}x_F + 4y_0}{x_0 - x_F} = \frac{-3\frac{y_0}{x_0}(x_0 - x_F) + 8y_0}{x_0 - x_F}$$

$$= -3\frac{y_0}{x_0} + \frac{8y_0}{x_0 + \frac{16y_0^2 + 3}{\frac{9y_0^2}{x_0} - 3x_0}} = -3\frac{y_0}{x_0} + \frac{\frac{72y_0^3}{x_0} - 24x_0y_0}{9y_0^2 + 16y_0^2 + 3 - 3x_0^2}$$

$$= -3\frac{y_0}{x_0} + \frac{\frac{72y_0^3}{x_0} - 24x_0y_0}{24y_0^2} = -3\frac{y_0}{x_0} + \frac{72y_0}{24x_0} - \frac{24x_0y_0}{24y_0^2} = -\frac{x_0}{y_0} \ .$$

所以
$$k_{AF}k_{OA} = -1$$
,即 $\angle OAF = \frac{\pi}{2}$. (11 分)

因为
$$\tan \angle BAE = k_{OA} = \frac{y_0}{x_0} = \sqrt{3(1 - \frac{1}{x_0^2})} \in (\frac{\sqrt{3}}{3}, \sqrt{3})$$
,

所以
$$\angle BAE \in (\frac{\pi}{6}, \frac{\pi}{3})$$
.

因此
$$AE$$
 不可能是 $\angle BAF$ 的三等分线. (12 分)