专题五

一、单项选择

- 1. (2021•临沂一模 3) 设 a, b, c, d 为实数,则 "a>b, c>d" 是 "a+c>b+d" 的(
 - A. 充分而不必要条件

B. 必要而不充分条件

C. 充分必要条件

- D. 既不充分也不必要条件
- 2. (日照一模 5) 函数 $y = a^{3-x}(a > 0, 且a \neq 1)$ 的图象恒过定点 A,若点 A 在椭圆 $\frac{x^2}{m} + \frac{y^2}{n} = 1(m > 0, n > 1)$
- 0)上,则 m+n 的最小值为

- D. 18
- **3. (聊城一模 6)** 若正实数 a,b 满足 a+b=1,且 a>b,则下列结论正确的是

- A. $\ln(a-b) > 0$ B. $a^b < b^a$ C. $\sqrt{a} + \sqrt{b} > \sqrt{2}$ D. $\frac{1}{a} + \frac{1}{b} > 4$
- **4. (滨州一模 6)** 已知 a>0,b>0,向量 $_{\pi}=(a+2b, -9)$, $_{\mathbf{n}}=(8, ab)$,若 $_{\pi}^{\bullet}\perp_{\mathbf{n}}^{\bullet}$,则 2a+b 的最小值 - C. $\frac{5}{4}$ 为(
 - A. 9

- D. 5

方面中数学

- 5. (菏泽一模 9) 下列结论正确的是(
 - A. $\forall x \in \mathbb{R}, x + \frac{1}{x} \geqslant 2$
 - B. 若 a < b < 0, 则 $(\frac{1}{a})^3 > (\frac{1}{b})^3$
 - C. 若x(x-2) <0, 则 $\log_2 x \in (0, 1)$
 - D. 若 a > 0, b > 0, $a + b \le 1$, 则 $0 \le ab \le \frac{1}{4}$
- **6. (泰安一模 9)** 设正实数 *a*, *b* 满足 *a*+*b*=1,则(
 - A. $\log_2 a + \log_2 b \ge -2$
- B. $ab + \frac{1}{ab} > \frac{17}{4}$ D. $2^{a-b} > \frac{1}{2}$
- C. $\frac{2}{a} + \frac{1}{b} \le 3 + 2\sqrt{2}$

- 7. (烟台一模 9) 若 0<a<b<1, c>1,则
 - $A.c^a < c^b$
- B.bac<abc
- $C.\frac{b-a}{c-a} < \frac{b}{c}$
- D.log_ac<log_bc
- **8. (2021•淄博一模 11)** 已知 a, $b \in \mathbb{R}$, 且 0 < a < 1 < b, 则下列结论正确的是(

- A. $\frac{1}{a} > \frac{1}{b}$ B. $a^a > b^b$ C. $lgb^a > lga^b$ D. $\sqrt{a} + \sqrt{b} > 2$
- **9. (潍坊一模 12)** 已知实数 x, y, z 满足 x+y+z=1, 且 $x^2+y^2+z^2=1$,则下列结论正确的是
- A. xy + yz + xz = 0 B. z 的最大值为 $\frac{1}{2}$ C. z 的最小值为 $-\frac{1}{3}$ D. xyz 的最小值为 $-\frac{4}{27}$

10. (**济南一模 15**) 能够说明"若 a>b,则 $\frac{1}{a+\sqrt[3]{a}} < \frac{1}{b+\sqrt[3]{b}}$ "是假命题的一组非零实数 a,b 的值依次为_____、_____.

不等式 潍坊高中数学

Vimath. Attitue

专题五 不等式

口数学

一、单项选择

1. 【答案】A

【分析】由 c>d,则 "a>b" \Rightarrow "a+c>b+d",反之不成立。例如取 c=5,d=1,a=2,b=3.

【解答】由 c > d,则 "a > b" \Rightarrow "a + c > b + d",反之不成立.

例如取 c=5, d=1, a=2, b=3. 满足 c>d, "a+c>b+d", 但是 a>b 不成立.

 $\therefore c > d$,则 "a > b,c > d" 是 "a + c > b + d" 的充分不必要条件.

故选: A.

2. 【答案】C

【解析】定点为 A (3,1),则有
$$\frac{9}{m} + \frac{1}{n} = 1$$
,所以 $m + n = (m + n)(\frac{9}{m} + \frac{1}{n}) = 10 + \frac{9n}{m} + \frac{m}{n} \ge 10 + 2\sqrt{9} = 16$,

当且仅当 $\frac{9n}{m} = \frac{m}{n}$, 即 m=3n,时取等号。选 C

3.【答案】D

4.【答案】B

【解析】根据题意,向量 $_{\pi}^{\rightarrow}$ = (a+2b, -9) , $_{\mathbf{n}}^{\rightarrow}$ = (8, ab) ,

若_π
$$\stackrel{\rightarrow}{}_{n}$$
 , 则_π $\stackrel{\rightarrow}{}_{n}$ = 8 (a+2b) - 9ab=0, 即 8 (a+2b) = 9ab, 变形可得 $\frac{1}{b}$ + $\frac{2}{a}$ = $\frac{9}{8}$

$$\text{If } 2a+b=\frac{8}{9}\times\frac{9}{8}\ (2a+b)\ =\frac{8}{9}\times\ (\frac{1}{b}+\frac{2}{a})\ (2a+b)\ =\frac{8}{9}\times\ (5+\frac{2a}{b}+\frac{2b}{a})\ ,$$

又由
$$a>0$$
, $b>0$, 则 $\frac{2a}{b}+\frac{2b}{a}=2$ ($\frac{a}{b}+\frac{b}{a}$) >4 , 当且仅当 $a=b$ 时等号成立,则 $2a+b=\frac{8}{9}\times(5+\frac{2a}{b}+\frac{2b}{a})>\frac{8}{9}\times(5+4)=8$, 则 $2a+b$ 的最小值为 8 , 故选: B .

****S项选择**
【答案】BD
【解析】对于 A , 当 $x<0$ 时, $x+\frac{1}{x} \le -2$, 故错; 对于 B , 当 $a 时, $\frac{1}{a}>\frac{1}{b}$, 则 $(\frac{1}{a})^3>(\frac{1}{b})^3$, 故正确; 对于 C , 若 x ($x-2$) <0 , 则 $0< x<2$, 则 $\log_2 x \in (-\infty, 1)$, 故错;$

则
$$2a+b=\frac{8}{9}$$
× $(5+\frac{2a}{b}+\frac{2b}{a}) \geqslant \frac{8}{9}$ × $(5+4)=8$

二、多项选择

5. 【答案】BD

对于
$$B$$
, 当 $a < b < 0$ 时, $\frac{1}{a} > \frac{1}{b}$, 则 $(\frac{1}{a})^3 > (\frac{1}{b})^3$, 故正确

不等式

潍坊高中数学

对于 D, 若 a>0, b>0, $a+b\leq 1$, 则有 $ab\leq (\frac{a+b}{2})^2 \leq \frac{1}{4}$, 即 $0\leq ab\leq \frac{1}{4}$, 故正确. 所以 $ab \leq (\frac{a+b}{2})^2 = \frac{1}{4}$,当且仅当 $a=b=\frac{1}{2}$ 时取等号, $\log_2 a + \log_2 b = \log_2 (ab) \leq \log_2 \frac{1}{2}$

6. 【答案】BD

所以
$$ab \leq (\frac{a+b}{2})^2 = \frac{1}{4}$$
,当且仅当 $a=b=\frac{1}{2}$ 时取等号,

$$\log_2 a + \log_2 b = \log_2(ab) \le \log_2 \frac{1}{4} = -2, A \text{ ##;}$$

令
$$t=ab$$
 \in $(0, \frac{1}{4}]$, $ab+\frac{1}{ab}=t+\frac{1}{t}$ 在 $(0, \frac{1}{4}]$ 上单调递减,

当
$$t=\frac{1}{4}$$
时取得最小值 $\frac{17}{4}$, B 成立;

$$\frac{2}{a} + \frac{1}{b} = \frac{2(a+b)}{a} + \frac{a+b}{b} = 3 + \frac{2b}{a} + \frac{a}{b} \geqslant 3 + 2\sqrt{2}$$
, C不成立;

:正实数 a,b 满足 a+b=1,

$$a-b=a-(1-a)=2a-1>-1$$
,则 $2^{a-b}>2^{-1}=\frac{1}{2}$,D 成立.

故选: BD.

7.【答案】ABC

【解析】A 选项,由 $y = c^x(c > 1)$ 的单调性知,A 正确;

B 选项:
$$\frac{ba^c}{ab^c} = (\frac{b}{a})^{c-1}$$
, $\because 0 < \frac{b}{a} < 1$, $c-1 > 0$, $\therefore (\frac{b}{a})^{c-1} < 1$, B 正确

C 选项:
$$\frac{b-a}{c-a} - \frac{b}{c} = \frac{bc-ac-bc+ab}{c(c-a)} = \frac{a(b-c)}{c(c-a)} < 0$$
, C 正确

D 选项:
$$log_a c = \frac{lgc}{lga}$$
, $log_b c = \frac{lgc}{lgb}$, \therefore a < b < 1, \therefore lga < lgb < 0, $\therefore \frac{1}{lga} > \frac{1}{lgb}$ 且lgc > 0

$$: \frac{lgc}{lga} > \frac{lgc}{lgb}$$
,即 $lg_ac > lg_bc$,D错误

8. 【答案】AC

【分析】利用不等式的性质判断 AC, 举反例判断 BD.

【解答】由 $a, b \in \mathbb{R}$,且 0 < a < 1 < b,得:

对于 A,由同号不等式取倒数法则得 $\frac{1}{a} > \frac{1}{b}$,故 A 正确;

对于 B, $a^a > b^b$ 不成立, 例如 $(\frac{1}{2})^{\frac{1}{2}} < 3^3$, 故 B 错误;

对于 C, $::b^a>a^b$, $::lgb^a>lga^b$, 故 C 正确;

对于 D, $\sqrt{a} + \sqrt{b} > 2$ 不一定成立,例如 $\sqrt{\frac{1}{16}} + \sqrt{2} < 2$,故 D 错误.

不等式

故选: AC.

9.【答案】ACD

【解析】
$$: x + y + z = 1$$
, $: (x + y + z)^2 = 1$, $: x^2 + y^2 + z^2 = 1$, $: xy + yz + xz = 0$, A 正确;

$$x + y = 1 - z$$
, $x^2 + y^2 = 1 - z^2$, $2(x^2 + y^2) \ge (x + y)^2 \Rightarrow 2 - 2z^2 \ge (1 - z)^2$, $-\frac{1}{3} \le z \le 1$, 故 B 错误, C 正确;

根据选项 A 得
$$z = \frac{-xy}{x+y}$$
 , 又 $z = 1 - (x+y)$, 故 $\frac{-xy}{x+y} = 1 - (x+y)$,

$$\therefore xy = (x+y)^2 - (x+y) \le (\frac{x+y}{2})^2, \quad \therefore 0 \le x+y \le \frac{4}{3},$$

$$xyz = [(x+y)^2 - (x+y)][1-(x+y)], \Leftrightarrow x+y=t, 0 \le t \le \frac{4}{3},$$

$$\therefore xyz = -t^3 + 2t^2 - t$$
,求导后发现 $t = \frac{1}{3}$ 或 $\frac{4}{3}$ 时, xyz 的最小值为 $-\frac{4}{27}$,D 正确. 综上选 ACD. 综上选 ACD.

三、填空

10.【答案】1, -1 (答案不唯一)

【解析】答案不唯一,只需要第1个数大于0,第2个数小于0即可,即a>0,b<0,用反比例函数在各自 象限具有单调性,而不是定义域内具有单调性。

潍坊高中数学 不等式