专题六 数列

— 、	单项选择题
•	

- 1. (2021 淄博二模 3) 已知 $\{a_n\}$ 为等比数列, S_n 为其前 n 项和,若 $2S_3=a_2+a_3+a_4$,则公比 q=
- B. $\frac{1-\sqrt{5}}{2}$ C. 1 D. 2
- 2. (2021 淄博三模 3) 在正项等比数列 $\{a_n\}$ 中,若 a_{2021} 是 a_{2019} , a_{2020} 两项的等差中项,则 q= ()
- B. $\frac{1}{2}$ C. $-\frac{1}{2}$ D. -1
- 3. (2021 青岛三模 4) 行列式是近代数学中研究线性方程的有力工具,其中最简单的二阶行列式的运算定

义如下:
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$
,已知 S_n 是等差数列 $\{a_n\}$ 的前 n 项和,若 $\begin{vmatrix} 1 & (10-a_7) \\ 1 & a_9 \end{vmatrix} = 0$,则 $S_{15} = 0$

- A. $\frac{15}{2}$
- C. 75
- 4. (2021 省实验中学二模 4) 已知等差数列 $\{a_n\}$ 的项数为奇数,其中所有奇数项之和为 319,所有偶数项之 和为290,则该数列的中间项为(
 - A. 28
- B. 29
- C. 30
- D. 31
- 5. (2021 青岛二模 5) 已知数列 $\{a_n\}$, $\{b_n\}$ 满足 $a_1 = \frac{1}{2}$, $a_n + b_n = 1$, $b_{n+1} = \frac{b_n}{1-a_n^2}$, 则 $b_{2021} = ($

- 6. (2021 烟台适应性练习一 6) 传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数. 他们根据沙 粒和石子所排列的形状把数分成许多类,如三角形数、正方形数、五边形数、六边形数等.如图所示, 将所有六边形数、按从小到大的顺序排列成数列,前三项为1,6,15,则此数列的第10项为(

- A. 120
- B. 153
- C. 190
- 7. (2021 聊城二模 8) 已知数列 $\{a_n\}$, $a_n = \frac{1}{f(n)}$, 其中 f(n) 为最接近 \sqrt{n} 的整数,若 $\{a_n\}$ 的前 m 项和为 20, 则 // (

A. 15

В. 30

C. 60

D. 110

二、 多项选择题

8. (2021 济南二模 11) 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_n \cdot a_{n+1}=2^n$, $n \in \mathbb{N}_+$,则下列说法正确的是(

A. $a_4 = 4$

B. $\{a_{2n}\}$ 是等比数列

C. $a_{2n} - a_{2n-1} = 2^{n-1}$

D. $a_{2n-1}+a_{2n}=2^{n+1}$

- 9. (2021 **潍坊三模** 12) 如图所示的数表中,第 1 行是从 1 开始的正奇数,从第 2 行开始每个数是它肩上两个数之和.则下列说法正确的是 ()
 - 1 3 5 7 9 11 ...

4 8 12 16 20 ...

12 20 28 36 ...

•••

- A. 第6行第1个数为192
- B. 第10行的数从左到右构成公差为210的等差数列
- C. 第 10 行前 10 个数的和为 95×29
- D. 数表中第 2021 行第 2021 个数为 6061×2²⁰²⁰
- 10. (2021 滨州二模 10) 已知一组数据的平均数、中位数、众数依次成等差数列,若这组数据丢失了其中的一个,剩下的六个数据分别是 2, 2, 4, 2, 5, 10, 则丢失的这个数据可能是 ()
 - A. 11
- B. 3
- C. 9
- D. 17
- 11. (2021 日照三模 10) 已知 S_n 是数列 $\{a_n\}$ 的前 n 项和,且 $a_1=a_2=1$, $a_n=a_{n-1}+2a_{n-2}$ ($n\geq 3$),则下列结论正确的是(
 - A. 数列 $\{a_n + a_{n+1}\}$ 为等比数列
 - B. 数列 $\{a_{n+1} 2a_n\}$ 为等比数列
 - C. $a_n = \frac{2^{n+1} + (-1)^n}{3}$
 - D. $S_{20} = \frac{2}{3}(4^{10} 1)$

12. (2021 省实验中学二模 12) 在数学课堂上,教师引导学生构造新数列: 在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,将数列 1,2 进行构造,第 1 次得到数列 1,3,2;第 2 次得到数列 1,4,3,5,2,…;第 $n(n \in \mathbb{N}^*)$ 次得到数列 1, $x_1, x_2, x_3, \dots, x_k, 2; \dots$ 记 $a_n = 1 + x_1 + x_2 + \dots + x_k + 2$,数列 $\{a_n\}$ 的前 n 项和为 S_n ,则(

数列

A.
$$k+1=2^n$$

B.
$$a_{n+1} = 3a_n - 3$$

C.
$$a_n = \frac{3}{2} (n^2 + 3n)$$

D.
$$S_n = \frac{3}{4} (3^{n+1} + 2n - 3)$$

13. (2021 淄博二模 12)记 $\langle x \rangle$ 表示与实数 x 最接近的整数,数列 $\{a_n\}$ 通项公式为 $a_n = \frac{1}{\langle \sqrt{n} \rangle} (n \in N^*)$, 其前 n 项和为 S_n , 设 $k = \langle \sqrt{n} \rangle$, 则下列结论正确的是 ().

$$A. \quad \sqrt{n} = k - \frac{1}{2}$$

A.
$$\sqrt{n} = k - \frac{1}{2}$$
 B. $\sqrt{n} < k + \frac{1}{2}$ C. $n \ge k^2 - k + 1$ D. $S_{2021} = 88$

$$C. \quad n \ge k^2 - k + 1$$

D.
$$S_{2021} = 88$$

三、 填空题

- 14. (2021 滨州二模 13) 已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_3=7$, $S_3=21$,则公比 q=______.
- 15. (2021 **聊城三模** 13) 数列 1, 1, 2, 3, 5, 8, 13, 21, 34, ···· 称为斐波那契数列, 是意大利著名数学 家斐波那契于 1202 年在他写的《算盘全书》提出的,该数列的特点是:从第三起,每一项都等于它前面 两项的和. 在该数列的前 2021 项中, 奇数的个数为
- 16. (2021 潍坊四县 5 月联考 15) 已知数列 $\{a_n\}$ 的首项 $a_1 = 1021$,其 n 前项和 S_n 满足 $S_n = -S_{n-1} n^2$,则 a_{2021}
- 17. (2021 泰安二模 15) 数列 $\{a_n\}$ 的前 n 项和为 S_n , $2S_n$ $na_n = n$ ($n \in \mathbb{N}*$),若 $S_{20} = -360$,则 $a_2 = -360$,
- 18. (2021 潍坊二模 14) 数学史上著名的"冰雹猜想"指的是:任取一个正整数 m,若 m是奇数,就将该数 乘3再加上1;若 m是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环 圈 1→4→2→1. 按照上述猜想可得到一个以 m 为首项的无穷数列记作 $\{a_n\}$, $\{a_n\}$ 满足的递推关系为 a_1 =

$$m$$
, $a_{n+1} =$ $\begin{cases} \frac{\mathbf{a_n}}{2}, & \mathbf{a_n} \end{pmatrix}$ 偶数, 如取 $m = 6$,根据上述运算法则得出 $a_0 = 1$, $a_{10} = 4$, …,若 $a_7 = 1$,则满 $3 \mathbf{a_n} + 1$, $\mathbf{a_n}$ 为 奇数.

足条件的一个 加的值为

19. (2021 烟台适应性练习二 15) 任取一个正整数,若是奇数,就将该数乘 3 再加上 1; 若是偶数,就将该 数除以 2. 反复进行上述两种运算,经过有限次步骤后,必进入循环圈 1 ot 4 ot 2 ot 1. 这就是数学史上著名的"冰雹猜想". 例如: 正整数 m=6,根据上述运算法则得出 6 ot 3 ot 10 ot 5 ot 16 ot 8 ot 4 ot 2 ot 1,共经 过8个步骤变成1(简称为8步"雹程"). "冰雹猜想"可表示为数列 $\{a_n\}$: $a_1=m(m)$ 为正整数), a_{n+1}

$$=$$
 $\begin{cases} \frac{\mathbf{a_n}}{2}, & \mathbf{a_n}$ 为偶数 ,若 a_6 =2,则 m 的所有可能取值之和为_____. $3\mathbf{a_n}$ +1, $\mathbf{a_n}$ 为奇数

20. (2021 烟台三模 1)15. 已知数列 $\{a_n\}$ 满足 $a_n = \log_2\left(\frac{n+2}{n+1}\right)$. 给出定义: 使数列 $\{a_n\}$ 的前 k 项和为正整数的 $k\left(k\in \mathbf{N}^*\right)$ 叫做"好数",则在 [1,2021] 内的所有"好数"的和为_____.

四、 解答题

- 21. (2021 济南二模 18) 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 a_2 =4, S_5 =30.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 若 $b_n = \frac{2}{a_n^2 1}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

22. (2021 **潍坊三模** 17)已知正项等比数列 $\left\{a_{n}\right\}$,其中 a_{1} , a_{2} , a_{3} 分别是下表第一、二、三行中的某一个数,令 $b_{n}=2\log_{2}a_{n}$.

	第一列	第二列	第三列
第一行	5	3	2
第二行	4	10	9
第三行	18	8	11

- (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
- (2) 设数列 $\left\{\frac{1}{b_n^2-1}\right\}$ 的前n项和为 T_n ,证明: $T_n < \frac{1}{2}$.

- 23. (2021 枣庄二模 17) 已知数列 $\{a_n\}$ 中, $a_1=a_2=1$,且 $a_{n+2}=a_{n+1}+2a_n$.记 $b_n=a_{n+1}+a_n$,求证:
 - (1) $\{b_n\}$ 是等比数列;
 - (2) $\{b_n\}$ 的前 n 项和 T_n 满足 $\frac{b_n}{T_1 \cdot T_2} + \frac{b_3}{T_2 \cdot T_3} + \cdots + \frac{b_{n+1}}{T_n \cdot T_{n+1}} < \frac{1}{2}$.

- 24. (2021 烟台适应性练习一 17) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $a_1=1$, $2S_n=na_{n+1}$, $n\in\mathbb{N}*$.
 - (1) 求{a_n}的通项公式;
 - (2) 设数列 $\{b_n\}$ 满足 $b_1=1$, $b_nb_{n+1}=2^n$, $n\in\mathbb{N}*$, 按照如下规律构造新数列 $\{c_n\}$: a_1 , b_2 , a_3 , b_4 , a_5 , b_6 , …, 求 $\{c_n\}$ 的前 2n 项和.

- **25.** (2021 **泰安二模 17**) 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,数列 $\{b_n\}$ 为等比数列,满足 $a_1=b_2=2$, $S_n=30$, b_n+2 是 b_n 与 b_n 的等差中项.
 - (1) 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式;
 - (2) 从数列 $\{a_n\}$ 中去掉数列 $\{b_n\}$ 的项后余下的项按原来的顺序组成数列 $\{c_n\}$,设数列 $\{c_n\}$ 的前 n 项和为 T_n ,求 T_{60} .

- **26.** (2021 潍坊四县 5 月联考 18) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_1=a_2=2$, 当 $n\geq 2$ 时, $S_{n+1}+S_{n-1}=2S_n+1$.
 - (1) 求证: 当 *n*≥2, *a*_{n+1} *a*_n为定值;
 - (2)把数列 $\{a_n\}$ 和数列 $\{2^{a_n}\}$ 中的所有项从小到大排列,组成新数列 $\{c_n\}$,求数列 $\{c_n\}$ 的前 100 项和 T_{100} .

27. (2021 德州二模 17) 在① $2S_n+1=3^n$; ② $a_1a_2\cdots a_n=3^{\frac{n^2-n}{2}}$; ③ $2S_n-3a_n+1=0$ 这三个条件中任选一个,补充在下面问题中并作答.

已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $a_1=1$,且满足_____,设数列 $\{\frac{1}{a_n}+\frac{1}{(n+1)\cdot\log_3a_{n+1}}\}$ 的前 n 项和为 T_n ,求 T_n ,并证明 $T_n<\frac{5}{2}$.

(注:如果选择多个条件分别解答,则按第一个解答计分)

28. (2021 聊城三模 18) 在① a_1 , a_3 , a_{21} 成等比数列② $S_4 = 28$,③ $S_{n+1} = S_n + a_n + 4$,这三个条件中任选一个,补充在下面的问题中,并做出解答.

已知 $\{a_n\}$ 是公差不为零的等差数列, S_n 为其 n 前项和, $a_2=5$,______, $\{b_n\}$ 是等比数列, $b_2=9$, $b_1+b_3=30$,公比 q>1 .

- (1) 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式;
- (2) 数列 $\{a_n\}$ 和 $\{b_n\}$ 的所有项分别构成集合 A , B , 将 $A \cup B$ 的元素按从小到大依次排列构成一个新数列 $\{c_n\}$,求 $T_{80}=c_1+c_2+c_3+\cdots+c_{80}$.

29. (2021 淄博二模 17) 在① $S_5=50$,② S_1 , S_2 , S_4 成等比数列,③ $S_6=3(a_6+2)$. 这三个条件中任选两个,补充到下面问题中,并解答本题.

问题: 已知等差数列 $\{a_n\}$ 的公差为 $d(d \neq 0)$,前 n 项和为 S_n ,且满足_____.

- (1) 求 a_n ;
- (2) 若 $b_n b_{n-1} = 2a_n (n \ge 2)$,且 $b_1 a_1 = 1$,求数列 $\{\frac{1}{b_n}\}$ 的前 n 项和 T_n .

注: 如果选择多种情况分别解答,按第一种解答计分.

- 30. (2021 滨州二模 18)已知各项均为正数的数列 $\left\{a_{n}\right\}$ 的前 n 项和为 S_{n} , $a_{1}=1$, $a_{n}=\sqrt{S_{n}}+\sqrt{S_{n-1}}\left(n\in\mathbf{N}^{*}$ 且 $n\geq2\right).$
 - (1) 求证;数列 $\left\{\sqrt{S_n}\right\}$ 是等差数列,并求 $\left\{a_n\right\}$ 的通项公式;
 - (2) 若[x]表示不超过 x 的最大整数,如[-1,2]=-2,[2,1]=2,求证: $\left[\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}\right] = 1$.

潍坊高中数学

31. (2021 烟台三模 17) 在① $a_3^2 = a_2 a_4 + 4$,② $\left\{ \frac{S_n}{n} \right\}$ 是公差为 1 的等差数列,③ $S_4^2 = S_2 \cdot S_8$,这三个条件中任选一个,补充到下面的问题中并作答.

问题: 在递增的等差数列 $\{a_n\}$ 中, S_n 为数列 $\{a_n\}$ 的前n项和,已知 a_1 =1,_____,数列 $\{b_n\}$ 是首项为 2,公比为 2 的等比数列,设 $c_n=a_n\cdot b_n$, T_n 为数列 $\{c_n\}$ 的前n项和,求使 $T_n>2000$ 成立的最小正整数n的值。

注: 如果选择多个条件分别解答,按第一个解答计分.

- 32. (2021 省实验中学二模 18) 已知 $\{a_a\}$ 是递增的等比数列,前 3 项和为 13,且 $3a_1$, $5a_2$, $3a_3$ 成等差数列.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 各项均为正数的数列 $\{b_n\}$ 的首项 $b_1=1$,其前 n 项和为 S_n ,且 ____,若数列 $\{c_n\}$ 满足 $c_n=a_nb_n$,求 $\{c_n\}$ 的前 n 项和 T_n .

在如下三个条件中任意选择一个,填入上面横线处,并根据题意解决问题.

① $b_n = 2\sqrt{S_n} - 1$; ② $2b_n = b_{n-1} + b_{n+1} \ (n \ge 2)$, $b_2 = 3$; ③ $S_n - S_{n-1} = \sqrt{S_n} + \sqrt{S_{n-1}} \ (n \ge 2)$.

- 33. (2021 **菏泽二模** 18) 已知正项数列 $\{a_n\}$ 的首项 $a_1=1$,前 n 项和为 S_n ,且满足 $a_na_{n+1}+1=4S_n$ $(n\in N^*)$
 - (1) 求数列 $\{a_n\}$ 的通项公式:
 - (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$ 数列 $\{b_n\}$ 前 n和为 T_n ,求使得 $Tn < \frac{2n+1}{n^2}$ 成立的 n的最大值.

- 34. (2021 日照二模 19) 已知数列 $\{a_n\}$ 中, $a_1 = -9$,且 $\frac{a_{n+1}}{2}$ 是 2 与 a_n ($n \in \mathbb{N}*$) 的等差中项.
 - (1) 求数列 $\{|a_n|\}$ 的前 n 项和 G_n ;
 - (2) 设 $T_n = a_1 a_2 a_3 \cdots a_n$,判断数列 $\{T_n\}$ 是否存在最大项和最小项?若存在求出,不存在说明理由.

- 35. (2021 临沂二模 19) 已知正项数列 $\{a_n\}$ 的前 n 项和为 S_n ,数列 $\{b_n\}$ 为等比数列,满足 $4S_n=a_{n+1}{}^2$ 4n 4,且 $a_1=b_1+1=2$, $a_4=b_4$.
 - (1) 求证: 数列{a_n}为等差数列;
 - (2) 若从数列 $\{a_n\}$ 中去掉数列 $\{b_n\}$ 的项后余下的项按原来的顺序组成数列 $\{c_n\}$,求 $c_1+c_2+\cdots+c_{100}$.

- 36. (2021 聊城二模 18) 数列 $\{a_n\}$ 满足 $a_1=1$,点 (n, a_n+a_{n+1}) 在函数 y=kx+1 图象上,其中 k 为常数,且 $k\neq 0$.
 - (1) 若 a₁, a₂, a₄成等比数列, 求 k 的值;
 - (2) 当 k=3 时,求数列 $\{a_n\}$ 的前 n 项和 S_n .

- 37. (2021 济宁二模 18)已知数列 $\{a_n\}$ 是正项等比数列,满足 a_3 是 $2a_1$ 、 $3a_2$ 的等差中项, $a_4=16$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = (-1)^n \log_2 a_{2n+1}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

- **38.** (2021 烟台适应性练习二 18) 已知 {*a_n*} 是公差为 2 的等差数列, *a*₁>0, 且 *a*₄ 是 2*a*₂ 和 *a*₅ 2 的等比中项.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设数列 $\{b_n\}$ 满足 $\frac{b_1}{a_1} + \frac{b_2}{a_2} + \dots + \frac{b_n}{a_n} = 2^{n+1}$, 求 $\{b_n\}$ 的前 n 项和 T_n .

- 39. (2021 日照三模 19) 定义: 若无穷数列 $\{c_n\}$ 满足 $\{c_{n+1}-c_n\}$ 是公比为 k 的等比数列,则称数列 $\{c_n\}$ 为" ℓ " (k) 数列".
 - (1) 若 $\{b_n\}$ 是 V(k) 数列, b_1 =10, b_2 =8, b_3 =6,求数列 $\{b_n\}$ 前 11 项和 S_{11} .
 - (2) 若数列 $\{a_n\}$ 是 V(2) 数列, a_1 =1, a_2 =3,是否存在正整数 m, n, 使得 $\frac{199}{99} < \frac{a_m}{a_n} < \frac{99}{49}$ 成立,若存在求出所有的正整数 m, n, 不存在说明理由.

- **40.** (2021 青岛二模 19) 已知等差数列 $\{a_n\}$ 满足 a_3 a_1 =8,且 a_2 1 是 a_1 和 a_3 +1 的等比中项,数列 $\{b_n\}$ 的 前 n 项和为 S_n ,且满足 b_1 =3, $2S_n$ = b_{n+1} 3.
 - (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (2) 将数列 $\{a_n\}$ 和 $\{b_n\}$ 中的公共项按从小到大的顺序依次排成一个新的数列 $\{c_k\}$, $k \in \mathbb{N}^*$,令 $d_k = \log_3 c_k$,求数列 $\{\frac{1}{d_k d_{k+1}}\}$ 的前 k 项和 T_k .

- **41. (2021 青岛三模 22)** 若数列 $\{a_n\}$ 满足:对于任意 $n \in \mathbb{N}^+$,只有有限个正整数 m 使得 $a_n < n$ 成立,则记这样的 m 的个数为 $(a_n)^+$.
 - (1) 求数列 $\{(\sqrt{n-1})^{\dagger}\}$ 的通项公式;
 - (2) 在等比数列 $\{b_n\}$ 中, b_{n+1} 是函数 $f_n(x) = \frac{1}{3} \mathbf{x}^3 \frac{1}{2} \left[e b_n + (\sqrt{n-1})^+ \right] \mathbf{x}^2 + e b_n \cdot (\sqrt{n-1})^+ \cdot \mathbf{x}$ 的极小值点,求 b_n 的取值范围;
 - (3) 求数列{((n²) +) +}的通项公式.

- 42. (2021 潍坊二模 22) 设 $a_n = x^n$, $b_n = \frac{1}{n^2}$, S_n 为数列 $\{a_n \bullet b_n\}$ 的前 n 项和,令 $f_n(x) = S_n 1$,其中 $x \in \mathbb{R}$, $n \in \mathbb{N}^+$.
 - (1) 当 x=2 时,数列 $\{a_n\}$ 中是否存在三项,使其成等差数列?并说明理由;
 - (2) 证明: 对 $\forall n \in \mathbb{N}^{\uparrow}$,关于 x 的方程 $f_n(x) = 0$ 在 $x \in [\frac{2}{3}, 1]$ 上有且仅有一个根 x_n ;
 - (3) 证明: 对 $\forall p \in \mathbb{N}^+$,由(2)中 x_0 构成的数列 $\{x_n\}$ 满足 $0 < x_n x_{n+p} < \frac{1}{n}$.

- **43. (2021 淄博三模 22)** 若存在常数 $m \in \mathbb{R}$,使得对于任意 $n \in \mathbb{N}^*$,都有 $a_{n+1} \ge ma_n$,则称数列 $\{a_n\}$ 为 Z(m)数 列.
 - (1) 已知数列 $\{a_n\}$ 是公差为2的等差数列,其前n项和为 S_n ,若 S_n 为Z(1)数列,求 a_n 的取值范围;
 - (2)已知数列 $\{b_n\}$ 的各项均为正数,记 $\{b_n\}$ 的前n项和为 R_n ,数列 $\{b_n^2\}$ 的前n项和为 T_n ,且 $3T_n=R_n^2+4R_n$,

 $n \in \mathbb{N}^*$, 若数列 $\{c_n\}$ 满足 $c_n = b_n + \frac{1}{b_n}$, 且 $\{c_n\}$ 为Z(m)数列, 求m的最大值;

- (3) 已知正项数列 $\{d_n\}$ 满足: $d_n \leq d_{n+1} (n \in \mathbb{N}^*)$,且数列 $\{d_{2k-1}d_{2k+1}\}$ 为Z(r)数列,数列 $\{\frac{1}{\mathbf{d}_{2k}\mathbf{d}_{2k+2}}\}$ 为Z(r)
- (s) 数列,若 $\frac{d_2}{d_1} = rs$,求证:数列 $\{d_n\}$ 中必存在无穷多项可以组成等比数列.

VFMATH

专题六 数列

一、单项选择题

1. 【答案】 D

【解析】因为
$$2S_3 = a_2 + a_3 + a_4$$
 ,所以 $2(a_1 + a_2 + a_3) = a_2 + a_3 + a_4$,

因为
$$a_1 \neq 0$$
 ,所以 $2 + q + q^2 = q^3$,

即
$$(q-2)(q^2+q+1)=0$$
 ,

因为
$$q^2 + q + 1 \neq 0$$
 , 所以 $q = 2$.

故答案为: D

2. 【答案】A

【解析】由题意 $2a_{2021}=a_{2019}+a_{2020}$,

设正项等比数列 $\{a_n\}$ 的公比为q(q>0),

$$\therefore 2 a_{2020} \cdot q = \frac{a_{2020}}{q} + a_{2020},$$

$$a_{2020} \neq 0$$
, $a_{2020} \neq 0$, $a_{2020} \neq 0$, $a_{2020} \neq 0$,

解得
$$q = -\frac{1}{2}$$
 (舍去), 或 $q = 1$.

故选: A.

3. 【答案】C

【解析】:
$$S_n$$
是等差数列 $\{a_n\}$ 的前 n 项和,
$$\begin{vmatrix} 1 & (10-a_7) \\ 1 & a_9 \end{vmatrix} = 0,$$

$$\therefore a_9 - (10 - a_7) = 0$$
,解得 $a_9 + a_7 = 10$,

$$\therefore S_{15} = \frac{15}{2} (a_1 + a_{15}) = \frac{15}{2} (a_9 + a_7) = \frac{15}{2} \times 10 = 75.$$

故选: C.

潍坊高中数学

4. 【答案】B

数列

【解析】设等差数列共有(2n+1)项,

由题意得 $S_{\delta} = a_1 + a_3 + \bullet \bullet \bullet + a_{2n+1}$, $S_{\mathfrak{A}} = a_2 + a_4 + \bullet \bullet \bullet + a_{2n}$,

故
$$S_{\hat{\sigma}}$$
 - $S_{\mathcal{A}} = a_1 + (a_3 - a_2) + \bullet \bullet \bullet + (a_{2n+1} - a_{2n})$,

$$= a_1 + d + \bullet \bullet + d = a_1 + nd = a_{n+1} = 319 - 290 = 29.$$

故中间项 a_{n+1}为 29.

故选: B.

5. 【答案】C

【解析】解: 由数列 $\{a_n\}$, $\{b_n\}$ 满足 $a_1 = \frac{1}{2}$, $a_n + b_n = 1$, $b_{n+1} = \frac{b_n}{1-a_n^2}$,

可得
$$b_n=1$$
 - a_n ①, $b_{n+1}=\frac{b_n}{1-a_n^2}=\frac{b_n}{(1-a_n)(1+a_n)}=\frac{b_n}{b_n(1+a_n)}=\frac{1}{2-b_n}$,

则
$$b_{n+1} = \frac{1}{2-b_n}$$
,两边同时减去 1,

得
$$b_{n+1}-1=\frac{1}{2-b_n}-1=\frac{b_n-1}{2-b_n}$$
,

则
$$\frac{1}{b_{n+1}-1}-\frac{1}{b_n-1}=-1$$
,

$$\frac{1}{b_1-1} = \frac{1}{-a_1} = -2$$
,

$$: \{\frac{1}{b_{n-1}}\}$$
 是以 - 2 为首项, - 1 为公差的等差数列.

$$\therefore b_n = \frac{n}{n+1},$$

故
$$b_{2021} = \frac{2021}{2022}$$
.

故选: C.

6. 【答案】C

【解析】解:由第 1 项 $1=1\times 1$,第 2 项 $6=2\times 3$,

第3项15=3×5,第4项28=4×7,...,

归纳得, 第 n 项为 n (2n-1),

∴第 10 项为 10× (20 - 1) =190,

故选: C.

7. 【答案】D

【解析】由题意可得 f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 2, f(5) = 2, f(6) = 2, f(7) = 3, f(8) = 3, f(9) = 3, f(10) = 3, f(11) = 3, f(12) = 3,

...,可得依次为2个1,4个2,6个3,8个4,10个5,...,

因此 $a_1+a_2=2\times 1=2$, $a_3+a_4+a_5+a_6=4\times \frac{1}{2}=2$, $a_7+a_8+\ldots+a_{12}=6\times \frac{1}{3}=2$, $a_{13}+a_{14}+\ldots+a_{20}=8\times \frac{1}{4}=2$, ...,

由 $20=10\times 2$,可得 $m=2+4+6+8+...+20=\frac{1}{2}\times 10\times (2+20)=110$.

故选: D.

二、多项选择题

8. 【答案】ABC

【解析】 $a_1=1$, $a_n \cdot a_{n+1}=2^n$,

- : $a_n \cdot a_{n+1} = 2^n$,
- $a_{n+1} \bullet a_{n+2} = 2^{n+1},$

$$\therefore \frac{a_{n+2}}{a_n} = 2,$$

- ∴数列 $\{a_n\}$ 的奇数列和偶数列,分别是以 2 为公比的等比数列,
- $a_{2n}=2\times 2^{n-1}=2^n$, $a_{2n-1}=1\times 2^{n-1}=2^{n-1}$,
- ∴ *a*₄=4, 故 *AB* 正确;
- $\therefore a_{2n} a_{2n-1} = 2^n 2^{n-1} = 2^{n-1}$, 故 C 正确;
- $\therefore a_{2n} + a_{2n-1} = 2^{n} + 2^{n-1} = 3 \times 2^{n-1}$, 故 D不正确.

故选: ABC.

9. 【答案】ABD

【解析】数表中,每行是等差数列,且第一行的首项是 1,公差为 2,第二行的首项是 4,公差为 4,第三行的首项是 12,公差为 8,每行的第一个数满足数列 $a_n=n\times 2^{n-1}$,每行的公差构成一个以 2 为首项,公比为 2 的等比数列,公差满足数列 $d_n=2^n$.

对于选项 A: 由题可知,每行第一个数满足下列关系: $a_n = n \times 2^{n-1}$,所以第 6 行第 1 个数为 $a_6 = 6 \times 2^{6-1} = 192$,故 A 正确;

对于选项 B: 每行的公差构成一个以 2 为首项,公比为 2 的等比数列,故第 10 行的数从左到右构成公 差为 2^{10} 的等差数列,选项 B 正确;

对于选项 C: 第 10 行的第一个数为 $a_{10}=10\times 2^{10}=10\times 2^{9}$, 公差为 2^{10} , 所以前 10 个数的和为:

$$10 \times 10 \times 2^9 + \frac{10 \times 9}{2} \times 2^{10} = 190 \times 2^9$$
,故 C 错误;

对于选项 D: 数表中第 2021 行中第一个数为 $a_{2021}=2021\times 2^{2021-1}=2021\times 2^{2020}$,第 2021 行的公差为 2^{2021} ,故数表中第 2021 行第 2021 个数为 $2021\times 2^{2020}+(2021-1)\times 2^{2021}=6061\times 2^{2020}$,选项 D 正确.

故选: ABD.

10. 【答案】ABD

【解析】解:设丢失的这个数据为a,由题意可得,众数为2,平均数为 $\frac{25+a}{7}$,

①当 $a \le 2$ 时,这列数位 a, 2, 2, 2, 4, 5, 10,则中位数为 2,

所以 $\frac{25+a}{7}$, 2, 2, 成等差数列,则 $\frac{25+a}{7}$ = 2, 解得 a=-11<2, 符合题意;

②当 2<a<4 时,这列数位 2, 2, 2, a, 4, 5, 10,则中位数为 a,

所以 $\frac{25+a}{7}$, a, 2 成等差数列, 则 $2a=\frac{25+a}{7}+2$, 解得 a=3, 符合题意;

③当 $a \ge 4$ 时,这列数为 2, 2, ,2, 4, a, 5,10,则中位数为 4,

所以 $\frac{25+a}{7}$, 4,2 成等差数列,则有 $2\times 4=\frac{25+a}{7}+2$,解得 a=17,符合题意.

故选: ABD.

11. 【答案】ABD

【解析】
$$a_n = a_{n-1} + 2a_{n-2}$$
, $a_n + a_{n-1} = 2a_{n-1} + 2a_{n-2} = 2 (a_{n-1} + a_{n-2}) (n \ge 3)$,

因为 $a_1 = a_2 = 1$,所以 $a_3 = a_1 + 2a_2 = 3$,

$$a_3+a_2=4=2 (a_2+a_1),$$

所以数列 $\{a_n+a_{n+1}\}$ 是首项为2,公比为2的等比数列,

所以 $a_n + a_{n+1} = 2 \cdot 2^{n-1} = 2^n$, 故选项 A 正确;

$$a_n = a_{n-1} + 2a_{n-2}$$

$$a_n - 2a_{n-1} = 2a_{n-2} - a_{n-1} = - (a_{n-1} - 2a_{n-2}),$$

$$a_3 - 2a_2 = 3 - 2 = 1$$
, $a_2 - 2a_1 = 1 - 2 = -1$,

所以 $\{a_{n+1} - 2a_n\}$ 是首项为 - 1,公比为 - 1的等比数列,

$$a_{n+1}$$
 - $2a_n$ = - $1 \cdot (-1)^{n-1}$ = $(-1)^n$, 故选项 B 正确;

$$\left\{
 a_{n+1} + a_n = 2^n \\
 a_{n+1} - 2a_n = (-1)^n
 \right.$$
 所以 $a_n = \frac{2^n - (-1)^n}{3}$,故选项 C 错误;

$$S_{20} = a_1 + a_2 + \cdots + a_n$$

数列

潍坊高中数学

$$=\frac{2-(-1)}{3}+\frac{2^2-(-1)^2}{3}+\cdots+\frac{2^{20}-(-1)^{20}}{3}$$

$$=\frac{(2+2^2+\cdots+2^{20})-[(-1)+(-1)^2+\cdots+(-1)^{20}]}{3}$$

$$=\frac{1}{3}\times \big[\frac{2(1-2^{20})}{1-2}-\frac{(-1)\times [1-(-1)^{20}]}{1-(-1)}\big]$$

$$=\frac{2}{3}(2^{20}-1)=\frac{2}{3}(4^{10}-1)$$
,故选项 D 正确.

故选: ABD.

12. 【答案】ABD

【解析】由 a_1 =3+3, a_2 =3+3+9, a_3 =3+3+9+27, a_4 =3+3+9+27+81,

, ...,
$$a_n = 3+3^1+3^2+3^3+\dots+3^n = 3+\frac{3(1-3^n)}{1-3} = \frac{3^{n+1}+3}{2}$$
,

由 a1有 3 项, a2有 5 项, a3有 9 项, a3有 17 项, …,

故 an有 2n+1 项. 故 C错误;

所以 $k+2=2^n+1$, 即 $k+1=2^n$, 故 A 正确;

由
$$a_n = \frac{3^{n+1}+3}{2}$$
,可得 $a_{n+1} = \frac{3^{n+2}+3}{2} = 3a_n - 3$,故 B 正确;

$$=\frac{1}{2} \cdot \frac{9(1-3^{n})}{1-3} + \frac{3n}{2} = \frac{3}{4} (3^{n+1} + 2n - 3), \text{ if } D \equiv \mathfrak{A}.$$

故选: ABD.

13. 【答案】 B, C

数列

【解析】由题意,记 $\langle x \rangle$ 表示与实数x最接近的整数,且 $k = \langle \sqrt{n} \rangle$,

当 n=1 时,可得 $\sqrt{n}=1$, $\langle \sqrt{n} \rangle =1$,所以 A 不正确;

由
$$|\sqrt{n}-\langle\sqrt{n}\rangle|<rac{1}{2}$$
 ,即 $|\sqrt{n}-k|<rac{1}{2}$,可得 $-rac{1}{2}<\sqrt{n}-k<rac{1}{2}$,

可得 $\sqrt{n} < k + \frac{1}{2}$ 成立, 所以 B 符合题意;

由
$$-\frac{1}{2} < \sqrt{n} - k < \frac{1}{2}$$
 ,可得 $k - \frac{1}{2} < \sqrt{n} < k + \frac{1}{2}$,平方可得 $k^2 - k + \frac{1}{4} < n < k^2 + k + \frac{1}{4}$,

因为 $n \in \mathbb{N} *$, 且 $k^2 - k + \frac{1}{4}$ 不是整数,

其中
$$k^2 - k + 1$$
 是 $k^2 - k + \frac{1}{4}$ 右侧的最接近的整数,

所以 $n \ge k^2 - k + 1$ 成立,所以 C 符色题意 中数学

当
$$n=1,2$$
 时, $\langle \sqrt{n} \rangle = 1$,此时 $a_1=a_2=1$;

当
$$n=3,4,5,6$$
 时, $\langle \sqrt{n} \rangle = 2$,此时 $a_3=a_4=a_5=a_6=\frac{1}{2}$;

当
$$n=7,8,9,10,11,12$$
 时, $\langle \sqrt{n} \rangle = 3$,此时 $a_7=a_8=\cdots=a_{12}=\frac{1}{3}$;

当
$$n=13,14,\cdots,20$$
 时, $\langle \sqrt{n} \rangle = 4$,此时 $a_{13}=a_{14}=\cdots=a_{20}=\frac{1}{4}$;

·

.....

归纳可得数列 $\{a_n\}$ 中,有 2 个 1, 4 个 $\frac{1}{2}$, 6 个 $\frac{1}{3}$, 8 个 $\frac{1}{4}$,

又由 2,4,6,8,… 构成首项为 2, 公差为 2 的等差数列, 可得 $S_n = \frac{n(2+2n)}{2} = n(n+1)$,

令 $n(n+1) \le 2021, n \in N^*$, 解得 n = 44 ,

所以 $S_{2021}=1\times2+\frac{1}{2}\times4+\frac{1}{3}\times6+\cdots+\frac{1}{22}\times44+\frac{1}{23}\times41=88+\frac{41}{23}$,所以 D 不正确.

故答案为: BC.

三、填空题

- 14. 【答案】1 或 $-\frac{1}{2}$
- 15. 【答案】 1348

【解析】由斐波那契数列的特点知:从第一项起,每3个数中前两个为奇数后一个偶数,

- $\frac{2021}{3}$ 的整数部分为 673, 余数为 2,
- ∴ 该数列的前 2021 项中共有 673 个偶数, 奇数的个数为 2021 673 = 1348.

故答案为: 1348

16. 【答案】-999

【解析】由题知, $S_n - S_{n-1} = -n^2$, 则 $S_{n-1} + S_n = -(n+1)^2$.

两式作差得:

$$a_{n+1} + a_n = (-n+1)^2 - (-n^2) = -2n - 1.$$

整理得 a_{n+1} + $(n+1) = - (a_n+n)$.

所以 $\{a_n+n\}$ 是以 $a_1+1=1022$ 为首项,-1为公比的等比数列.

∴
$$a_{2021}$$
+2021=1022× (-1) 2020 =1022. 则 a_{2021} =-999,

故答案为: - 999.

潍坊高中数学

17. 【答案】-1

【解析】解: $: 2S_n - na_n = n \ (n \in \mathbb{N}^*),$

$$\therefore S_n = \frac{n(a_n + 1)}{2},$$

∴
$$S_1 = a_1 = \frac{a_1 + 1}{2}$$
, 解得 $a_1 = 1$,

$$: S_n = \frac{n}{2} (a_1 + a_n), : \{a_n\}$$
 是等差数列,

$$:S_{20} = -360, :S_{20} = \frac{20(1+a_{20})}{2} = -360,$$

解得 $a_{20}+1=-36$,即 $a_{20}=-37$,

$$\therefore a_2 = a_1 + d = 1 - 2 = -1.$$

故答案为: -1.

18. 【答案】1 或 8 或 10 或 64 (只需填一个)

【解析】若 $a_1=1$,则 $a_6=2$, $a_5=4$, $a_4=8$ 或 1,

若
$$a_2$$
=32,则 a_1 =64;若 a_2 =5,则 a_1 =10,

②若
$$a_4=1$$
 时, $a_3=2$, $a_2=4$, $a_1=8$ 或 1,

综上所述,加的值为1或8或10或64,

故答案为: 1或8或10或64(只需填一个).

19. 【答案】83

【解析】:
$$a_{n+1} = \begin{cases} \frac{a_n}{2}, & a_n \end{pmatrix}$$
 偶数 $3a_n + 1, a_n$ 奇数

①当
$$a_5$$
=4 时, a_4 =1 或 a_4 =8,

②若
$$a_4$$
=1 时,则 a_3 =2,若 a_4 =8 时, a_3 =16,

③若
$$a_3$$
=2 时,则 a_2 =4,若 a_3 =16 时, a_2 =32 或 a_2 =5,

④若
$$a_2$$
=4 时,则 a_1 =8 或 a_1 =1,若 a_2 =32 时,则 a_1 =64,若 a_2 =5 时,则 a_1 =10,

- ∴ 加的值为1或8或10或64,
- ∴ 加的所有取值之和为 1+8+10+64=83.

故答案为: 83.

20. 【答案】2026

【解析】由题,
$$S_n = \log_2\left(\frac{1+2}{1+1}\right) + \log_2\left(\frac{2+2}{2+1}\right) + \dots + \log_2\left(\frac{n+2}{n+1}\right)$$

$$= \log_2 \frac{3}{2} + \log_2 \frac{4}{3} + \dots + \log_2 \left(\frac{n+2}{n+1} \right)$$

$$= \log_2 \frac{n+2}{2} = \log_2 (n+2) - \log_2 2 = \log_2 (n+2) - 1.$$

所以,
$$S_k = \log_2(k+2)-1$$
.

因为 S_k 为正整数,所以 $\log_2(k+2)-1>0$,即 $k+2>2 \Rightarrow k>0$.

$$\Leftrightarrow m = \log_2(k+2)$$
, $\emptyset k = 2^m - 2$.

因为 $k \in [1,2021]$, 所以 $2^m \in [3,2023]$.

因为
$$y = 2^x$$
 为增函数,且 $2^1 = 2, 2^2 = 4, \dots, 2^{10} = 1024, 2^{11} = 2048$

所以 $m \in [2,10]$.

所以所有"好数"的和为
$$2^2 - 2 + 2^3 - 2 + \dots + 2^{10} - 2 = \frac{2^2 - 2^{10} \times 2}{1 - 2} - 2 \times 9 = 2026$$
.

故答案为: 2026.

四、解答题

21. 【解析】 (1) 等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $a_2=4$, $S_5=30$,

设首项为 a1, 公差为 d,

所以
$$\begin{cases} a_1+d=4 \\ 5a_1+\frac{5\times 4}{2}d=30 \end{cases}$$
,解得 $\begin{cases} a_1=2 \\ d=2 \end{cases}$ 故 $a_n=2n$;

(2) 由于
$$b_n = \frac{2}{a_n^2 - 1} = \frac{1}{2n - 1} - \frac{1}{2n + 1}$$
,

所以
$$T_n = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + (\frac{1}{2n-1} - \frac{1}{2n+1}) = 1 - \frac{1}{2n+1} = \frac{2n}{2n+1}$$
.

22. 【解析】(1) 由题意得: $a_1 = 2$, $a_2 = 4$, $a_3 = 8$,

:: 等比数列
$$\{a_n\}$$
的公比 $q = \frac{4}{2} = 2$, :: $a_n = 2 \times 2^{n-1} = 2^n$.

$$\nabla b_n = 2\log_2 a_n = 2\log_2 2^n = 2n$$
, $\therefore b_n = 2n$.

(2)
$$\pm$$
 (1) \pm (2) \pm (2) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (8) \pm (9) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (1) \pm (2) \pm (2)

$$\therefore T_n = \frac{1}{2} \times \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right),$$

$$: n \in \mathbb{N}^*, \quad : \frac{1}{2n+1} > 0, \quad : 1 - \frac{1}{2n+1} < 1, \quad : T_n = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) < \frac{1}{2}.$$

23. 【解析】(1) 证明: 由 $a_{n+2} = a_{n+1} + 2a_n$,得 $b_{n+1} = a_{n+2} + a_{n+1} = 2(a_{n+1} + a_n) = 2b_n$,又 $b_1 = a_1 + a_2 = 2 \neq 0$,所以 $\{b_n\}$ 是以 2 为首项, 2 为公比的等比数列,

(2)
$$\pm$$
 (1) \pm (1) \pm (2) \pm (1) \pm (2) \pm (1) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (1) \pm (1)

24. 【解析】解: (1) 数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $a_1=1$, $2S_n=na_{n+1}$,①

当 n=1 时,解得 $a_2=2$,

当
$$n \ge 2$$
 时, $2S_{n-1} = (n-1) a_n$,②

① - ②得:
$$\frac{a_{n+1}}{n+1} = \frac{a_n}{n}$$
,

故
$$\frac{a_n}{n} = \frac{a_2}{2} = 1$$
,

所以 $a_n = n$ (首项符合通项),

故 $a_n = n$.

(2) 由于 $b_n b_{n+1} = 2^n$, $n \in \mathbb{N}*$,

所以 $b_{n+1}b_{n+2}=2^{n+1}$,

所以 $\frac{b_{n+2}}{b_n} = 2$ (常数),

由于 $b_1=1$, 所以 $b_2=2$,

所以数列 $\{b_n\}$ 的偶数项为以2为首项,2为公比的等比数列;

所以构造新数列 $\{c_n\}$: a_1 , b_2 , a_3 , b_4 , a_5 , b_6 , …,

 $\{c_n\}$ 的前 2n 项的和:

$$T_{2n} = (a_1 + a_3 + \ldots + a_{2n-1}) + (b_2 + b_4 + \ldots + b_{2n}) = \frac{n(1+2n-1)}{2} + \frac{2 \times (2^n-1)}{2-1} = 2^{n+1} + n^2 - 2.$$

25. 【解析】解: (1) 设等差数列 $\{a_n\}$ 的公差为 d,等比数列 $\{b_n\}$ 的公比为 g,

由 $a_1=b_2=2$, $S_5=30$, b_4+2 是 b_3 与 b_5 的等差中项,

可得 $b_1q=2$, $5\times 2+10 d=30$, $2(b_4+2)=b_3+b_5$, 即 $2(b_1q^3+2)=b_1q^2+b_1q^4$, 解得 d=2, $b_1=1$, q=2, 则 $a_n=2+2(n-1)=2n$; $b_n=2^{n-1}$;

(2) a_{60} =120,所以数列 $\{a_n\}$ 前 60 项中与数列 $\{b_n\}$ 的公共项共有 6 项,且最大公共项为 b_n =2⁶=64,又 a_{66} =132, b_n =2⁷=128,

所以
$$T_{60} = S_{67} - (2+2^2+...+2^7) = 134+\frac{1}{2} \times 67 \times 66 \times 2 - \frac{2(1-2^7)}{1-2}$$

=4556 - 254 = 4302.

26. 【解析】证明: (1) 当 n=2 时, $S_3+S_1=2S_2+1$,

即 $a_1+a_2+a_3+a_1=2$ $(a_1+a_2)+1$,得 $a_3=3$,

当 $n \ge 2$ 时,因为 $S_{n+1} + S_{n-1} = 2S_n + 1$,所以 $S_{n+2} + S_n = 2S_{n+1} + 1$,

两式相减得 $a_{n+2}+a_n=2a_{n+1}$,

所以
$$a_{n+2}$$
 - a_{n+1} = a_{n+1} - a_n ,

所以 $\{a_{n+1} - a_n\}$ 是以 $a_3 - a_2$ 为首项,以1为公比的等比数列;

 $a_3 - a_2 = 1$,

所以 a_{n+1} - $a_n=1$,

所以
$$a_n = \begin{cases} 2, & n=1, \\ n, & n \geq 2. \end{cases}$$

(2) 数列 $\{a_n\}$ 前 100 项为 2, 2, 3, 4, 5, …, 100,

数列 {2^an} 为 2², 2², 2³, 2⁴, …, 2",

所以数列 $\{c_n\}$ 前 100 项含有数列 $\{2^{a_n}\}$ 的项为 2^2 , 2^2 , 2^3 , 2^4 , 2^5 , 2^6 共六项,

所以
$$T_n = 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2 + 2 + 3 + 4 + 5 + \dots + 94 = 128 + 2 + \frac{(2+94) \times 93}{2} = 4594.$$

27. 【解析】 解: 选①: $:: 2S_n + 1 = 3^n$, 当 $n \ge 2$ 时, $2S_{n-1} + 1 = 3^{n-1}$,

两式相减得 $2a_n=2\cdot 3^{n-1}$, \therefore $a_n=3^{n-1}(n\geq 2)$,

又 $: a_1 = 1$ 满足上式,

故 $a_n=3^{n-1}$,

$$T_n = b_1 + b_2 + \dots + b_n = (\frac{1}{3})^0 + (\frac{1}{3})^1 + (\frac{1}{3})^2 + \dots + (\frac{1}{3})^{n-1} + (1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}) = \frac{1 - (\frac{1}{3})^n}{1 - \frac{1}{3}} + \dots + \frac{1}{n} + \frac{1}{n+1} = \frac{1}{n+1}$$

$$1 - \frac{1}{n+1} = \frac{5}{2} - \frac{1}{2} \left(\frac{1}{3}\right)^{n-1} - \frac{1}{n+1} ,$$

因为
$$\frac{1}{2}(\frac{1}{3})^{n-1} > 0$$
 , $\frac{1}{n+1} > 0$, 所以 $T_n < \frac{5}{2}$.

选②:
$$: a_1 a_2 \cdots a_{n-1} a_n = 3^{\frac{n^2-n}{2}}$$
, $:: \exists n \geq 2$ 时, $a_1 a_2 \cdots a_{n-1} = 3^{\frac{(n-1)^2-(n-1)}{2}}$, 两式相除得 $a_n =$

$$3^{\frac{n^2-n}{2}-\frac{(n-1)^2-(n-1)}{2}}=3^{n-1}(n\geq 2) ,$$

当 n=1 时, $a_1=1$ 满足上式,故 $a_n=3^{n-1}$, 以下同选①.

两式相减得 $2a_n - 3a_n + 3a_{n-1} = 0$,

所以 $a_n = 3a_{n-1}$, 又 $a_1 = 1$,所以 $a_n \neq 0$,

所以 $\frac{a_n}{a_{n-1}}=3$, 即 $\{a_n\}$ 是以 1 为首项, 3 为公比的等比数列, 故 $a_n=3^{n-1}$, 以下同选①.

28. 【解析】 (1) 解: 选①, :: $\{a_n\}$ 是公差不为 0 的等差数列,设公差为 d,

由 a_1 , a_3 , a_{21} 成等比数列,可得 $(a_1 + 2d)^2 = a_1(a_1 + 20d)$,又 $d \neq 0$,

$$\therefore$$
 $4a_1 = d$,又 $a_2 = 5$,即 $a_1 + d = 5$,解得 $a_1 = 1$, $d = 4$,

$$a_n = 1 + (n-1) \times 4 = 4n - 3$$
.

选②,由
$$S_4 = 28$$
 , $a_2 = 5$,有 $4a_1 + 6d = 28$, $a_1 + d = 5$,可得 $a_1 = 1$, $d = 4$,

选③,由
$$S_{n+1}=S_n+a_n+4$$
 ,可得 $a_{n+1}-a_n=d=4$,又 $a_2=5$,即 $a_1+d=5$,

$$\therefore a_1 = 1$$
, $a_2 = 1 + (n-1) \times 4 = 4n-3$.

$$\because \{b_n\}$$
 是等比数列,由 $b_2=9$, $b_1+b_3=30$, $q>1$,

∴
$$b_1q = 9$$
 , $b_1 + b_1q^2 = 30$, $a_1 = 3$, $a_2 = 3$, $a_3 = 3$. $a_4 = 3$, $a_$

(2)
$$M: a_{80} = 317$$
, $3^5 = 243 < 317 < 3^6 = 729$,

- \therefore $\{c_n\}$ 的前 80 项中,数列 $\{b_n\}$ 的项最多有 5 项,其中 $b_2=9=a_3$, $b_4=81=a_{21}$ 为公共项,又 $a_{77}=305>243=b_5$,
- : $\{c_n\}$ 的前 80 项是由 $\{a_n\}$ 的前 77 项及 b_1 , b_3 , b_5 构成.

$$T_{20} = c_1 + c_2 + c_3 + \dots + c_{80} = a_1 + a_2 + \dots + a_{77} + b_1 + b_3 + b_5 = 11781 + 3 + 27 + 243 = 12054$$

29. 【解析】 (1) 解: 选择条件①②

由
$$S_5 = 50$$
 ,得 $5a_1 + \frac{5 \times 4}{2}d = 5(a_1 + 2d) = 50$,即 $a_1 + 2d = 10$,

由
$$S_1$$
 , S_2 , S_4 成等比数列,得 $S_2^2 = S_1 S_4$,

解得
$$a_1 = 2$$
 , $d = 4$, 因此 $a_n = 4n - 2$.

选择条件①③

由
$$S_5 = 50$$
 ,得 $5a_1 + \frac{5 \times 4}{2}d = 5(a_1 + 2d) = 50$,即 $a_1 + 2d = 10$;

由
$$S_6=3(a_6+2)$$
 ,得 $\frac{6(a_1+a_6)}{2}=3a_1+3a_6=3a_6+6$,即 $a_1=2$;

解得
$$d=4$$
 , 因此 $a_n=4n-2$.

选择条件②③

由
$$S_1$$
 , S_2 , S_4 成等比数列,得 $S_2^2 = S_1S_4$, $4a_1^2 + 4a_1d + d^2 = 4a_1^2 + 6a_1d$,

即
$$d=2a_1$$
 ,

由
$$S_6 = 3(a_6 + 2)$$
 ,得 $\frac{6(a_1 + a_6)}{2} = 3a_1 + 3a_6 = 3a_6 + 6$,即 $a_1 = 2$,

解得
$$d=4$$
 , 因此 $a_n=4n-2$.

(2) 解: 由
$$a_1 = 2$$
 , $a_n = 4n - 2$ 可得

$$b_1 = 3$$
 , $b_n - b_{n-1} = 2a_n = 8n - 4$,

$$= (8n-4) + (8n-12) + \dots + 12 = \frac{[(8n-4)+12](n-1)}{2} = 4n^2 - 4,$$

当
$$n=1$$
 时, $b_1=3$,符合 $b_n=4n^2-1$,

所以当
$$n \in N^*$$
 时, $b_n = 4n^2 - 1$,

$$| | | \frac{1}{b_n} = \frac{1}{4n^2 - 1} = \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) ,$$

因此
$$T_n = \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{n}{2n+1}$$
.

30. 【解析】(1) 因为 $a_n = \sqrt{S_n} + \sqrt{S_{n-1}}$,

所以当
$$n \ge 2$$
时, $S_n - S_{n-1} = \sqrt{S_n} + \sqrt{S_{n-1}}$.

所以
$$(\sqrt{S_n} - \sqrt{S_{n-1}})(\sqrt{S_n} + \sqrt{S_{n-1}}) = \sqrt{S_n} + \sqrt{S_{n-1}}$$
.

又因为
$$a_n > 0$$
,所以 $\sqrt{S_n} + \sqrt{S_{n-1}} > 0$.

所以
$$\sqrt{S_n} - \sqrt{S_{n-1}} = 1 (n \ge 2)$$
.

所以数列 $\left\{\sqrt{S_n}\right\}$ 是以 $\left(\sqrt{S_1}\right)$ 是以 $\left(\sqrt{S_1}\right)$ = 1为首项,公差为 1 的等差数列.

所以
$$\sqrt{S_n} = 1 + (n-1) \times 1 = n$$
, 所以 $S_n = n^2$.

所以当
$$n \ge 2$$
时, $a_n = \sqrt{S_n} + \sqrt{S_{n-1}} = n + n - 1 = 2n - 1$.

又因为 $a_1 = 1$ 满足上式,

所以 $\{a_n\}$ 的通项公式为 $a_n = 2n-1$.

另解:

当
$$n \ge 2$$
时, $a_n = S_n - S_{n-1} = n^2 - (n-1)^2 = 2n-1$,

当
$$n=1$$
时, $a_1=1$,满足上式,

所以 $\{a_n\}$ 的通项公式为 $a_n = 2n-1$.

(2)
$$\frac{1}{a_n^2} = \frac{1}{(2n-1)^2} = \frac{1}{4n^2 - 4n + 1}$$
.

当
$$n \ge 2$$
时, $\frac{1}{a_n^2} < \frac{1}{4n^2 - 4n} = \frac{1}{4} \left(\frac{1}{n-1} - \frac{1}{n} \right)$,

故
$$\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} < 1 + \frac{1}{4} \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} \right) = 1 + \frac{1}{4} \left(1 - \frac{1}{n} \right) < 1 + \frac{1}{4} = \frac{5}{4}$$

当
$$n=1$$
时, $\frac{1}{a_1^2}=1<\frac{5}{4}$,

所以对任意的
$$n \in \mathbf{N}^*$$
,都有 $\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} < \frac{5}{4}$.

VFMATH

$$\mathbb{Z}\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} \ge \frac{1}{a_1^2} = 1.$$

所以
$$1 \le \frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} < \frac{5}{4}$$
.

所以
$$\left[\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}\right] = 1$$
.

31. 【解析】设数列 $\{a_n\}$ 的公差为d>0,

若选条件①:

$$\because a_3^2 = a_2 a_4 + 4$$
, $\therefore (1+2d)^2 = (1+d)(1+3d) + 4$, 解得 $d = \pm 2$ (舍负),

故
$$a_n = 1 + 2(n-1) = 2n-1$$
;

若选条件②:

$$\because \left\{ \frac{S_n}{n} \right\}$$
 是公差为 1 的等差数列,
$$\therefore \frac{S_n}{n} = \frac{S_1}{1} + (n-1) \times 1 = n \text{ , } 则 S_n = n^2 \text{ ,}$$

当
$$n \ge 2$$
时, $a_n = S_n - S_{n-1} = 2n - 1$,满足 $a_1 = 1$,

$$\therefore a_n = 2n-1$$
;

若选条件③:

$$:: S_4^2 = S_2 \cdot S_8$$
, $:: (4+6d)^2 = (2+d)(8+28d)$,解得 $d = 0$ (舍去) 或 $d = 2$,

故
$$a_n = 1 + 2(n-1) = 2n-1$$
.

由已知可得
$$b_n = 2 \cdot 2^{n-1} = 2^n$$
,则 $c_n = a_n b_n = (2n-1) \cdot 2^n$,

则
$$T_n = 1 \times 2 + 3 \times 2^2 + 5 \times 2^3 + L + (2n-1) \times 2^n$$
,

$$2T_n = 1 \times 2^2 + 3 \times 2^3 + 5 \times 2^4 + \dots + (2n-1) \times 2^{n+1}$$

两式相减可得
$$-T_n = 2 + 2(2^2 + 2^3 + \dots + 2^n) - (2n-1) \times 2^{n+1}$$

$$=\frac{2(1-2^{n+1})}{1-2}-4-(2n-1)2^{n+1}=(3-2n)2^{n+1}-6,$$

所以
$$T_n = (2n-3) \times 2^{n+1} + 6$$
,

数列

$$T_n - T_{n-1} = (2n-3) \times 2^{n+1} + 6 - (2n-5) \times 2^n - 6 = (2n-1) \times 2^n$$
,

显然, 当 $n \ge 2$ 时, $T_n - T_{n-1} > 0$, 即 $T_n > T_{n-1}$,

$$XT_6 = 9 \times 2^7 + 6 = 1158, T_7 = 11 \times 2^8 + 6 = 2822$$
,

所以最小正整数n的值为7.

32. 【解析】 (1) 数列 $\{a_n\}$ 是递增的等比数列,前3项和为13,且 $3a_1$, $5a_2$, $3a_3$ 成等差数列.

所以
$$\begin{cases} a_1 + a_2 + a_3 = 13 \\ 10a_2 = 3a_1 + 3a_3 \end{cases},$$

整理得
$$\begin{cases} a_1 + a_3 = 10 \\ a_2 = 3 \end{cases}$$
, 所以 $\frac{3}{q} + 3q = 10$,

解得
$$q=3$$
 或 $\frac{1}{3}$,

由于{a_n}是递增的等比数列,

所以 q=3.

(2) 选条件①时,
$$b_n = 2\sqrt{S_n} - 1$$
;

整理得
$$4S_n = b_n^2 + 2b_n + 1①$$
,

当
$$n \ge 2$$
 时, $4S_{n-1} = b_{n-1}^{2} + 2b_{n-1} + 12$,

所以两式相减得: $b_n - b_{n-1} = 2$ (常数),

所以数列 $\{b_n\}$ 是以1为首项,2为公差的等差数列,

故 $b_n = 2n - 1$,

所以
$$c_n = a_n b_n = (2n-1) \cdot 3^{n-1}$$
,

$$3T_n = 1 \times 3^1 + 3 \times 3^2 + \dots + (2n-1) \cdot 3^n 2$$
,

① - ②得:
$$-2T_n=1+2(3^1+3^2+...+3^{n-1})-(2n-1)\times 3^n$$
,

选条件②时, $2b_n = b_{n-1} + b_{n+1} (n \ge 2)$, $b_2 = 3$;

数列

所以数列 $\{b_n\}$ 是以1为首项,2为公差的等差数列

故 $b_n = 2n - 1$,

则
$$T_n = 1 \times 3^0 + 3 \times 3^1 + \dots + (2n-1) \cdot 3^{n-1}$$
①,

$$_{3}T_{n}=1\times 3^{1}+3\times 3^{2}+...+(2n-1)\cdot 3^{n}$$
②,

① - ②得:
$$-2T_n=1+2(3^1+3^2+...+3^{n-1})-(2n-1)\times 3^n$$
,

整理得: T_n=1+(n-1)•3ⁿ.

选条件③时,
$$S_n - S_{n-1} = \sqrt{S_n} + \sqrt{S_{n-1}} (n \ge 2)$$
.

整理得:
$$\sqrt{S_n} - \sqrt{S_{n-1}} = 1$$
 (常数),

所以数列 $\{\sqrt{S_n}\}$ 是以1为首项,1为公差的等差数列;

所以
$$S_n = n^2$$
,

故
$$b_n = S_n - S_{n-1} = 2n - 1$$
,

所以
$$c_n = a_n b_n = (2n-1) \cdot 3^{n-1}$$
,

则
$$T_n = 1 \times 3^0 + 3 \times 3^1 + \dots + (2n-1) \cdot 3^{n-1}$$
①,

$$3T_n = 1 \times 3^1 + 3 \times 3^2 + \dots + (2n-1) \cdot 3^n \odot$$

① -②得:
$$-2T_n=1+2(3^1+3^2+...+3^{n-1})-(2n-1)\times 3^n$$
,

整理得: T_n=1+(n-1)・3ⁿ.

33.【解析】(1) 由 a_na_{n+1}+1=4S_n ①

得 $a_{n+1}a_{n+2}+1=4S_{n+1}$ ②

②-①得 $a_{n+1}a_{n+2}-a_na_{n+1}=4a_{n+1}$,

潍坊高中数学

因为 an+1>0,所以 a_{n+2}-a_n=4

由此可知 a_1 , a_3 , a_5 , a_7 , …, a_{2n-1} , …是公差为 2 的等差数列,

其通项公式为 a_{2n-1}=4n-3=2(2n-1)-1;

故 n∈N+时, a_n=2n-1

VFMATH

(2) 由 (1) 可知
$$b_n = \frac{1}{a_n a_{n+1}} = \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} (\frac{1}{2n-1} - \frac{1}{2n+1})$$

$$T_n = \frac{1}{2} \left[\frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right] = \frac{n}{2n+1}$$

要使
$$T_n < \frac{2n+1}{n^2}$$
,即 $\frac{n}{2n+1} < \frac{2n+1}{n^2}$,

由 $\frac{n}{2n+1} = \frac{1}{2} - \frac{1}{4n+2}$ 可知数列 $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \cdots, \frac{n}{2n+1}$ 为递增数列,

由 $\frac{2n+1}{n^2}$ 知数列 $\frac{3}{1}$, $\frac{5}{4}$, $\frac{7}{9}$, $\frac{9}{16}$, $\frac{11}{25}$,..., $\frac{2n+1}{n^2}$ 为递减数列,

因为
$$\frac{1}{3} < \frac{3}{1}, \frac{2}{5} < \frac{5}{4}, \frac{3}{7} < \frac{7}{9}, \frac{4}{9} < \frac{9}{16}, \frac{5}{11} > \frac{11}{25}, \dots,$$

所以当 n \leq 4 时, $T_n < \frac{2n+1}{n^2}$,

当 n>4 时,
$$T_n > \frac{2n+1}{n^2}$$

故满足条件的 n 的最大值为 4.

【另解】

要使
$$T_n < \frac{2n+1}{n^2}$$
,有 $\frac{n}{2n+1} < \frac{2n+1}{n^2}$,即 $n^3 - 4n^2 - 4n - 1 < 0$;

$$\diamondsuit \ f(x) \! = \! x^3 \! - \! 4x^2 \! - \! 4x \! - \! 1(x \! \geqslant \! 1) \,, \\ f'(x) \! = \! 3x^2 \! - \! 8x \! - \! 4 \! = \! 3\left(x \! - \! \frac{4}{3}\right)^2 \! - \! \frac{28}{3},$$

34. 【解析】 (1) 数列 $\{a_n\}$ 中, $a_1 = -9$,且 $\frac{a_{n+1}}{2}$ 是 2 与 a_n ($n \in \mathbb{N}*$) 的等差中项.

整理得 a_{n+1} - a_n =2 (常数),

故数列 $\{a_n\}$ 是以 - 9 为首项, 2 为公差的等差数列;

所以
$$a_n = -9+2 (n-1) = 2n-11$$
.

当 *n*≥6 时, *a*_n>0,

当 *n*≤5 时, *a*_n<0,

潍坊高中数学

所以当
$$n \le 5$$
 时, $G_n = |a_1| + |a_2| + \ldots + |a_n| = -(a_1 + a_2 + \ldots + a_n) = \frac{n(9 + 11 - 2n)}{2} = 10n - n^2$,

当 n≥6 时, G_n = $|a_1|$ + $|a_2|$ + $|a_5|$ + $|a_6|$ +...+ $|a_n|$ = -2 $(a_1$ + a_2 +...+ a_5) + $(a_1$ + a_2 +...+ a_n) =25+ (n - 5) 2 .

故
$$G_n = \begin{cases} 10n-n^2 & (n \le 5) \\ 25+(n-5)^2 & (n \ge 6) \end{cases}$$

(2) 根据数列的通项公式 $a_n = 2n - 11$,

数列

可知: a_1, \ldots, a_5 各项都为负值, 当 $n \ge 6$ 时, $a_n \ge 0$,

所以 T₂>0, T₄>0,

故 $\{T_n\}_{max} = \{T_2, T_4\}_{max}, \{T_n\}_{min} = \{T_1, T_3, T_5, T_n\}_{min},$

由于 T_2 =63, T_4 =945,

所以最大项为第 4 项,最大值为 945.

由于 /5= - 945, /6= - 945,

当 $n \ge 7$ 时, $a_n \ge 1$, 所以 T_n 没有最小值,

35. 【解析】(1) 证明: 由题意, 当 n=1 时, $8=4a_1=4S_1=a_2^2-4-4$, 解得 $a_2=4$,

当 $n \ge 2$ 时,由 $4S_n = a_{n+1}^2 - 4n - 4$,

可得 $4S_{n-1}=a_n^2-4(n-1)-4$,

两式相减,可得 $4a_n = a_{n+1}^2 - a_n^2 - 4$,

化简整理,得 $(a_{n+1}+a_n+2)(a_{n+1}-a_n-2)=0$,

- : $a_{n+1} + a_n + 2 > 0$,
- $: a_2 a_1 = 2$ 也满足上式,
- ∴数列{a₁}是以2为首项,2为公差等差数列.
- (2) \mathbf{M} : \mathbf{H} (1) \mathbf{M} , a_n =2+2 (n-1) =2n, n∈ \mathbf{N} *,

 $b_1 = 1$, $b_4 = a_4 = 8$,

设等比数列 $\{b_n\}$ 的公比为q,

则 $q^3 = \frac{b_4}{b_1} = 8$,解得 q = 2,

$$b_n = 1 \cdot 2^{n-1} = 2^{n-1}, n \in \mathbb{N}^*,$$

$$b_1=1$$
, $b_2=2=a_1$, $b_3=4=a_2$, $b_4=8=a_4$,

$$b_5 = 16 = a_8$$
, $b_6 = 32 = a_{16}$, $b_7 = 64 = a_{32}$,

$$b_8 = 128 = a_{64}$$
, $b_9 = 256 = a_{128}$,

潍坊高中数学

- $= (a_1 + a_2 + a_3 + \bullet + a_{107}) (b_2 + b_3 + b_4 + \bullet + b_8)$

$$=\frac{107\times(2+214)}{2}-\frac{2(1-2^7)}{1-2}$$

=11302.

36. 【解析】 (1) 由 $a_n+a_{n+1}=kn+1$,可得 $a_1+a_2=k+1$, $a_2+a_3=2k+1$, $a_3+a_4=3k+1$,

因为 $a_1=1$,

所以 $a_2 = k$, $a_3 = k+1$, $a_4 = 2k$.

又 a_1 , a_2 , a_4 成等比数列,所以 $a_2^2 = a_1 a_4$, 则 $k^2 = 2k$,

又 $k\neq 0$,故 k=2.

(2) $\leq k=3$ if, $a_n+a_{n+1}=3n+1$.

当 n 为偶数时, $S_n = (a_1 + a_2) + (a_3 + a_4) + (a_5 + a_6) + \cdots + (a_{n-1} + a_n)$

$$=$$
 $_{4+10+16+\cdots+(3n-2)}=\frac{(2+3n)\times\frac{n}{2}}{2}=\frac{3n^2+2n}{4}$;

当 n 为奇数时, $S_n = a_1 + (a_2 + a_3) + (a_4 + a_5) + (a_6 + a_7) + \cdots + (a_{n-1} + a_n)$

$$= \underbrace{{}_{1+7+13+19+\dots+(3n-2)}}_{2} = \underbrace{{}_{2}^{(3n-1)} \times \frac{n+1}{2}}_{2} = \underbrace{{}_{3n}^{2} + 2n-1}_{4}.$$

综上所述,
$$S_n = \begin{cases} \frac{3n^2 + 2n}{4}, & \text{n为偶数} \\ \frac{3n^2 + 2n - 1}{4}, & \text{n为奇数} \end{cases}$$

37. 【解析】 (1) 设等比数列 $\{a_n\}$ 的公比为 q ,

因为 a_3 是 $2a_1$ 、 $3a_2$ 的等差中项,所以 $2a_3 = 2a_1 + 3a_2$,即 $2a_1q^2 = 2a_1 + 3a_1q$,

因为
$$a_1 \neq 0$$
 ,所以 $2q^2 - 3q - 2 = 0$,解得 $q = 2$ 或 $q = -\frac{1}{2}$,

因为数列 $\{a_n\}$ 是正项等比数列,所以 q=2 .

因为
$$a_4=16$$
 ,即 $a_4=a_1q^3=8a_1=16$,解得 $a_1=2$,所以 $a_n=2\times 2^{n-1}=2^n$;

(2)解法一:(分奇偶、并项求和)

由(1)可知, $a_{2n+1}=2^{2n+1}$,

所以,
$$b_n = (-1)^n \cdot \log_2 a_{2n+1} = (-1)^n \cdot \log_2 2^{2n+1} = (-1)^n \cdot (2n+1)$$
 ,

①若
$$n$$
 为偶数, $T_n = -3 + 5 - 7 + 9 - \cdots - (2n - 1) + (2n + 1)$

①若
$$n$$
 为偶数, $T_n = -3 + 5 - 7 + 9$ $(2n-1) + (2n+1)$ $= (-3+5) + (-7+9) + \cdots + [-(2n-1) + (2n+1)] = 2 \times \frac{n}{2} = n$;

②若 n 为奇数,当 $n \geq 3$ 时, $T_n = T_{n-1} + b_n = n - 1 - (2n + 1) = -n - 2$,

当 n=1 时, $T_1=-3$ 适合上式,

综上得
$$T_n = \{ \begin{matrix} n, n \not > g \not \\ -n-2, n \not > f \not > \end{matrix}$$
 (或 $T_n = (n+1)(-1)^n-1$, $n \in \mathbb{N}^*$);

解法二: (错位相减法)

由(1)可知,
$$a_{2n+1} = 2^{2n+1}$$
,

所以,
$$b_n = (-1)^n \cdot \log_2 a_{2n+1} = (-1)^n \cdot \log_2 2^{2n+1} = (-1)^n \cdot (2n+1)$$
 ,

$$T_n = (-1)^1 \times 3 + (-1)^2 \times 5 + (-1)^3 \times 7 + \dots + (-1)^n (2n+1)$$
,

所以
$$-T_n = (-1)^2 \times 3 + (-1)^3 \times 5 + (-1)^4 \times 7 + \dots + (-1)^{n+1} (2n+1)$$

所以
$$2T_n = -3 + 2[(-1)^2 + (-1)^3 + \dots + (-1)^n] - (-1)^{n+1}(2n+1)$$

= $-3 + 2 \times \frac{1 - (-1)^{n-1}}{2} + (-1)^n(2n+1) = -3 + 1 - (-1)^{n-1} + (-1)^n(2n+1)$

$$=-2+(2n+2)(-1)^n$$
,

所以
$$T_n = (n+1)(-1)^n - 1$$
 , $n \in N^*$.

38. 【解析】 (1) $\{a_n\}$ 是公差为 2 的等差数列, $a_1>0$,且 a_4 是 $2a_2$ 和 a_5 - 2 的等比中项,

可得
$$a_4^2 = 2a_2(a_5 - 2)$$
 ,即为 $(a_1+6)^2 = 2(a_1+2)(a_1+8-2)$,

解得 a_1 =2(负值舍去),

则
$$a_n = 2+2 (n-1) = 2n$$
;

(2) 数列
$$\{b_n\}$$
满足 $\frac{b_1}{a_1} + \frac{b_2}{a_2} + \dots + \frac{b_n}{a_n} = 2^{n+1}$,

可得
$$n=1$$
 时, $b_1=4a_1=8$,

$$n \ge 2$$
 时, $\frac{b_1}{a_1} + \frac{b_2}{a_2} + \dots + \frac{b_{n-1}}{a_{n-1}} = 2^n$,两式相减可得 $\frac{b_n}{a_n} = 2^n$,

则
$$b_n = 2^n a_n = n \cdot 2^{n+1}$$
,

即
$$bn = \begin{cases} 8, & n=1 \\ n \cdot 2^{n+1}, & n \ge 2 \end{cases}$$

所以
$$T_n = 4+1 \cdot 2^2 + 2 \cdot 2^3 + \dots + n \cdot 2^{n+1}$$
,

$$2T_n = 1 \cdot 2^3 + 2 \cdot 2^4 + \dots + n \cdot 2^{n+2}$$

$$=4+\frac{4(1-2^{n})}{1-2}-n^{\bullet}2^{n+2},$$

化简可得 $T_n=8+(n-1) \cdot 2^{n+2}$.

39. 【解析】(1) $\{b_n\}$ 是 V(k) 数列, $b_1=10$, $b_2=8$, $b_3=6$,

则有
$$\frac{b_3-b_2}{b_2-b_1} = \frac{6-8}{8-10} = 1$$
,所以 $\frac{b_{n+1}-b_n}{b_n-b_{n-1}} = 1$,则有 $b_{n+1}-b_n = b_n-b_{n-1}$,

所以数列 $\{b_n\}$ 是等差数列,公差为 $d=b_2-b_1=-2$,

故数列 $\{b_n\}$ 的通项公式求 $b_n = -2n+12$,

所以
$$S_{11} = \frac{11 \times (10-10)}{2} = 0$$
;

(2) 数列 $\{a_n\}$ 是V(2)数列,则有 $a_{n+1}-a_n=(a_2-a_1)\cdot 2^{n-1}$,

又 a_2 - a_1 =2,所以 a_{n+1} - a_n =2ⁿ,

$$\stackrel{\text{\tiny \pm}}{=}$$
 $n \ge 2$ fb , $a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \bullet + (a_2 - a_1) + a_1 = 2^{n-1} + 2^{n-2} + \bullet + 2 + 1 = 2^n - 1$,

当 n=1 时,上式也成立,

所以 $a_n=2^n-1$,

假设存在正整数 m, n, 使得 $\frac{199}{99} < \frac{a_m}{a_n} < \frac{99}{49}$ 成立,

则
$$\frac{199}{99} < \frac{2^{m-1}}{2^{n-1}} < \frac{99}{49}$$

由
$$\frac{2^{m}-1}{2^{n}-1}$$
 >2,可知 $2^{m}-1$ >2ⁿ - 1,

所以 m > n, 又 m, n为正整数,

所以 *m* - *n*≥1,

所以
$$2^{m-n} < \frac{99}{49} < 3$$
,则 $2^{m-n} = 2$,

所以m-n=1,

所以
$$\frac{2^{m-1}}{2^{n-1}} = 2 + \frac{1}{2^{n-1}}, \quad$$
故 $\frac{199}{99} < 2 + \frac{1}{2^{n-1}} < \frac{99}{49},$

则 $50 < 2^n < 100$,所以 n=6, m=7,

故存在满足条件的正整数 m=7, n=6.

40. 【解答】解: (1) 设等差数列 $\{a_n\}$ 的公差为 d,

由 a_3 - a_1 =8, 可得 2d=8, 即 d=4,

由 a_2 - 1 是 a_1 和 a_3 +1 的等比中项,可得 a_2 - 1 是 a_1 和 a_3 +1

即有 $(a_1+3)^2 = a_1 (a_1+9)$,

解得 $a_1=3$,

则 a_n =3+4 (n-1) =4n-1;

由 b_1 =3, $2S_n$ = b_{n+1} -3, 可得 b_2 = $2S_1$ +3= $2b_1$ +3=9,

 $n \ge 2$ 时, $2S_{n-1} = b_n - 3$,又 $2S_n = b_{n+1} - 3$,可得 $2S_n - 2S_{n-1} = b_{n+1} - 3 - b_n + 3 = 2b_n$,

即为 $b_{n+1}=3b_n$, 满足 n=1,

所以{b_a}是首项和公比均为3的等比数列,

则 $b_n = 3^n$;

(2) 由 c_1 =3, c_2 =27, c_3 =243, 猜想 c_k =3^{2k-1},

证明:因为 $b_{n+2} - b_n = 3^{n+2} - 3^n = 8 \cdot 3^n = 4 \cdot (2 \cdot 3^n)$ 是数列 $\{a_n\}$ 的公差 d 的正整数倍,

由 $c_2 \neq b_2$, 所以 b_2 , b_4 , b_6 , ..., b_{2k} , ... 不是 $\{a_n\}$ 中的项,

由于 $c_1=b_1=a_1=3$,所以 b_1 , b_3 ,..., b_{2k-1} ,...是 $\{a_n\}$ 中的项,

所以 $c_k=3^{2k-1}$, $d_k=\log_3 c_k=2k-1$,

$$\frac{1}{d_k d_{k+1}} = \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \ (\frac{1}{2k-1} - \frac{1}{2k+1}),$$

所以
$$T_k = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2k-1} - \frac{1}{2k+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2k+1} \right) = \frac{k}{2k+1}$$
.

- 41. 【解析】 (1) 由 $\sqrt{m-1}$ < n, 可得 $1 \le m < n^2 + 1$, $m \in \mathbb{N}^*$,
 - :.数列 $\{(\sqrt{n-1})^+\}$ 的通项公式为 $(\sqrt{n-1})^+=n^2$;

(2) :
$$f_n'(x) = x^2 - (eb_n + n^2) x + eb_n n^2 = (x - eb_n) (x - n^2),$$

若 $eb_n > n^2$ 对于任意 $n \in \mathbb{N}^*$ 恒成立,

当 $x \in (-\infty, n^2)$ 时, $f_n'(x) > 0$, $f_n(x)$ 在 $(-\infty, n^2)$ 上单调递增;

当 $x \in (n^2, eb_n)$ 时, $f_n'(x) < 0$, $f_n(x)$ 在 (n^2, eb_n) 上单调递减;

当 x∈ $(eb_n, +∞)$ 时, f_n' (x) >0, f_n (x) 在 $(eb_n, +∞)$ 上单调递增;

$$\therefore b_{n+1} = eb_n$$
, 即 $b_{n+1} = e^n b_1 > n^2$, 则 $b_1 > \frac{n^2}{e^n}$

$$\Rightarrow g(x) = \frac{x^2}{e^x} (x \ge 1), \text{ Mg'}(x) = \frac{2x - x^2}{e^x} = \frac{x(2 - x)}{e^x},$$

当 $x \in (1, 2)$ 时, g'(x) > 0, g(x) 在 (1, 2) 上单调递增,

当 x∈ (2, +∞) 时,g' (x) <0,g' (x) 在 (2, +∞) 上单调递减,

$$\therefore g(x) \leq g(2) = \frac{4}{e^2},$$

$$: b_1 > \frac{4}{e^2}$$
符合题意;

若
$$b_1 = \frac{4}{e^2}$$
,则 $eb_1 = \frac{4}{e} > 1^2$, $f_1(x)$ 的极小值点为 $b_2 = eb_1 = \frac{4}{e}$,

∴ $\operatorname{eb}_2 = 2^2$,此时 f_2 ' $(x) \ge 0$,则 f_2 (x) 无极值,不符题意;

$$\frac{1}{e}$$
< b_1 < $\frac{4}{e^2}$,则 eb_1 > 1^2 , $f_i(x)$ 的极小值点为 $b_2=eb_1$,

$$:eb_2=e^2b_1 < 4=2^2,$$

- $\therefore b_3 = 4$
- ∴此时{b_n}不是等比数列,不符题意;

若 $b_1 = \frac{1}{e}$,则 $eb_1 = 1^2$,此时 $f_1'(x) \ge 0$,则 $f_1(x)$ 无极值,不符题意;

$$\therefore b_2 = 1$$
,

$$\chi_{eb_2} = e < 2^2$$
,

$$\therefore b_3 = 4$$
,

又eb
$$_3$$
=4e $>$ 3 2 ,

 $\therefore b_4 = 4e$,此时 $\{b_n\}$ 不是等比数列,不符题意;

综上,
$$b_1 > \frac{4}{e^2}$$
;

(3) 由 $m^2 < n$ 可得, 1 \leq m $<\sqrt{n}$, m \in N * ,

- ∴ $(n^2)^+ = k 1$, $(k 1)^2 + 1 \le n \le k^2$, $k \in \mathbb{N}$, $k \in$
- 3, 3, 3, 3,,

$$X : k^2 - [(k-1)^2 + 1] + 1 = 2k - 1,$$

- \therefore $((n^2)^+)^+ = 1 + 3 + 5 + \cdots + 2n 1 = n^2$.
- **42.**【解析】 (1) 当 *x*=2 时, *a_n*=2ⁿ,

若存在三项 2^m , 2^n , 2^t 成等差数列 (m < n < t, m, n, $t \in \mathbb{N}^*$),

则有 $2^{m}+2^{t}=2^{n+1}$, : $1+2^{t-m}=2^{n+1-m}$,

易知等式左边为奇数,右边为偶数,

∴数列{a_n}中不存在三项,使其成等差数列;

(2) 证明: 由题意,
$$f_n(x) = -1 + x + \frac{x^2}{2^2} + \dots + \frac{x^n}{n^2}$$
,

$$f_n'(x) = 1 + \frac{x}{2} + \dots + \frac{x^{n-1}}{n},$$

当 $x \in [\frac{2}{3}, 1]$ 时, $f_n'(x) > 0$ 恒成立, $f_n(x)$ 单调递增,

此时
$$f_n(1) = \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} > 0$$
,

$$\begin{split} &f_n\left(\frac{2}{3}\right) = \underbrace{-\frac{1}{3} + \frac{\left(\frac{2}{3}\right)^2}{2^2} + \frac{\left(\frac{2}{3}\right)^3}{3^2} + \cdots + \frac{\left(\frac{2}{3}\right)^n}{n^2} < \underbrace{-\frac{1}{3} + \frac{1}{4} \left[\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^3 + \cdots + \left(\frac{2}{3}\right)^n\right]}_{= -\frac{1}{3} \left(\frac{2}{3}\right)^{n-1} < 0, \end{split}$$

∴存在唯一的实数
$$x_n \in [\frac{2}{3}, 1]$$
,使得 $f_n(x) = 0$,

∴得证;

(3) 证明: 当
$$x>0$$
 时, $f_{n+1}(x) = f_n(x) + \frac{x^{n+1}}{(n+1)^2} > f_n(x)$,

$$f_{n+1}(X_n) > f_n(X_n) = f_{n+1}(X_{n+1}) = 0,$$

故对 \forall 正整数 p,都有 x_n - $x_{n+p} > 0$,

两式相减,得,

$$x_{n} - x_{n+p} = \frac{(x_{n+p})^{2} - (x_{n})^{2}}{2^{2}} + \dots + \frac{(x_{n+p})^{n} - (x_{n})^{n}}{n^{2}} + \frac{(x_{n+p})^{n+1}}{(n+1)^{2}} + \dots + \frac{(x_{n+p})^{n+p}}{(n+p)^{2}}$$

$$<\frac{\left(x_{n+p}\right)^{n+1}}{\left(n+1\right)^{2}}++\frac{\left(x_{n+p}\right)^{n+p}}{\left(n+p\right)^{2}},$$

$$:_{X_{n+p}} \in [\frac{2}{3}, 1], :_{X_n - X_{n+p}} < \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+p)^2} < \frac{1}{n(n+1)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$= \frac{1}{n} - \frac{1}{n+1} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p} = \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n},$$

即数列 $\{x_n\}$ 满足 $0 < x_n - x_{n+p} < \frac{1}{n}$,

∴得证.

43. 【解析】 (1) 因为数列 $\{a_n\}$ 是公差为2的等差数列,其前n项和为 S_n

所以
$$S_n = na_1 + \frac{n(n-1) \times 2}{2} = n^2 + (a_1 - 1)n$$
,

因为 S_n 为 Z(1) 数列,所以 $S_{n+1} \ge S_n$,则 $(n+1)^2 + (a_1-1)(n+1) \ge n^2 + (a_1-1)n$;

所以 $a_1 \ge -2n$ ($n \in \mathbb{N}*$), 即 $a_1 \ge -2$;

(2) 令 $3T_n = R_n^2 + 4R_n$ 中 n=1 得, $3T_1 = R_1^2 + 4R_1$,即 $3b_1^2 = b_1^2 + 4b_1$,而数列 $\{b_n\}$ 的各项均为正数,所以 $b_1 = 2$,

由 $3T_n = R_n^2 + 4R_n$,可得 $3T_{n+1} = R_{n+1}^2 + 4R_{n+1}$,即 $3b_{n+1}^2 = R_{n+1}^2 - R_n^2 + 4b_{n+1} = (R_{n+1} - R_n)(R_{n+1} + R_n) + 4b_{n+1}$,

由 $b_{n+1} > 0$ 可得 $3b_{n+1} = R_{n+1} + R_n + 4$,则 $3b_{n+2} = R_{n+2} + R_{n+1} + 4$,

两式相减得 $3b_{n+2}$ - $3b_{n+1} = b_{n+2} + b_{n+1}$, 即 $b_{n+2} = 2b_{n+1}$,

当 $n \ge 2$ 时, $b_{n+1} = 2b_n$,

而
$$3T_2 = R_2^2 + 4R_2$$
,则 $3(4+b_2^2) = (2+b_2)^2 + 4(2+b_2)$,即 $b_2^2 - 4b_2 = 0$,而 $b_2 > 0$,则 $b_2 = 4$, $\frac{b_2}{b_1} = 2$,

所以 $\{b_n\}$ 时首项为2,公比为2的等比数列, $b_n=2^n$,

所以 $c_n = b_n + \frac{1}{b_n} = 2^n + 2^{-n}$,而数列 $\{c_n\}$ 为 Z(m) 数列,则 $c_{n+1} \ge mc_n$,即 $2^{n+1} + 2^{-n-1} \ge m (2^n + 2^{-n})$,

所以
$$m \le \frac{2^{n+1} + 2^{-n-1}}{2^n + 2^{-n}} = 2 - \frac{\frac{3}{2}}{2^{2n} + 1}$$
,则 $m \le \frac{17}{10}$,

所以m的最大值为 $\frac{17}{10}$;

(3) 证明: 因为数列 $\{d_{2k-1}d_{2k+1}\}$ 为Z(r)数列,所以 $rd_{2k-1}d_{2k+1} \leqslant d_{2k+1}d_{2k+3}$,即 $rd_{2k-1} \leqslant d_{2k+3}$;

而数列{
$$\frac{1}{d_{2k}d_{2k+2}}$$
}为 $Z(s)$ 数列, $s\frac{1}{d_{2k}d_{2k+2}} \le \frac{1}{d_{2k+2} \cdot d_{2k+4}}$,即 $sd_{2k+4} \le d_{2k}$;

而
$$\frac{d_2}{d_1}$$
= rs , rd 1 $\leq d_5$, $d_5 \leq d_6$, 所以 $sd_6 \leq d_2 = d_1 rs \leq sd_5$,

则 $d_5=d_6$ 且中间每个等号都需取等,即 $sd_6=d_2=d_1rs=sd_5$,

而
$$\frac{d_2}{d_1}$$
= rs , $d_1 \leq d_2$, 所以 $rs \geq 1$, 又因 $rd_5 \leq d_6$, $sd_{10} \leq d_6$,

所以 $rsd_{10} \leqslant rd_5 = rd_6 \leqslant d_9 \leqslant d_{10}$,则 $rs \leqslant 1$,所以 rs = 1,

即 $d_{10} \leqslant rd_5 = rd_6 \leqslant d_9 \leqslant d_{10}$, $d_9 = d_{10}$, 且中间每个等号都需取等,

递推得
$$\begin{cases} d_{4k+1} = d_{4k+2} \\ d_{4k+1} = rd_{4k-3}, \text{ 证明完毕.} \\ d_{4k+2} = rd_{4k-2} \end{cases}$$

