2021 年清华大学强基计划笔试数学试题回忆版

◎猿辅导

本试卷共35题,每一道题均为不定项,下为回忆版.

- 1. 甲乙丙丁四人共同参加 4 项体育比赛,每项比赛第一名到第四名的分数依次为 4、3、2、1 分. 比赛结束甲获得 14 分第一名,乙获得 13 分第二名,则().
 - A. 第三名不超过9分
 - B. 第三名可能获得其中一场比赛的第一名
 - C. 最后一名不超过6分
 - D. 第四名可能一项比赛拿到3分

答案: ACD

解:

- (1) 所有分数之和为 $4 \times (4 + 3 + 2 + 2) = 40$,甲乙总分之和为 14 + 13 = 27,所以第三名和第四名总分数为 13 分,第四名的分数不超过 6 分,C 正确,第四名至少得 4 分,A 正确.
- (2) 所有项目的第一名和第二名分数之和为 $4 \times (4+3) = 28$ 分,只比甲乙两人总分数高一分,说明只有一种情况,甲乙包揽所有项目第一名,总共拿到 3 个第二名和 1 个第三名.B 错误.
- (3) D 正确的一种情形:

	I	II	III	IIII
甲	4	4	4	2
Z	3	3	3	4
丙	2	2	2	1
丁	1	1	1	3

2. 定义
$$x * y = \frac{x+y}{1+xy}$$
, 则 $(\cdots((2*3)*4)\cdots)*21 = ($

答案: $\frac{116}{115}$

$$\mathbf{M} \colon \ \diamondsuit \ x = \frac{\lambda - 1}{\lambda + 1}, \ \ y = \frac{\mu - 1}{\mu + 1}, \ \ \bigcup \ x \ast y = \frac{\frac{\lambda - 1}{\lambda + 1} + \frac{\mu - 1}{\mu + 1}}{1 + \frac{\lambda - 1}{\lambda + 1} \cdot \frac{\mu - 1}{\mu + 1}} = \frac{\lambda \mu - 1}{\lambda \mu + 1}.$$

其中
$$\lambda = -\frac{x+1}{x-1}$$
, $\mu = -\frac{y+1}{y-1}$.

容易得到,若设
$$z = \frac{\nu - 1}{\nu + 1}$$
,即 $\nu = -\frac{z + 1}{z - 1}$,则 $(x * y) * z = \frac{\lambda \mu \nu - 1}{\lambda \mu \nu + 1}$,即 *运算满足:

(1) x * y = y * x

(2)
$$(x*y)*z = x*(y*z)$$

进而可得
$$(\cdots((2*3)*4)\cdots)*21 = \frac{\left(-\frac{3}{1}\right)\left(-\frac{4}{2}\right)\cdots\left(-\frac{22}{20}\right)-1}{\left(-\frac{3}{1}\right)\left(-\frac{4}{2}\right)\cdots\left(-\frac{22}{20}\right)+1} = \frac{-21\times11-1}{-21\times11+1} = \frac{116}{115}$$

补充说明: 看到 $\frac{x+y}{1+xy}$,联想到 $\tanh x = \frac{e^{2x}-1}{e^{2x}+1}$,于是做一个 $x = \frac{\lambda-1}{\lambda+1}$ 的换元准没错.

3. 已知
$$\omega = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5}$$
,则 ().

A.
$$x^4 + x^3 + x^2 + x + 1 = (x - \omega)(x - \omega^3)(x - \omega^7)(x - \omega^9)$$

B.
$$x^4 - x^3 + x^2 - x + 1 = (x - \omega)(x - \omega^3)(x - \omega^7)(x - \omega^9)$$

C.
$$x^4 - x^3 - x^2 + x + 1 = (x - \omega)(x - \omega^3)(x - \omega^7)(x - \omega^9)$$

D.
$$x^4 + x^3 + x^2 - x - 1 = (x - \omega)(x - \omega^3)(x - \omega^7)(x - \omega^9)$$

答案: B.

解: 容易得到 1、 ω 、 ω^2 、...、 ω^9 为 $x^{10}-1=0$ 的根,则

$$x^{10} - 1 = (x - 1)(x - \omega)(x - \omega^2)(x - \omega^3) \cdots (x - \omega^9).$$

另外 1、 ω^2 、 ω^4 、 ω^6 、 ω^8 为 $x^5-1=0$ 的根,则

$$x^{5} - 1 = (x - 1)(x - \omega^{2})(x - \omega^{4})(x - \omega^{6})(x - \omega^{8}).$$

结合 $\omega^5 = -1$, 两个式子做比可得

$$x^{5} + 1 = (x - \omega)(x - \omega^{3})(x + 1)(x - \omega^{7})(x - \omega^{9}).$$

ΗП

$$(x-\omega)(x-\omega^3)(x-\omega^7)(x-\omega^9) = \frac{x^5+1}{x+1} = x^4 - x^3 + x^2 - x + 1.$$

补充说明:第一次见此题是2000年全国高中数学联赛一试第6题.

4. 恰有一个实数 x 使得 $x^3 - ax - 1 = 0$ 成立,则实数 a 的取值范围为 ().

A.
$$\left(-\infty, \sqrt[3]{2}\right)$$

B.
$$\left(-\infty, \frac{3\sqrt[3]{2}}{2}\right)$$

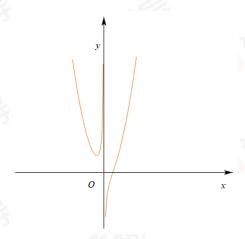
C.
$$\left(\frac{3\sqrt{2}}{2}\right)$$

$$D.\left(-\infty, \frac{3\sqrt{2}}{2}\right)$$

解:易得 $x \neq 0$,问题等价于方程 $a = x^2 - \frac{1}{x}$ 只有一个实数解.

x	$(-\infty,x_0)$	x_0	$(x_0, 0)$	$(0,+\infty)$		
f'(x)	- 1	0	+	+		
f(x)	7	极小值	7	7		

其图象如图所示.



故 $a < f(x_0) = \frac{3}{2}\sqrt[3]{2}$. 补充说明:高考导数基本要求.

解: 因为
$$\left[\frac{x}{2}\right]$$
, $\left[\frac{x}{3}\right]$, $\left[\frac{x}{5}\right] \in \mathbb{Z}$, 则 $x \in \mathbb{Z}$. 因此 $\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] + \left[\frac{x}{5}\right] = x = \frac{x}{2} + \frac{x}{3} + \frac{x}{5} - \frac{x}{30}$. 即
$$\left\{\frac{x}{2}\right\} + \left\{\frac{x}{3}\right\} + \left\{\frac{x}{5}\right\} = \frac{x}{30}.$$

因为 $\{\frac{x}{2}\}$ 的可能取值为 0 和 $\frac{1}{2}$; $\{\frac{x}{3}\}$ 的可能取值为 0, $\frac{1}{3}$, $\frac{2}{3}$; $\{\frac{x}{5}\}$ 的可能取值为 0, $\frac{1}{5}$

 $\frac{2}{5}$, $\frac{2}{5}$

考虑 $30\left(\frac{a}{2} + \frac{b}{3} + \frac{c}{5}\right) = 15a + 10b + 6c$,其中 $a, b, c \in \mathbb{Z}$.

因为 2, 3, 5 两两互质, 容易得到 $15a + 10b + 6c \equiv a \pmod{2}$, $15a + 10b + 6c \equiv b$ (mod 3), $15a + 10b + 6c \equiv c \pmod{5}$.

因此方程解的组数为30.

5. 已知 m, n 最大公约数为 10!, 最小公倍数为 50!, 数对 (m,n) 的组数为 ().

A. 2^9

- B. 2^{15}
- $D. 2^{18}$

答案: B.

解:设 $m = 10! \times a$, $n = 10! \times b$,则 a, b 互质,且 $ab = 11 \times 12 \times 13 \times \cdots \times 50$. ab 的质因数有 2、3、5、7、11、13、17、19、23、29、31、37、41、43、47 共 15 个. 其中a能取到的质因数为上述15个数构成集合的子集,共 2^{15} 个,b取其补集情形即 可.

7. 设 a 为常数, $f(0) = \frac{1}{2}$, f(x+y) = f(x)f(a-y) + f(y)f(a-x), 则 ().

A. $f(a) = \frac{1}{2}$

B. $f(x) = \frac{1}{2}$ 恒成立

C. f(x+y) = 2f(x)f(y)

D. 满足条件的 f(x) 不止一个

答案: ABC

解: 令 x = y = 0,可得 f(0) = 2f(0)f(a),因为 $f(0) = \frac{1}{2}$,所以 $f(a) = \frac{1}{2}$.A 正确.

令 y = 0,可得 f(x) = f(x)f(a) + f(a)f(a-x),代入 $f(a) = \frac{1}{2}$,可得 f(a-x) = f(x). 即原等式变形为 f(x+y) = 2f(x)f(y), C 正确.

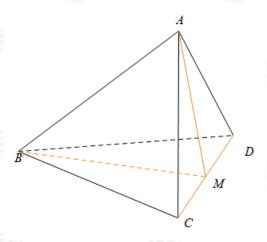
令 y = x 可得 $f(2x) = 2[f(x)]^2 \ge 0$, 即函数取值非负.

令 y = a - x 可得 $f(a) = 2[f(x)]^2$,即 $[f(x)]^2 = \frac{1}{4}$,解得 $f(x) = \frac{1}{2}$,选 B.

8. 已知四面体 D-ABC 中,AC=BC=AD=BD=1,则 D-ABC 体积的最大值

答案: C

解: 如图所示,取 CD 中点 M 连结 AM, BM,设 A-BCD 的高为 h,则 $h \leq AM$.



显然 $\triangle ACD \cong \triangle BCD$,设 $\angle ACD = \angle BCD = \alpha$. 则 $AM = BM = BC \sin \alpha = \sin \alpha$, $CD = 2CM = 2BC \cos \alpha = 2\cos \alpha$. 于是

$$V_{D-ABC} = \frac{1}{3} S_{\triangle BCD} \cdot h \leqslant \frac{1}{6} CD \cdot BM \cdot AM = \frac{1}{3} \cos \alpha \sin^2 \alpha$$

$$= \frac{1}{3\sqrt{2}} \sqrt{2 \cos^2 \alpha \cdot \sin^2 \alpha \cdot \sin^2 \alpha}$$

$$\leqslant \frac{1}{3\sqrt{2}} \sqrt{\left(\frac{2 \cos^2 \alpha + \sin^2 \alpha + \sin^2 \alpha}{3}\right)^3}$$

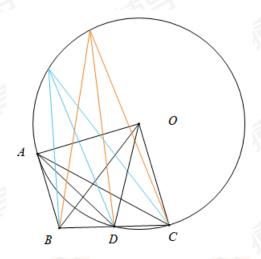
$$= \frac{2\sqrt{3}}{27}$$

等号成立条件,当且仅当平面 ACD 与平面 BCD 垂直,且 $\alpha = \arctan \sqrt{2}$.

9. 在 $\triangle ABC$ 中,D 为 BC 的中点, $\angle CAD = 15^{\circ}$,则 $\angle ABC$ 的最大值为 (). A. 120° B. 105° C. 90° D. 60°

答案: B.

解:由 $\angle CAD = 15^{\circ}$,在 D、C 确定的情形下,点 A 的轨迹是一段圆弧. 如图所示做出 $\triangle ACD$ 的外接圆 $\odot O$,显然当 $\angle ABC$ 时,BA 是 $\odot O$ 的一条切线.



在四边形 OABC 中, $\angle BAO = 90^{\circ}$, $\angle OCB = 75^{\circ}$, 求 $\angle ABC$ 的问题, 转化为求 $\angle AOC$ 的问题,进而转化成求 $\angle AOD$ 或者 $\angle ACD$ 的问题.

进而
$$\frac{AC}{DA} = \frac{BA}{BD} = \sqrt{2}$$
.

由切割线定理可得, $\triangle BAD \circlearrowleft \triangle BCA$, $BA^2 = BD \cdot BC = 2BD^2$, 进而 $\frac{AC}{DA} = \frac{BA}{BD} = \sqrt{2}$. 在 $\triangle ADC$ 中, $\angle CAD = 15^\circ$,设 $\angle ACD = \alpha$,则 $\angle ADC = 165^\circ - \alpha$,根据正弦定理 可得

$$\frac{\sin \angle ADC}{\sin \angle ACD} = \frac{AC}{AD} = \sqrt{2}$$

$$\frac{\sin(165^{\circ} - \alpha)}{\sin \alpha} = \sqrt{2}$$

$$\frac{\sqrt{6} - \sqrt{2}}{4} \sin \alpha + \frac{\sqrt{6} + \sqrt{2}}{4} \cos \alpha = \sqrt{2} \sin \alpha$$

$$\tan \alpha = \frac{\sqrt{3}}{3}$$

即 $\alpha = 30^{\circ}$,进而可得 $\angle AOD = 2\alpha = 60^{\circ}$, $\angle AOC = \angle AOD + \angle DOC = 90^{\circ}$. 进而可得 $\angle ABC = 180^{\circ} - \angle BAO - \angle AOC - \angle BCO = 105^{\circ}$.

10. 已知非负实数 a,b,c 满足 a+b+c=1,则 $a^2(b-c)+b^2(c-a)+c^2(a-b)$ 的最大值为 (

答案:

解:对原式因式分解可得

$$a^{2}(b-c) + b^{2}(c-a) + c^{2}(a-b) = (a^{2}b - ab^{2}) - c(a^{2} - b^{2}) + c^{2}(a-b)$$

$$= (a-b)(ab - ca - cb + c^{2})$$

$$= (a-b)(b-c)(a-c)$$

该式子关于 a、b、c 轮换对称,只需考虑 $a \leq b \leq c$ 和 $a \geq b \geq c$ 两种情况. 令 f(a,b,c) = (a-b)(b-c)(a-c)

- (1) 若 $a \leq b \leq c$, 此时 $f(a,b,c) \leq 0$
- (2) 若 $a \ge b \ge c$, 此时 $f(a,b,c) \ge 0$.

$$\mathbb{F}\left[f(a,b,c)\leqslant f(a+c,b,0)=f(1-b,b,0)=b(1-2b)(1-b)\right].$$

解得当
$$x = \frac{3-\sqrt{3}}{6}$$
 时, $f(x)$ 取得最大值,计算 $g\left(\frac{3-\sqrt{3}}{6}\right) = \frac{\sqrt{3}}{18}$.

因此原式最大值为 $\frac{\sqrt{3}}{18}$,此时 $a = \frac{3+\sqrt{3}}{6}$, $b = \frac{3-\sqrt{3}}{6}$, c = 0 的各种轮换形式.

11. 已知 A_1 , A_2 ,..., A_{10} 十等分圆周,则在其中取四点构成凸四边形为梯形个数为 (

解:首先考虑梯形的形状,将圆周十等分,只看四条边所对圆心角的份数,设上底为 x,腰为y,下底为z,则

$$\begin{cases} x + 2y + z = 10 \\ x < z \end{cases}$$

其中 $x, y, z \in \mathbb{N}^*$.

枚举可得 $(x, y, z) \in \{(1, 1, 7), (2, 1, 6), (3, 1, 5), (1, 2, 5), (2, 2, 4), (1, 3, 3)\}.$

将上述每个梯形旋转均有 10 个位置,因此答案为 $6 \times 10 = 60$.

12. 已知 $f(x) = \sin x \cos x + \sin x + \frac{2}{5} \cos x$, $x \in \left[0, \frac{\pi}{2}\right]$,设 f(x) 的最大值为 M,最小值 为 m,则(

A.
$$M = \frac{23}{9}$$

B.
$$m =$$

C.
$$M = \frac{88}{25}$$

B.
$$m = \frac{2}{5}$$

D. $m = \frac{1}{5}$

答案: BC

解: 由 $f(x) = \sin x \cos x + \sin x + \frac{2}{5} \cos x$,

则
$$f'(x) = \cos 2x + \cos x - \frac{2}{5} \sin x$$
,该导函数在 $\left[0, \frac{\pi}{2}\right]$ 递减,且 $f'(0) = 2 > 0$, $f'\left(\frac{\pi}{2}\right) = -\frac{7}{5} < 0$.

因此我们需要解出 $x_0 \in \left[0, \frac{\pi}{2}\right]$,使得 $f'(x_0) = 0$,经测试 $\sin x_0 = \frac{4}{5}$, $\cos x_0 = \frac{3}{5}$ 时符

合.

万
$$f(x)$$
 在 $(0,x_0)$ 单调递增,在 $\left(x_0,\frac{\pi}{2}\right)$ 单调递减. $f(0)=\frac{2}{5}$, $f(x_0)=\frac{38}{25}$, $f\left(\frac{\pi}{2}\right)=1$,因此 $M=\frac{38}{25}$, $m=\frac{2}{5}$.

13. 已知集合 $U = \{0, 1, 2, ..., 2021\}$, $S \subseteq U$,且 S 中任意两项相加不是 5 的倍数,求 S 的元素个数最大值.

答案:

解:集合U模5余0最多选1个数,

集合 U 模 5 余 1 和 4 最多选取一类数,其中模 5 余 1 有 405 个,模 5 余 4 有 404 个.

集合 U 模 5 余 2 和 3 最多选取一类数,两类数均有 404 个.

所以S的最大值=1+405+404=810.

14. 将函数 $y = \sqrt{4 + 6x - x^2} - 2(x \in [0, 6])$ 的图象逆时针方向旋转 $\theta(0 \le \theta \le \alpha)$, 得到曲线 C. 若对于每一个旋转角 θ , 曲线 C 都是一个函数的图像,则 α 的最大值为 ().

A.
$$\arctan \frac{3}{2}$$

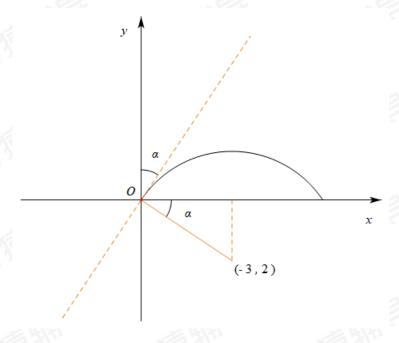
B.
$$\arctan \frac{2}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{\pi}{3}$$

答案

 \mathbf{m} : 原函数的图像为一段圆弧, α 的极值如图所示.



计算可得 $\alpha = \arctan \frac{2}{3}$.

15. 在平面直角坐标系中,O 是坐标原点,两定点 A,B 满足 $\left|\overrightarrow{OA}\right| = \left|\overrightarrow{OB}\right| = \overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB}$ 2, 则点集 $\left\{P\left|\overrightarrow{OP}=\lambda\overrightarrow{OA}+\mu\overrightarrow{OB},|\lambda|+|\mu|\leqslant 1,\lambda,\mu\in\mathbb{R}\right\}$ 所表示的区域的面积是

A. $2\sqrt{2}$

B. $4\sqrt{2}$

C. $2\sqrt{3}$

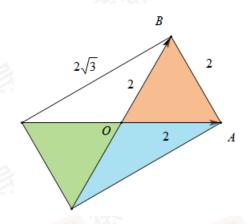
D. $4\sqrt{3}$

答案: D

解: $\underline{\mathbf{H}} \overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}| |\overrightarrow{OB}| \cos \theta$, 解得 $\cos \theta = \frac{1}{2}$.

即 \overrightarrow{OA} 和 \overrightarrow{OB} 的夹角为 60° .

根据非常基本的向量知识,P 所表示的区域为下图所示矩形. 其面积为 $2 \times 2\sqrt{3} = 4\sqrt{3}$



补充说明: 2013年高考安徽第9题

16. 已知 $y^2=4x$, 过 A(-2,3) 做抛物线两条切线, 交 y 轴于 B, C 两点, 则 $\triangle ABC$ 外接 圆方程为().

A.
$$(x+1)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{13}{4}$$
 B. $(x+1)^2 + (y-1)^2 = \frac{13}{4}$

B.
$$(x+1)^2 + (y-1)^2 = \frac{13}{4}$$

C.
$$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{9}{2}$$
 D. $\left(x + \frac{3}{2}\right)^2 + (y - 1)^2 = \frac{17}{4}$

D.
$$\left(x + \frac{3}{2}\right)^2 + (y - 1)^2 = \frac{17}{4}$$

答案: C

解: 设 AB&AC: x = t(y-3)-2, 其中 $B(0, y_1)$, $C(0,y_2)$. 令 x = 0 可得, $y_1 = \frac{2}{t_1} + 3$, $y_2 = \frac{2}{t_2} + 3$. 联立 AB&AC 与抛物线 $y^2 = 4x$,可得

$$y^2 - 4ty + 12t + 8 = 0$$

其判别式 $\Delta = 16t^2 - 4(12t + 8) = 0$,即 $t^2 - 3t - 2 = 0$,

因此 $t_1 + t_2 = 3$, $t_1 t_2 = -2$.

进一步 $y_1+y_2=\frac{2(t_1+t_2)}{t_1t_2}+6=3$,即 BC 中点坐标为 $\left(0,\frac{3}{2}\right)$. 与此同时 $|y_1-y_2|=\sqrt{(y_1)+y_2})^2-4y_1y_2=\sqrt{17}$. 因此以 BC 为直径的圆的方程为 $x^2+\left(y-\frac{3}{2}\right)^2=\frac{17}{4}$. 设过 BC 两点的圆系方程为 $x^2+\left(y-\frac{3}{2}\right)^2+\lambda x-\frac{17}{4}=0$,将 A(-2,3) 代入可得 $\lambda=1$,整理可得过 A,B,C 的圆的方程为 $x^2+y^2+x-3y-2=0$,选 C

