专题三 三角函数与解三角形

一、单项选择题

- 1. (2021 潍坊二模 1) sin20° sin10° cos20° cos10° = ()
 - A. $-\frac{\sqrt{3}}{2}$ B. $-\frac{1}{2}$ C. $\frac{1}{2}$

- 2. (2021 日照二模 3) 若 α 为第二象限角,则()
 - A. $\sin \alpha \cos \alpha < 0$

B. $\tan \alpha < 0$

C. $\sin (\frac{\pi}{2} + 2\alpha) > 0$

- D. $\cos (\pi 2\alpha) > 0$
- 3. (2021 济南二模 3) $\triangle ABC$ 中," $\sin A = \frac{1}{2}$ " 是" $A = \frac{\pi}{6}$ "的(
 - A. 充要条件

B. 充分不必要条件

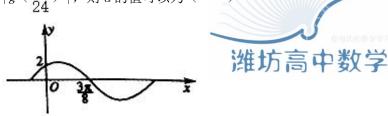
C. 必要不充分条件

- D. 既不充分也不必要条件
- 4. (2021 淄博二模 6) 若 $\tan \alpha > \sin \alpha < \sin 2\alpha (-\frac{\pi}{2} < \alpha < \frac{\pi}{2})$,则 $\alpha \in$ (
 - A. $\left(-\frac{\pi}{2}, -\frac{\pi}{6}\right)$
- B. $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ C. $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ D. $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$
- 5. **(2021 济南二模 5)** 将函数 $f(x) = \sqrt{3}\sin x + \cos x$ 的图象向右平移 $\frac{\pi}{6}$ 个单位后,得到函数 g(x) 的图
 - 象,则下列关于 g(x) 的说法正确的是(
 - A. 最小正周期为 π

- B. 最小值为 1
- C. 图象关于点 $(\frac{3\pi}{2}, 0)$ 中心对称 D. 图象关于直线 $x = \frac{\pi}{2}$ 对称
- 6. **(2021 聊城二模 5)** 已知函数 $f(x) = 2\sqrt{2}\sin(\omega x + \phi)(\omega > 0, |\phi| < \frac{\pi}{2})$ 的部分图象如图所示,

将 f(x) 的图象向右平移 a(a>0) 个单位后,得到函数 g(x) 的图象,若对于任意的 $x\in \mathbf{R},\ g(x)\leqslant$

 $|g(\frac{\pi}{24})|$,则 a的值可以为(



- B. $\frac{\pi}{4}$ C. $\frac{5\pi}{12}$ D. $\frac{\pi}{2}$
- 7. (2021 青岛三模 7) 若将函数 $f(x) = 2\sin(2x + \phi)$ ($|\phi| < \frac{\pi}{2}$) 的图象向左平移 $\frac{\pi}{6}$ 个单位后得到的

图象关于 y轴对称,则函数 f(x) 在[0, $\frac{\pi}{2}$]上的最大值为(

- A. 2
- B. $\sqrt{3}$ C. 1
- D. $\frac{\sqrt{3}}{2}$

8. (2021 **菏泽二模** 5) 已知函数 $f(x) = \sin(x + \frac{\pi}{3})\cos x - \frac{\sqrt{3}}{4}$ 的图像向右平移 $\frac{\pi}{3}$ 个单位,再将图像上所有 点的横坐标缩小到原来的一半,纵坐标不变,得到函数 g(x) 的图象,若 $g(x_1) \cdot g(x_2) = \frac{1}{4}(x_1 \neq x_2)$,

则 $|x_1 - x_2|$ 的最小值为(

- $A.\frac{\pi}{4}$ $B.\frac{\pi}{2}$ C. π

9. (2021 淄博三模 6) 已知锐角 α , β 满足 α – β = $\frac{\pi}{3}$, 则 $\frac{1}{\cos\alpha\cos\beta}$ + $\frac{1}{\sin\alpha\sin\beta}$ 的最小值为(

10. (2021 潍坊二模 7) 已知函数 $f(x) = \sin(2x + \frac{\pi}{3})$, 若函数 $g(x) = f(x) - a(a \in \mathbb{R})$ 在 $x \in [0, 1]$

 $\frac{3\pi}{2}$]上恰有三个零点 x_1 , x_2 , x_3 ($x_1 < x_2 < x_3$), 则 x_3 - x_1 的值是 ()

- A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$
- С. л
- D. 2 π

二、多项选择题

11. (2021 烟台适应性练习一 9) 设函数 $f(x) = \sin x + \sqrt{3}\cos x$,则(

- A. f(x) 在 $(0, \frac{\pi}{2})$ 上单调递增
- B. $x = \frac{\pi}{6}$ 为 f(x) 图象的一条对称轴
- C. $\left(-\frac{\pi}{6}, 0\right)$ 为 f(x) 图象的一个对称中心
- D. $y=2\cos x$ 的图象可由 f(x) 图象向左平移 $\frac{\pi}{6}$ 个单位长度得到

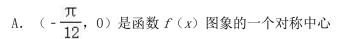
12. (2021 烟台三模 9) 若函数 $f(x) = \cos\left(\omega x + \frac{\pi}{3}\right)$ 两条对称轴之间的最小距离为 $\frac{\pi}{2}$,则下列说法正确

的是(

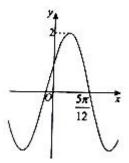
- A. 函数 f(x) 的最小正周期为 π
- B. 函数 f(x)在 $\left[0,\frac{\pi}{2}\right]$ 上单调递减

- C. 将函数 f(x) 图象向右平移 $\frac{\pi}{6}$ 个单位长度后所得图象关于 y 轴对称
- D. 若 $f(x_1) = f(x_2) = 0$,则 $f(x_1 + x_2) = \frac{\sqrt{3}}{2}$
- 13. (2021 临沂二模 9) 设函数 $f(x) = \cos(2x + \frac{\pi}{3})$ 的图象为曲线 E,则(
 - A. 将曲线 $y=\cos 2x$ 向右平移 $\frac{\pi}{3}$ 个单位长度后与曲线 E 重合
 - B. 将曲线 $y=\cos\left(x+\frac{\pi}{3}\right)$ 上各点的横坐标缩短到原来的 $\frac{1}{2}$,纵坐标不变,则与曲线 E 重合
 - C. 将曲线 f(x) 向左平移 $\frac{\pi}{6}$ 后所得图象对应的函数为奇函数
 - D. 若 $x_1 \neq x_2$, 且 $f(x_1) = f(x_2) = 0$, 则 $|x_1 x_2|$ 的最小值为 $\frac{\pi}{2}$
- 14. (2021 日照二模 11) 若函数 $f(x) = A\sin(2x + \phi)$ (A > 0, $0 < \phi < \frac{\pi}{2}$) 的部分图像如图所示,则下

列叙述正确的是()



- B. 函数 f(x) 的图象关于直线 $x = \frac{\pi}{3}$ 对称
- C. 函数 f(x) 在区间[$-\frac{\pi}{3}$, $\frac{\pi}{3}$]上单调递增
- D. 函数 f(x) 的图像可由 $y=A\sin 2x$ 的图象向左平移 $\frac{\pi}{12}$ 个单位得



到

- 15. (2021 **聊城三模** 10) 将函数 $y = \sin 2x + \sqrt{3}\cos 2x + 1$ 的图象向右平移 $\frac{\pi}{12}$ 个单位长度,再将所有点的横坐标缩短到原来的 $\frac{1}{2}$,纵坐标不变,得到函数 g(x) 的图象,则下面对函数 g(x) 的叙述中正确的是(
 - A. 函效 g(x) 的最小正周期为 $\frac{\pi}{2}$
 - B. 函数 g(x) 图象关于点 $(-\frac{\pi}{12},0)$ 对称
 - C. 函数 g(x) 在区间 $\left[\frac{\pi}{4},\frac{\pi}{2}\right]$ 内单调递增
 - D. 函数 g(x) 图象关于直线 $x = \frac{\pi}{12}$ 对称
- 16. (2021 烟台适应性练习二 11) 关于函数 $f(x) = \sin x \cos 2x$ 的下列结论正确的是 (
 - A. $x = \frac{\pi}{2}$ 为 f(x) 图象的一条对称轴
 - B. $(\pi, 0)$ 为 f(x) 图象的一个对称中心

- C. f(x) 的最大值为 $\frac{\sqrt{6}}{9}$
- D. f(x) 的最小正周期为 π
- 17. (2021 省实验中学二模 10) 已知 $f(x) = 2\cos^2 \omega x + \sqrt{3}\sin^2 \omega x 1$ ($\omega > 0$) 的最小正周期为 π ,则下列说法正确的有(
 - A. $\omega = 2$
 - B. 函数 f(x) 在 $\left[0, \frac{\pi}{6}\right]$ 上为增函数
 - C. 直线 $\mathbf{x} = \frac{\pi}{3}$ 是函数 y = f(x) 图象的一条对称轴
 - D. 点 $(\frac{5}{12}\pi, 0)$ 是函数 y=f(x) 图象的一个对称中心
- 18. (2021 秦安二模 10) 将函数 $f(x) = \sin 2x$ 的图象向左平移 $\frac{\pi}{4}$ 个单位,得到函数 g(x) 的图象,则
 - A. 函数 f(x) + g(x) 的图象的一个对称中心为 $(\frac{\pi}{8}, 0)$
 - B. 函数 $f(x) \cdot g(x)$ 是奇函数
 - C. 函数 f(x) + g(x) 在 $(0, \pi)$ 上的单调递减区间是 $[\frac{\pi}{8}, \frac{5\pi}{8}]$
 - D. 函数 $f(x) \cdot g(x)$ 的图象的一个对称轴方程为 $\mathbf{x} = \frac{\pi}{8}$
- 19. (2021 潍坊三模 11) 已知函数 $f(x) = 2\sin x \sin 2x$,则下列结论正确的是()
 - A. f(x) 的周期为 2π

B. y = f(x)的图象关于 $x = \frac{\pi}{2}$ 对称

C. f(x)的最大值为 $\frac{3\sqrt{3}}{2}$

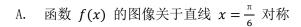
- D. f(x)在区间在 $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$ 上单调递减
- 20. (2021 青岛二模 10) 已知函数 $f(x) = (2\cos^2 \omega x 1) \sin^2 \omega x + \frac{1}{2}\cos^2 \omega x (\omega > 0)$,则下列说法正确的是(
 - A. 若 f(x) 的两个相邻的极值点之差的绝对值等于 $\frac{\pi}{4}$ 则 3=2

 - C. 当 $\omega = 1$ 时,f(x) 在区间 $\left[-\frac{\pi}{4}, 0\right]$ 上单调递增
 - D. 当 ω = 1 时,将 f(x) 图象向右平移 $\frac{\pi}{8}$ 个单位长度得到 $g(x) = \frac{\sqrt{2}}{2}sin(4x \frac{\pi}{4})$ 的图象

21. (2021 济宁二模 10) 函数 $f(x) = 2\cos(2x - \frac{\pi}{6}) + 1(x \in R)$,则下列说法正确的是(

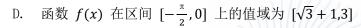
- A. 若 $f(x_1) = f(x_2) = 3$, 则 $x_1 x_2 = k \pi (k \in \mathbb{Z})$
- B. 函数 f(x) 在 $[-\frac{\pi}{6}, \frac{\pi}{3}]$ 上为增函数
- C. 函数 f(x) 的图象关于点 $(\frac{\pi}{3},1)$ 对称
- D. 函数 f(x) 的图象可以由 $g(x)=2\sin(2x-\frac{\pi}{3})+1(x\in R)$ 的图象向左平移 $\frac{\pi}{12}$ 个单位长度得到
- 22. (2021 枣庄二模 10) 已知函数 $f(x) = |\sin x| + \sqrt{3} \left| \sin(x \frac{\pi}{2}) \right|$, 则
 - A. f(x)在[$\frac{\pi}{2}$, π]上的最小值是 1
 - B. f(x) 的最小正周期是 $\frac{\pi}{2}$
 - C. 直线 $x = \frac{k\pi}{2} (k \in \mathbb{Z})$ 是 f(x) 图象的对称轴
 - D. 直线 $y = \frac{2}{\pi}x$ 与 f(x) 的图象恰有 2 个公共点
- 23. (2021 德州二模 10) 已知函数 $f(x) = A\cos(x + \varphi) + 1(A > 0, |\varphi| < \frac{\pi}{2})$,若函数 y = |f(x)| 的部分图

像如图所示,则下列说法正确的是().



- B. 函数 f(x) 的图像关于点 $\left(-\frac{5}{6}\pi,1\right)$ 对称
- C. 将函数 $y = 2\sin x + 1$ 的图像向左平移 $\frac{5}{6}$ π 个单位可

得函数 f(x) 的图像

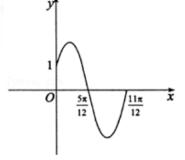


24. (2021 滨州二模 11) 函数 $f(x) = A\sin(\omega x + \phi)$ (4>0, $\omega > 0$, $0 < \phi < \pi$) 的部分图象如图所示,

则下列结论中正确的是()

- A. f(x) 的最小正周期为 2π
- C. f(x) 在区间 $\left[-\frac{5\pi}{12}, \frac{\pi}{12}\right]$ 上单调递增
- D. $f(x + \frac{\pi}{6})$ 为偶函数

B. f(x)的最大值为2



25. (2021 潍坊四县 5 月联考 11)已知函数 $f(x) = 2\sqrt{3}\sin(\frac{\pi}{4} + \frac{x}{2})\sin(\frac{\pi}{4} - \frac{x}{2}) - \sin(\pi + x)$,则有(

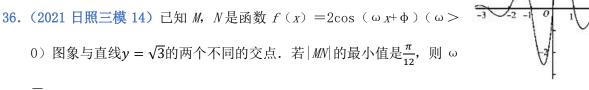
A.
$$f(\frac{\pi}{6}) \geqslant f(x)$$

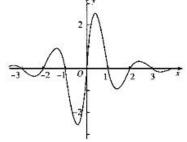
B.
$$f(\frac{\pi}{6}+x)=f(\frac{\pi}{6}-x)$$

- C. $(\frac{2\pi}{3}, 0)$ 是函数 f(x) 图象的对称中心
- D. 方程 $f(x) = \log_{2\pi} x$ 有三个实根

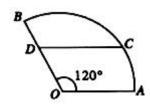
三、填空题

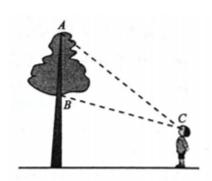
- 26. (2021 济宁二模 14) 已知 $\tan(\frac{\pi}{4} \alpha) = \frac{1}{2}$, 则 $\cos 2\alpha =$ _____.
- 27. (2021 泰安二模 14) sin20° sin80° cos160° sin10° =_____
- 28. (2021 省实验中学二模 14) 已知 $\sin \alpha \cos \alpha = \frac{3}{8}$,且 $\alpha \in (0, \frac{\pi}{2})$,则 $\sin(\alpha \frac{\pi}{4})$ 的值为 ______.
- 29. (2021 烟台三模 13)已知 $\tan \alpha = -\frac{1}{3}$,则 $1-\cos 2\alpha =$ _____.
- 30. (2021 青岛三模 14) 若 $\sin (\alpha \frac{\pi}{4}) = \frac{3}{5}, \ \alpha \in (0, \frac{\pi}{2})$,则 $\cos 2\alpha = \underline{\hspace{1cm}}$.
- 31. (2021 烟台适应性练习二 13) 已知 $\tan (\alpha + \beta) = \frac{1}{2}$, $\tan (\alpha \beta) = \frac{1}{3}$, 则 $\tan (\pi 2\alpha)$ 的值为 .
- 32. (2021 潍坊四县 5 月联考 14)公元前 6 世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为 0.618,这一数值也可以表示为 m=2sin18°,若 m^2 +n=4,则 $\frac{m+\sqrt{n}}{\sin 63^\circ}$ = .
- 33. (2021 日照二模 15) 已知定义在 R 上函数 $f(x) = A\sin(\omega x + \phi)(\omega > 0)$ 振幅为 2,满足 $x_2 x_1 = 2$,且 $f(x_2) = f(x_1) = \sqrt{3}$,则在 (0, 102) 上 f(x) 零点个数最少为 .
- 35. (2021 淄博三模 15) 已知函数 $f(x) = \frac{4\cos(\omega x + \varphi)}{e^{|x|}} (\omega > 0, 0 < \varphi < \pi)$ 的部分图象如图所示, $\omega + \varphi = _____.$





37. (2021 聊城二模 14) 如图是某商业小区的平面设计图, 初步设计该小区为半径是 200 米, 圆心角是 120°的扇形 AOB. O为南门位置,C为东门位置,小区里有一条平行于 AO的小路 CD,若 $OD = \frac{200\sqrt{6}}{3}$ 米,则圆弧 \widehat{AC} 的长为_______米.





四、解答题

- 39. (2021 济南二模 17) 在 $\triangle ABC$ 中,角 A, B, C的对边分别为 a, b, c,已知 $\triangle ABC$ 恰好满足下列四个条件中的三个: ① $\cos A = \frac{1}{2}$;② $\cos B = -\frac{1}{2}$;③ $a = \sqrt{3}$;④b = 1.
 - (1) 请指出这三个条件(不必说明理由);
 - (2) 求边 c.

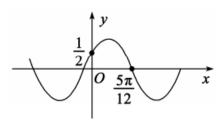
三角函数与解三角形 VFMATH

40. (2021 **潍坊四县** 5 月联考 17)在① $\sqrt{2}$ asinC=ccos($\frac{\pi}{4}$ -A),② $\sqrt{2}$ ccosA=acosB+bcosl,③ $b^2+c^2=a^2+\sqrt{2}$ bc这三个条件中任选一个补充在下面问题中,并解答问题.

问题: 在 $\triangle ABC$ 中,内角 A, B, C 所对边分别为 a, b, c,已知 b=3, $\triangle ABC$ 的面积为 3,___, 求 a.

- 41. (2021 日照二模 17) 向量 $_{\pi}$ = (2sinx, $\sqrt{3}$) , $_{n}$ = (cosx, cos2x) ,已知函数 $f(x) = _{\pi}$ $_{n}$.
 - (1) 求函数 f(x) 的最小正周期和单调递减区间;
 - (2) $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, 其中 a=7, 若锐角 A满足 $f(\frac{A}{2}-\frac{\pi}{6})=\sqrt{3}$, 且 $\sin B + \sin C = \frac{13\sqrt{3}}{14}$, 求 b + c 的值.

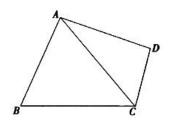
- 42. (2021 枣庄二模 18)若 $f(x) = \sin(\omega x + \varphi)$ ($\omega > 0$, $0 < \varphi < \frac{\pi}{2}$)的部分图象如图所示, $f(0) = \frac{1}{2}$, $f(\frac{5\pi}{12}) = 0$.
 - (1) 求 f(x) 的解析式;
 - (2) 在锐角△ABC中,若 A>B, $f(\frac{A-B}{2} \frac{\pi}{12}) = \frac{3}{5}$,求 $\cos \frac{A-B}{2}$,并证明 $\sin A > \frac{2\sqrt{5}}{5}$.



43. (2021 临沂二模 17) 在① $x = -\frac{\pi}{6}$ 是函数 f(x) 图象的一条对称轴,② $\frac{\pi}{12}$ 是函数 f(x) 的一个零点,③ 函数 f(x) 在[a, b]上单调递增,且 b-a 的最大值为 $\frac{\pi}{2}$,这三个条件中任选一个,补充在下面问题中,并解答.

已知函数 $f(x) = 2\sin \omega x \cos (\omega x - \frac{\pi}{6}) - \frac{1}{2}$, $(0 < \omega < 2)$, _____, 求 f(x) 在 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上的单调递减区间.

- 44. (2021 省实验中学二模 17) 在平面四边形 ABCD中, $\angle ABC = \frac{\pi}{3}$, $\angle ADC = \frac{\pi}{2}$,BC = 4.
 - (1) 若△ABC的面积为 $3\sqrt{3}$, 求 AC;
 - (2) 若 $AD=3\sqrt{3}$, $\angle ACB=\angle ACD+\frac{\pi}{3}$, 求 $\tan \angle ACD$.



45. (2021 菏泽二模 17) 在 \triangle ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 $b^2=c$,sinC = $\sqrt{3}sin$ B,

$$2\frac{b\cos B}{c} = \sin B$$

从以上三个条件中选择一个条件补充在题干中,完成下列问题.

- (1) 求 B;
- (2) 求△ABC的面积.

(注:如果选择多个条件分别解答,按第一个解答计分

潍坊高中数学

- 46. (2021 日照三模 17) 已知 $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, 且 $\frac{c}{b}$ <cosA.
 - (1) 求证: B是钝角;
 - (2) 请从下列四个条件中选择三个;
 - ① $\sin A = \frac{\sqrt{2}}{2}$; ②a = 2; ③ $c = \sqrt{2}$; ④ $\sin C = \frac{\sqrt{3}}{2}$.

是否存在 $\triangle ABC$ 满足您选择的这三个条件,若存在,求边长 b 的值;若不存在,请说明理由.

- 47. (2021 淄博三模 17) $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, $\cos(\frac{\pi}{3}-B) \cdot \sin(\frac{\pi}{6}+B) = \frac{3}{4}$, a+c=2.
 - (1) 求角 B的大小;
 - (2) 求△ABC外接圆面积的最小值.

- 48. (2021 聊城三模 17) 在 \triangle ABC 中,角 A , B , C 的对边分别为 a , b , c , 且 $10\sin^2\frac{A+C}{2}=7-\cos^22B$,
 - (1) 求角 B的大小;
 - (2) 已知点 D满足 $\overrightarrow{BD} = \frac{1}{4}\overrightarrow{BC}$,且 AB > BD ,若 $S_{\triangle ABD} = \frac{3\sqrt{3}}{4}$, $AD = \sqrt{7}$,求 AC.

49. (2021 滨州二模 17) 在① $\sqrt{3}b\cos A = 2c\sin C - \sqrt{3}a\cos B$, ② $\cos^2\left(\frac{\pi}{2} + C\right) + \cos C = \frac{5}{4}$, ③

 $a\sin\frac{A+B}{2} = c\sin A$ 这三个条件中任选一个,补充在下面问题中,并解答.

问题:在锐角 $\triangle ABC$ 中,内角 A, B, C的对边分别为 a, b, c, 已知_____.

(1) 求角 C;

 $(2 若 AB = \sqrt{3}, AC = \sqrt{2}, 内角 C$ 的平分线 CE交边 AB于点 E,求 CE的长.

注: 如果选择多个条件分别解答,按第一个解答计分.

50. (2021 烟台三模 18) 在 $\triangle ABC$ 中,a ,b ,c 分别为角 A ,B ,C 的对边,且满足

$$4\cos^2\frac{A}{2}-\cos 2(B+C)=\frac{7}{2}$$
.

- (1) 求 A;
- (2) 若点D满足 $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AC}$, $\left|\overrightarrow{BD}\right| = \sqrt{3}$,求 $c \frac{2}{3}b$ 的取值范围.

- 51. (2021 济宁二模 17) 在① $(\sin B \sin C)^2 = \sin^2 A \sin B \sin C$; ② $2a \sin C = c \tan A$; ③ $2\cos^2 \frac{B+C}{2} = \cos^2 A + 1$;
 - 三个条件中任选一个,补充在下面问题中,并作答.

问题: 已知 $\triangle ABC$ 的内角 A , B , C 所对应的边分别为 a , b , c ,若 $b=\sqrt{2}$, _____.

- (1) 求 A 的值;
- (2) 若 $\sin B = \sqrt{2} \sin C$, 求 $\triangle ABC$ 的面积.

- 52. (2021 青岛三模 18) 在 \triangle ABC 中,角 A,B,C所对的边分别为 a,b,c, $c\cos A = (\sqrt{2}b a)\cos C$.
 - (1) 若 $A=\frac{\pi}{12}$, 点 D在边 AB上,AD=BC=1,求 $\triangle BCD$ 的外接圆的面积;
 - (2) 若 c=2,求 $\triangle ABC$ 面积的最大值.

- 53. (2021 烟台适应性练习二 17) 从① $sinA=cos\frac{A}{2}$, ②2acosA=bcosC+ccosB, ③acosC+ (2b+c) cosA=
 - 0,这三个条件中任选一个,补充在下面问题中,并给出解答.

问题: 在 $\triangle ABC$ 中,角 A, B, C的对边分别为 a, b, c, ____.

- (1) 求 A;
- (2) 若 a=2, 求 $\triangle ABC$ 面积的最大值.

- 54. (2021 **潍坊三模** 18) 在 $\triangle ABC$ 中,内角 A , B , C 的对边分别为 a , b , c , M 是 AC 上的点, BM 平分 $\angle ABC$, $\triangle ABM$ 的面积是 $\triangle BCM$ 面积的 2 倍.
 - (1) 求 $\frac{\sin C}{\sin A}$;
 - (2) 若 $\cos B = \frac{1}{4}$, b = 2, 求 $\triangle ABC$ 的面积.

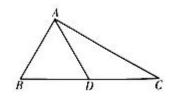
- 55. (2021 淄博二模 18) 已知 \triangle ABC 的内角 A , B , C 的对边分别为 a , b , c , $\cos(A-C)$ + $\cos B = \frac{3}{2}$,设 $\vec{m} = (b,c)$, $\vec{n} = (a,b)$ 且 $\vec{m}//\vec{n}$.
 - (1) 求角 B 的大小;
 - (2) 延长 $BC \subseteq D$, 使 BD = 5 , 若 $\triangle ACD$ 的面积 $S = \sqrt{3}$, 求 AD 的长.

- 56. (2021 德州二模 18) 在锐角三角形 ABC 中,角 A、 B 、 C 的对边分别为 a , b , c ,已知 $6\cos^2(\frac{\pi}{2} + A) + \cos A = 5$.
 - (1) 求 A;
 - (2) 若 a = 2 , 求 $b^2 + c^2$ 的取值范围.

57. (2021 潍坊二模 18) 如图,*D*为△*ABC*中 *BC*边上一点,∠*B*=60°, *AB*=4, *AC*=4√3. 给出如下三种数值方案:

 $1AD = \sqrt{5}$; $2AD = \sqrt{15}$; $3AD = 2\sqrt{7}$.

判断上述三种方案所对应的 $\triangle ABD$ 的个数,并求 $\triangle ABD$ 唯一时,BD的长.



58. (2021 青岛二模 17) 请从"① $2\sin A\cos B=2\sin C+\sin B$; ② $\cos A+\cos \frac{A}{2}=0$."两个条件中任选一个,

补充在下面的横线上,并解答.

已知 $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, _____.

- (1) 求 A;
- (2) 设 AD 是 $\angle A$ 的平分线,b+c=10 且 $\triangle ABC$ 面积为 $2\sqrt{3}$,求线段 AD 的长度.

59. (2021 聊城二模 17) 在① $_{\pi}$ = (cosB, 2c - b) , $\stackrel{\rightarrow}{\mathbf{n}}$ = (cosA, a) , 且 $_{\pi}$ // $\stackrel{\rightarrow}{\mathbf{n}}$, ②b = acosC + $\frac{\sqrt{3}}{3}c$ sinA,

③ $\cos^2 A + \cos A \cos (C - B) = \sin B \sin C$ 这三个条件中任选一个补充在下面问题中,并解答.

已知 $\triangle ABC$ 中,三个内角 A, B, C所对的边分别是 a, b, c.

- (1) 求 A 的值;
- (2) 若 $a=\sqrt{3}$, $\triangle ABC$ 的面积是 $\frac{\sqrt{3}}{2}$, 点 M是 BC的中点,求 AM的长度.

60. (2021 烟台适应性练习一 19) 在条件① $\sin^2 A - \sin^2 B - \sin^2 C = -\sqrt{3}\sin B\sin C$, ② $b = a\cos C + \frac{1}{2}c$, ③ ($\cos C - \sqrt{3}\sin C$) $\cos A + \cos B = 0$ 中,任选一个补充在下面问题中并求解.

问题: 在锐角 $\triangle ABC$ 中,内角 A, B, C的对边分别为 a, b, c, c=1, _____.

- (1) 求 A;
- (2) 求△ABC面积的取值范围.

61. (2021 泰安二模 18) 在① $\sqrt{3}$ sinC+cosC= $\frac{b+c}{a}$, ② $\sin^2 B + \sin^2 C - \sin^2 A = \sin B \sin C$,

③ $2\cos A$ ($\cos B + b\cos C$) = a 这三个条件中任选一个,补充在下面问题中,并作答.

问题: 在 $\triangle ABC$ 中,内角 A, B, C所对的边分别为 a, b, c,且_____.

- (1) 求角 A;
- (2) 若 0是 $\triangle ABC$ 内一点, $\angle AOB=120^{\circ}$, $\angle AOC=150^{\circ}$,b=1,c=3,求 $\tan \angle ABO$.

专题三 三角函数与解三角形参考答案

一、单项选择题

1. 【答案】A

【解析】
$$\sin 20^\circ \sin 10^\circ - \cos 20^\circ \cos 10^\circ = -(\cos 20^\circ \cos 10^\circ - \sin 20^\circ \sin 10^\circ) = -\cos(20^\circ + 10^\circ)$$

= $-\cos 30^\circ = -\frac{\sqrt{3}}{2}$.

故选: A.

2. 【答案】B

【解析】因为 a 为第二象限角,

所以 $\sin \alpha > 0$, $\cos \alpha < 0$, $\tan \alpha < 0$,

故 $\sin \alpha - \cos \alpha > 0$, 故选项 A 错误;

 $\tan \alpha < 0$, 故选项 B正确;

$$\sin{(\frac{\pi}{2}+2\alpha)}=\cos{2\alpha}=\sin^2{\alpha}-\cos^2{\alpha}$$
,故其符号不能确定,故选项 $\mathcal C$ 错误;

 $\cos(\pi - 2\alpha) = -\cos 2\alpha$, 同选项 C, 符号不能确定, 故选项 D错误.

故选: B.

3. 【答案】C

【解析】
$$\triangle ABC$$
, $\sin A = \frac{1}{2} \Leftrightarrow A = \frac{\pi}{6}$ 或 $A = \frac{5\pi}{6}$,

∴
$$\sin A = \frac{1}{2}$$
是 $A = \frac{\pi}{6}$ 的必要不充分条件,

故选: C.

4. 【答案】 C

【解析】由
$$\tan \alpha > \sin \alpha$$
 ,可得 $\tan \alpha - \sin \alpha = \frac{\sin \alpha}{\cos \alpha} - \sin \alpha = \frac{\sin \alpha(1 - \cos \alpha)}{\cos \alpha} > 0$,

因为
$$-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$$
 ,可得 $\cos \alpha > 0$,且 $1 - \cos \alpha > 0$,可得 $\sin \alpha > 0$,所以 $0 < \alpha < \frac{\pi}{2}$,

又由 $\sin\alpha > \sin2\alpha$,可得 $\sin\alpha - \sin2\alpha = \sin\alpha = 2\sin\alpha\cos\alpha = \sin\alpha(1-2\cos\alpha) > 0$,

因为
$$0<\alpha<\frac{\pi}{2}$$
 ,可得 $\sin\alpha>0$,所以 $1-2\cos\alpha>0$,即 $\cos\alpha<\frac{1}{2}$,解得 $\frac{\pi}{3}<\alpha<\frac{\pi}{2}$.

故答案为: C.

5. 【答案】D

【解析】将函数 $f(x) = \sqrt{3}\sin x + \cos x = 2\sin \left(x + \frac{\pi}{6}\right)$ 的图象向右平移 $\frac{\pi}{6}$ 个单位后,得到函数 g(x)

 $=2\sin x$ 的图象,

故g(x)的最小正周期为 2π ,故A错误;

由于 f(x) 的最小值为 - 2, 故 B错误;

令
$$x=\frac{3\pi}{2}$$
,求得 $f(x)=-2$,为最小值,故 $f(x)$ 的图象关于直线 $x=\frac{3\pi}{2}$ 对称,故 C 错误;

令
$$x=\frac{\pi}{2}$$
, 求得 $f(x)=2$, 为最大值,故 $f(x)$ 的图象关于直线 $x=\frac{\pi}{2}$ 对称,故 C 正确,

故选: D.

6. 【答案】C

【解析】由函数 $f(x) = 2\sqrt{2}\sin(\omega x + \Phi)(\omega > 0, |\Phi| < \frac{\pi}{2})$ 的部分图象知,f(x)的图象过点(0,

2),
$$(\frac{3\pi}{8}, 0)$$
,

所以
$$f(0) = 2\sqrt{2}\sin\phi = 2$$
,可得 $\sin\phi = \frac{\sqrt{2}}{2}$,

因为
$$|\phi| < \frac{\pi}{2}$$
,

所以
$$\Phi = \frac{\pi}{4}$$
,

所以
$$f(\frac{3\pi}{8}) = 2\sqrt{2}\sin(\frac{3\pi}{8}\omega + \frac{\pi}{4}) = 0$$
,解得 $\frac{3\pi}{8}\omega + \frac{\pi}{4} = k\pi$, $k \in \mathbb{Z}$,

所以
$$\omega = \frac{8k-2}{3}$$
, $k \in \mathbb{Z}$,

又 $\omega > 0$,所以不妨当 k=1 时,可得 $\omega = 2$,

可得
$$f(x) = 2\sqrt{2}\sin(2x + \frac{\pi}{4})$$
 ,

因为
$$g(x) = f(x-a) = 2\sqrt{2}\sin[2(x-a) + \frac{\pi}{4}],$$

所以
$$g(\frac{\pi}{24}) = 2\sqrt{2}\sin[2(\frac{\pi}{24} - a) + \frac{\pi}{4}] = 2\sqrt{2}\sin(\frac{\pi}{3} - 2a)$$
,

又对于任意的
$$x \in \mathbb{R}$$
, $g(x) \leq |g(\frac{\pi}{24})|$,

所以
$$g(\frac{\pi}{24}) = 2\sqrt{2}\sin(\frac{\pi}{3} - 2a)$$
 建筑 $\frac{\pi}{3}$ $\frac{\pi}{2a} k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$,

解得
$$a = -\frac{1}{2}k\pi - \frac{\pi}{12}$$
, $k \in \mathbb{Z}$,

所以当
$$k=-1$$
 时,可得 $a=\frac{5\pi}{12}$.

故选: C.

7. 【答案】A

三角函数与解三角形 VFMATH

【解析】将函数 $f(x) = 2\sin(2x + \phi)$ ($|\phi| < \frac{\pi}{2}$) 的图象向左平移 $\frac{\pi}{6}$ 个单位后,

得到的 $y=2\sin\left(2x+\frac{\pi}{3}+\Phi\right)$ 的图象关于 y 轴对称, $\therefore \Phi = \frac{\pi}{6}$,函数 $f(x)=2\sin\left(2x+\frac{\pi}{6}\right)$.

$$:: 2x + \frac{\pi}{6} \in [\frac{\pi}{6}, \frac{7\pi}{6}], \text{ 则当 } 2x + \frac{\pi}{6} = \frac{\pi}{2}$$
时,函数 $f(x)$ 在 $[0, \frac{\pi}{2}]$ 上的最大值为 2,

故选: A.

8. 【答案】B

【解析】 因为
$$f(x) = \sin\left(x + \frac{\pi}{3}\right)\cos x - \frac{\sqrt{3}}{4} = \left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right)\cos x - \frac{\sqrt{3}}{4} = \frac{1}{4}\cos 2x + \frac{\sqrt{3}}{4}\cos 2x = \frac{\pi}{4}\cos 2x + \frac{\pi}{4}\cos$$

$$\frac{1}{2} \left(\frac{1}{2} \sin 2x + \frac{\sqrt{3}}{2} \cos 2x \right) = \frac{1}{2} \sin \left(2x + \frac{\pi}{3} \right)$$

将 y=f(x)的图像向右平移 $\frac{\pi}{3}$ 个单位得 $y = \frac{1}{2}\sin\left[2\left(x - \frac{\pi}{3}\right) + \frac{\pi}{3}\right] = \frac{1}{2}\sin\left(2x - \frac{\pi}{3}\right)$,再将图像上所有点的横坐标缩小到原来的一半得到 $g(x) = \frac{1}{2}\sin\left(4x - \frac{\pi}{3}\right)$,

因为 $g(x_1) \cdot g(x_2) = \frac{1}{4}$,所以 $g(x_1) = g(x_2) = \frac{1}{2}$ 或 $g(x_1) = g(x_2) = -\frac{1}{2}$,因为 x_1 与 x_2 都是波峰或波谷的横坐标,所以 $|x_1-x_2|_{\min}=T=\frac{\pi}{2}$,故选 B.

9. 【答案】C

【解析】因为锐角 α, β 满足 α - β = $\frac{\pi}{3}$,

所以 cos (α - β) = cos α cos β + sin α sin β = $\frac{1}{2}$,

 $\Rightarrow x = \cos \alpha \cos \beta$, $y = \sin \alpha \sin \beta$,

则
$$x+y=\frac{1}{2}$$
,

由题意得 x>0, y>0,

$$\mathbb{M}\frac{1}{\cos\alpha\cos\beta} + \frac{1}{\sin\alpha\sin\beta} = \frac{1}{\mathbf{x}} + \frac{1}{\mathbf{y}} = 2 \left(\mathbf{x} + \mathbf{y} \right) \left(\frac{1}{\mathbf{x}} + \frac{1}{\mathbf{y}} \right) = 2 \left(2 + \frac{\mathbf{y}}{\mathbf{x}} + \frac{\mathbf{x}}{\mathbf{y}} \right) \geqslant 2 \left(2 + 2 \sqrt{\frac{\mathbf{x}}{\mathbf{y}} \cdot \frac{\mathbf{y}}{\mathbf{x}}} \right) = 8,$$

当且仅当 x=y时取等号,此时 $\frac{1}{\cos\alpha\cos\beta}$ + $\frac{1}{\sin\alpha\sin\beta}$ 的最小值 8.

故选: C.

潍坊高中数学

10. 【答案】C

【解析】: 当
$$x \in [0, \frac{3\pi}{2}], 2x + \frac{\pi}{3} \in [\frac{\pi}{3}, \frac{10\pi}{3}],$$

函数 $g(x) = f(x) - a(a \in \mathbb{R})$ 在 $x \in [0, \frac{3\pi}{2}]$ 上恰有三个零点 $x_1, x_2, x_3(x_1 < x_2 < x_3)$,

∴由图象的对称性可得
$$\frac{1}{2}$$
 $(2x_1+\frac{\pi}{3}+2x_2+\frac{\pi}{3})=\frac{\pi}{2}, \frac{1}{2}$ $(2x_2+\frac{\pi}{3}+2x_3+\frac{\pi}{3})=\frac{3\pi}{2},$

则两式相减可得 x_3 - x_1 的值是 π ,

故选: C.

二、多项选择题

11. 【答案】BD

【解析】解: $f(x) = \sin x + \sqrt{3}\cos x = 2\sin(x + \frac{\pi}{3})$,

A: 由正弦函数的单调性及函数图像的平移知 f(x) 在 $(0,\frac{\pi}{2})$ 上不单调,A错误;

B: 由于 $f(\frac{\pi}{6}) = 2$ 为函数的最大值,根据对称轴处取得最值可知 B 正确;

C: 结合选项 B 及对称轴与对称中心的关系可知 C 错误;

D: 把 f(x) 图象向左平移 $\frac{\pi}{6}$ 个单位得 $y=2\sin(x+\frac{\pi}{2})=2\cos x$,D正确.

故选: BD.

12. 【答案】AC

【解析】 :: $f(x) = \cos\left(\omega x + \frac{\pi}{3}\right)$ 两条对称轴之间的最小距离为 $\frac{\pi}{2}$,

$$\therefore \frac{1}{2}T = \frac{\pi}{2}, \quad \therefore T = \pi, \quad \text{in } \omega = \frac{2\pi}{T} = 2, \quad \text{in } f(x) = \cos\left(2x + \frac{\pi}{3}\right), \quad \text{in A II in } \Pi$$

当
$$x \in \left[0, \frac{\pi}{2}\right]$$
时, $2x + \frac{\pi}{3} \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$,根据余弦函数的单调性,可得当 $2x + \frac{\pi}{3} \in \left[\pi, \frac{4\pi}{3}\right]$,即

$$x \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$
时, $f(x)$ 单调递增,故 B 错误;

将函数
$$f(x)$$
 图象向右平移 $\frac{\pi}{6}$ 个单位长度后得 $y = \cos\left[2\left(x - \frac{\pi}{6}\right) + \frac{\pi}{3}\right] = \cos 2x$ 关于 y 轴对称,故 C 正

确;

曲
$$\cos\left(2x + \frac{\pi}{3}\right) = 0$$
 可得 $x_1 = \frac{\pi}{12} + \frac{k_1\pi}{2}, x_2 = \frac{\pi}{12} + \frac{k_2\pi}{2}, k_1, k_2 \in \mathbb{Z}$,

则
$$x_1 + x_2 = \frac{\pi}{6} + \frac{(k_1 + k_2)\pi}{2} = \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
,

则
$$f(x_1 + x_2) = \cos \left[2\left(\frac{\pi}{6} + \frac{k\pi}{2}\right) + \frac{\pi}{3}\right] = \cos\left(\frac{2\pi}{3} + k\pi\right) = \pm \frac{1}{2}$$
, 故 D 错误.

故选: AC

13. 【答案】BD

【解析】由题意函数 $f(x) = \cos(2x + \frac{\pi}{3})$ 的图象为曲线 E,

故将曲线 $y=\cos 2x$ 向右平移 $\frac{\pi}{3}$ 个单位长度,得到 $y=\cos \left(2x-\frac{2\pi}{3}\right)$ 的图象,故 A 错误;

将曲线 $y=\cos(x+\frac{\pi}{3})$ 上各点的横坐标缩短到原来的 $\frac{1}{2}$, 纵坐标不变,

可得 $y=\sin(2x+\frac{\pi}{3})$ 的图象,与曲线 E重合,故 B正确;

将曲线 f(x) 向左平移 $\frac{\pi}{6}$ 后所得图象对应的函数解析式为 $g(x) = \cos[2(x+\frac{\pi}{6}) + \frac{\pi}{3}] = \cos(2x+\frac{2\pi}{3})$,

不是奇函数,故C错误;

若 $x_1 \neq x_2$,且 $f(x_1) = f(x_2) = 0$,则 $|x_1 - x_2|$ 的最小值为半个周期,为 $\frac{1}{2} \cdot \frac{2\pi}{2} = \frac{\pi}{2}$,故 D 正确,故选: BD.

14. 【答案】AD

【解析】根据函数 $f(x) = A\sin(2x + \phi)$ (A > 0, $0 < \phi < \frac{\pi}{2}$) 的部分图像,

可得 A=2,结合五点法作图可得 $2\times\frac{5\pi}{12}+\phi=\pi$, $\therefore \phi=\frac{\pi}{6}$,

故函数 $f(x) = 2\sin(2x + \frac{\pi}{6})$.

令 $x = -\frac{\pi}{12}$, 求得 f(x) = 0, 可得 $(-\frac{\pi}{12}, 0)$ 是函数 f(x) 图象的一个对称中心,故 A 正确;

令 $x=\frac{\pi}{3}$,求得 f(x)=1,不是最值,可得 $x=\frac{\pi}{3}$ 是函数 f(x) 图象的一条对称轴,故 B错误;

在区间[$-\frac{\pi}{3}$, $\frac{\pi}{3}$]上, $2x+\frac{\pi}{6}\in[-\frac{\pi}{6}$, $\frac{5\pi}{6}$],函数 f(x) 没有单调性,故 C错误;

由 $y=2\sin 2x$ 的图象向左平移 $\frac{\pi}{12}$ 个单位,可得 $y=2\sin (2x)\frac{\pi}{6}$) = f(x) 的图象,故 D 正确,

故选: AD.

15. 【答案】 A, D

【解析】由题意可得: 函数 $y = \sin 2x + \sqrt{3}\cos 2x + 1 = 2\sin(2x + \frac{\pi}{3}) + 1$,将其向右平移 $\frac{\pi}{12}$ 个单位 可得 $y = 2\sin(2x - \frac{\pi}{6} + \frac{\pi}{3}) + 1 = 2\sin(2x + \frac{\pi}{6}) + 1$,再将所有点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标

三角函数与解三角形 VFMATH

不变,得到函数 y = g(x) 的图像,可得 $g(x) = 2\sin(4x + \frac{\pi}{6}) + 1$,

故可得函数 g(x) 的周期 $T = \frac{2\pi}{4} = \frac{\pi}{2}$, A 符合题意;

令 $x = -\frac{\pi}{12}$, 可得 $g(-\frac{\pi}{12}) = 0$, 故 $(-\frac{\pi}{12}, 0)$ 不是函数 g(x) 的一个对称中心,B 不符合题意;

当 $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$,可得 $4x + \frac{\pi}{6} \in \left[\frac{7\pi}{6}, \frac{13\pi}{6}\right]$,由正弦函数性质,可得函数 $g(x) = 2\sin(4x + \frac{\pi}{6}) + 1$ 在 $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ 不单调,C 不正确;

由 $g(\frac{\pi}{12}) = 2\sin{\frac{\pi}{2}} + 1=3$, 可得 $x = \frac{\pi}{12}$ 是函数的对称轴, D 符合题意;

故答案为: AD

16. 【答案】AB

【解析】对于 A, 因为 $f(\pi - x) = \sin(\pi - x)\cos 2(\pi - x) = \sin x \cos 2x = f(x)$,

所以 $x = \frac{\pi}{2}$ 为 f(x) 图象的一条对称轴,故选项 A 正确;

对于 B,因为 $f(2\pi - x) + f(x) = \sin(2\pi - x)\cos(2\pi - x) + \sin x \cos 2x = -\sin x \cos 2x + \sin x \cos 2x = 0$,

所以 $(\pi, 0)$ 为 f(x) 图象的一个对称中心,故选项 B正确;

对于 C, $f(x) = \sin x \cos 2x = \sin x (1 - 2\sin^2 x) = -2\sin^3 x + \sin x$,

 $♦ t = \sin x, \ \textit{y} \ t ∈ [-1, 1], \ \textit{y} \ f(t) = -2t^3 + t,$

所以
$$f'(t) = -6t^2+1$$
, 令 $f'(t) = 0$, 解得 $t = \pm \frac{\sqrt{6}}{6}$,

当 $t \in [-1, -\frac{\sqrt{6}}{6}]$ 时,f'(t) < 0,则 f(t) 单调递减,

当 $t \in [\frac{\sqrt{6}}{6}, 1]$ 时,f'(t) > 0,则f(t)单调递增,

所以当 $t = \frac{\sqrt{6}}{6}$ 时,f(t) 取得最大值为 $\frac{\sqrt{6}}{9}$,

又 f(-1)=1, f(1)=-1, 所以 f(x) 的最大值为 1, 故选项 C错误;

对于 D, $f(x+\pi) = \sin(x+\pi)\cos^2(x+\pi)$ is $\sin^2(x+\pi)$ in $\cos^2(x+\pi)$.

所以 π 不是 f(x) 的周期,故选项 D错误.

故选: AB.

17. 【答案】BD

【解析】: $f(x) = 2\cos^2 \omega x + \sqrt{3}\sin^2 \omega x - 1(\omega > 0) = \cos^2 \omega x + \sqrt{3}\sin^2 \omega x = 2\cos(2\omega x - \frac{\pi}{3})$ 的

三角函数与解三角形 VFMATH

VFMATH

最小正周期为 $\frac{2\pi}{2\omega} = \pi$,

∴
$$\omega = 1$$
, ∴ $f(x) = 2\cos(2x - \frac{\pi}{3})$, 故 A 错误.

在
$$\left[0, \frac{\pi}{6}\right]$$
上, $2x-\frac{\pi}{3} \in \left[-\frac{\pi}{3}, 0\right]$,故 $f(x) = 2\cos\left(2x-\frac{\pi}{3}\right)$ 单调递增,故 B 正确;

当
$$x=\frac{\pi}{3}$$
时, $f(x)=1$,不是最值,故直线 $\mathbf{x}=\frac{\pi}{3}$ 不是函数 $y=f(x)$ 图象的一条对称轴,故 C 错误;

当
$$x=\frac{5\pi}{12}$$
时, $f(x)=0$,故点 $(\frac{5}{12}\pi,0)$ 是函数 $y=f(x)$ 图象的一个对称中心,故 D 正确,

故选: BD.

18. 【答案】BCD

【解析】
$$g(x) = \sin 2(x + \frac{\pi}{4}) = \cos 2x$$
,

选项 A,
$$f(x) + g(x) = \sin 2x + \cos 2x = \sqrt{2} \sin (2x + \frac{\pi}{4})$$
,

令
$$2x+\frac{\pi}{4}=k\pi$$
, $k\in\mathbb{Z}$, 则 $x=\frac{k\pi}{2}-\frac{\pi}{8}$, $k\in\mathbb{Z}$,

∴函数
$$f(x) + g(x)$$
 的对称中心为 $(\frac{\mathbf{k}\pi}{2} - \frac{\pi}{8}, 0)$, $k \in \mathbb{Z}$, 不包含点 $(\frac{\pi}{8}, 0)$, 即选项 A 错误;

选项
$$B$$
, $f(x) \cdot g(x) = \sin 2x \cdot \cos 2x = \frac{1}{2} \sin 4x$, 为奇函数, 即选项 B 正确;

选项
$$C$$
, 令 $2x+\frac{\pi}{4} \in [\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi]$, $k \in \mathbb{Z}$, 则 $x \in [\frac{\pi}{8} + k\pi, \frac{5\pi}{8} + k\pi]$, $k \in \mathbb{Z}$,

∴函数
$$f(x) + g(x)$$
 的单调递减区间为[$\frac{\pi}{8} + k\pi$, $\frac{5\pi}{8} + k\pi$], $k \in \mathbb{Z}$,

 $: X \in (0, \pi),$

∴
$$x$$
∈[$\frac{\pi}{8}$, $\frac{5\pi}{8}$], 即选项 C 正确;

选项
$$D$$
, 令 $4x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, 则 $x = \frac{\pi}{8} + \frac{k\pi}{4}$, $k \in \mathbb{Z}$,

当 k=-1 时,函数 $f(x) \cdot g(x)$ 的图象的一个对称轴方程为 $\mathbf{x} = \frac{\pi}{8}$,即选项 D 正确.

故选: BCD.

潍坊高中数学

19. 【答案】ACD

【解析】由于
$$f(x+2\pi)=2\sin(x+2\pi)-\sin 2(x+2\pi)=2\sin x-\sin 2x=f(x)$$
, 故 A 正确;

$$∃ f(π-x) = 2 sin(π-x) - sin 2(π-x) = 2 sin x + sin 2x ≠ f(x),$$

即
$$y = f(x)$$
的图象不关于 $x = \frac{\pi}{2}$ 对称,故 B 错误;

$$f'(x) = 2\cos x - 2\cos 2x = 2\cos x - 2(2\cos^2 x - 1) = -4\cos^2 x + 2\cos x + 2$$

$$= -4\left(\cos x - 1\right)\left(\cos x + \frac{1}{2}\right)$$

当
$$x \in \left[-\frac{2}{3}\pi + 2k\pi, \frac{2}{3}\pi + 2k\pi\right], k \in \mathbb{Z}$$
时, $f'(x) \ge 0$,函数 $f(x)$ 单调递增;

当
$$x \in \left[-\pi + 2k\pi, -\frac{2}{3}\pi + 2k\pi\right]$$
或 $x \in \left[\frac{2\pi}{3} + 2k\pi, \pi + 2k\pi\right], k \in Z$ 时, $f'(x) \le 0$,函数 $f(x)$ 单调

递减;

所以
$$f_{\text{max}}(x) = f\left(\frac{2\pi}{3}\right) = 2\sin\frac{2\pi}{3} - \sin2\times\frac{2\pi}{3} = \frac{3\sqrt{3}}{2}$$
,故 C 正确;

由 C 项分析可知, f(x)在 $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$ 上单调递减,故 D 正确;

故选: ACD.

20. 【答案】BD

【解答】解:函数 $f(x) = (2\cos^2 \omega x - 1)\sin^2 \omega x + \frac{1}{2}\cos^2 \omega x - \cos^2 \omega x + \frac{1}{2}\cos^2 \omega x + \frac{1}$

对于 A: 由于函数 f(x) 的两个相邻的极值点之差的绝对值等于 $\frac{\pi}{4}$,故 $\frac{T}{2} = \frac{\pi}{4}$,解得 $T = \frac{\pi}{2}$,所以 $\omega = 4$,故 A 错误;

对于 C: 当 $\omega = 1$ 时, $f(x) = \frac{\sqrt{2}}{2} sin(4x + \frac{\pi}{4})$,由于 $x \in [-\frac{\pi}{4}, 0]$,所以 $4x + \frac{\pi}{4} \in [-\frac{3\pi}{4}, \frac{\pi}{4}]$,故函数在该

区间上不单调,故C错误;

潍坊高中数学

对于 D: 当 $\omega = 1$ 时,将 $f(x) = \frac{\sqrt{2}}{2} sin(4x + \frac{\pi}{4})$ 图象向右平移 $\frac{\pi}{8}$ 个单位得到 $g(x) = \frac{\sqrt{2}}{2} sin(4x - \frac{\pi}{4})$ 的图象,故 D 正确;

故选: BD.

21. 【答案】 A, C

【解析】由题意,函数 $f(x) = 2\cos(2x - \frac{\pi}{6}) + 1(x \in R)$,

对于 A 中,由 $f(x_1)=f(x_2)=3$,即 $\cos(2x_1-\frac{\pi}{6})=1$ 且 $\cos(2x_2-\frac{\pi}{6})=1$,

解得 $2x_1 - \frac{\pi}{6} = 2k_1\pi$ 且 $2x_2 - \frac{\pi}{6} = 2k_2\pi, k \in \mathbb{Z}$,即 $x_1 = k_1\pi + \frac{\pi}{12}$ 且 $x_2 = k_2\pi + \frac{\pi}{12}, k \in \mathbb{Z}$,

所以 $x_1-x_2=(k_1-k_2)\pi=k\pi, (k\in Z)$, 又由 $k_1-k_2\in Z$, 所以 A 符合题意;

对于 B 中,令 $-\pi + 2k\pi \le 2x - \frac{\pi}{6} \le 2k\pi, k \in Z$,解得 $-\frac{5\pi}{12} + k\pi \le x \le \frac{\pi}{12} + k\pi, k \in Z$,

即函数 f(x) 的单调递增区间为 $[-\frac{5\pi}{12}+k\pi,\frac{\pi}{12}+k\pi],k\in Z$,

当 k=1 时,函数 f(x) 的单调递增区间为 $\left[\frac{\pi}{12},\frac{13\pi}{12}\right]$,所以 B 不正确;

对于 C 中, 令 $2x - \frac{\pi}{6} = k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$,解得 $x = \frac{k\pi}{2} + \frac{\pi}{3}, k \in \mathbb{Z}$,

当 k=0 时,可得 $x=\frac{\pi}{3}$,所以函数 f(x)的图象关于点 $(\frac{\pi}{3},1)$ 对称,所以 C 符合题意;

对于 D 中, 函数 $g(x) = 2\sin(2x - \frac{\pi}{3}) + 1(x \in R)$ 的图象向左平移 $\frac{\pi}{12}$ 个单位,

可得 $g(x) = 2\sin[2(x + \frac{\pi}{12}) - \frac{\pi}{3}] + 1 = 2\sin(2x - \frac{\pi}{6}) + 1$,所以 D 不正确.

故答案为: AC

22. 【答案】ACD

【解析】 $f(x) = |\sin x| + \sqrt{3} |\cos x|$, $f(x+\pi) = |\sin x| + \sqrt{3} |\cos x| = f(x)$, 而 $f(x+\frac{\pi}{2}) \neq f(x)$, 故 f(x) 的最小正周期是 π ,B 错误;当 $x \in \left[\frac{\pi}{2}, \pi\right]$ 时, $f(x) = \sin x - \sqrt{3} \cos x = 2\sin(x-\frac{\pi}{3})$,此时 $x - \frac{\pi}{3} \in \left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$,所以 $2\sin(x-\frac{\pi}{3}) \in [1, 2]$,故 A 正确;

$$f(x) = \begin{cases} 2\sin(x + \frac{\pi}{3}), \ 0 \le x \le \frac{\pi}{2} \\ 2\sin(x - \frac{\pi}{3}), \ \frac{\pi}{2} \le x \le \pi \end{cases}$$
, 作出 $f(x)$ 的图像,再作出直线 $y = \frac{2}{\pi}x$ 的图像,可以判断出 C、D 都正

确,故选 ACD.

23. 【答案】 B, C

【解析】结合函数 y = |f(x)| 的图像易知,函数 f(x) 的最大值 3 ,最小值为 -1 ,

则 A = 2 , $f(x) = 2\cos(x + \varphi) + 1$,

代入点 (0,2) ,则 $2\cos\varphi + 1 = 2$, $\cos\varphi = \frac{1}{2}$,

因为 $|\varphi| < \frac{\pi}{2}$,所以 $\varphi = \frac{\pi}{3}$, $f(x) = 2\cos(x + \frac{\pi}{3}) + 1$,

 $x+\frac{\pi}{3}=k\pi(k\in Z)$,即 $x=-\frac{\pi}{3}+k\pi(k\in Z)$,函数 f(x) 关于 $x=-\frac{\pi}{3}+k\pi(k\in Z)$ 对称,A 不符合

题意;

 $x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi(k \in Z)$,即 $x = \frac{\pi}{6} + k\pi(k \in Z)$,函数 f(x) 关于点 $(\frac{\pi}{6} + k\pi, 1)(k \in Z)$ 对称,B 符合题意;

函数 $y = 2\sin x + 1$ 的图像向左平移 $\frac{5}{6}\pi$ 个单位,

得出
$$f(x) = 2\sin(x + \frac{5\pi}{6}) + 1 = 2\sin(x + \frac{\pi}{3} + \frac{\pi}{2}) + 1 = 2\cos(x + \frac{\pi}{3}) + 1$$
, C 符合题意;

当
$$x \in [-\frac{\pi}{2}, 0]$$
 时, $x + \frac{\pi}{3} \in [-\frac{\pi}{6}, \frac{\pi}{3}]$, $\cos(x + \frac{\pi}{3}) \in [\frac{1}{2}, 1]$, $f(x) \in [2,3]$, D 不符合题意.

故答案为: BC.

24. 【答案】BD

【解析】解: 由图象可知, 函数 f(x) 的周期为 $T = (\frac{11\pi}{12} - \frac{5\pi}{12}) \times 2 = \pi$, 故选项 A 错误;

所以
$$\omega = \frac{2\pi}{\pi} = 2$$
,

由 "五点法"可得, $2 \times \frac{5\pi}{12} + \varphi = \pi + 2k\pi, k \in Z$,解得 $\Phi = \frac{\pi}{6} + 2k\pi, k \in Z$,

又
$$0 < \phi < \pi$$
,所以 $\phi = \frac{\pi}{6}$

所以
$$f(x) = A\sin(2x + \frac{\pi}{6})$$
,

又 f(x) 的图象经过点 (0,1), 则有 $f(0) = A\sin\frac{\pi}{6} = 1$, 解得 A = 2,

所以
$$f(x) = 2\sin(2x + \frac{\pi}{6})$$
,

所以 f(x) 的最大值为 2, 故选项 B正确;

$$\diamondsuit - \frac{\pi}{2} + 2k\pi \le 2x + \frac{\pi}{6} \le \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}, \quad \text{if } \forall -\frac{\pi}{3} + k\pi \le x \le \frac{\pi}{6} + k\pi, k \in \mathbb{Z},$$

故函数 f(x) 的单调递增区间为 $\left[-\frac{\pi}{3}+k\pi,\frac{\pi}{6}+k\pi\right],k\in Z$,

当 k=0 时,f(x) 的单调递增区间为 $\left[-\frac{\pi}{3},\frac{\pi}{6}\right]$,故选项 C错误;

因为
$$f(x+\frac{\pi}{6}) = 2\sin[2(x+\frac{\pi}{6})+\frac{\pi}{6}] = 2\sin(2x+\frac{\pi}{2}) + 2\cos 2x$$

所以 $f(x+\frac{\pi}{6})$ 为偶函数,故选项 D正确.

故选: BD.

25. 【答案】ABC

【解析】
$$f(x) = 2\sqrt{3}\sin(\frac{\pi}{4} + \frac{x}{2})\sin(\frac{\pi}{4} - \frac{x}{2}) - \sin(\pi + x)$$

三角函数与解三角形 VFMATH

VFMATH

$$=\sqrt{3}\sin\left(\frac{\pi}{2}+x\right) + \sin x$$

$$=\sqrt{3}\cos x + \sin x$$

$$=2 \left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right)$$

$$=2\sin\left(x+\frac{\pi}{3}\right),$$

对于 A,
$$f(\frac{\pi}{6}) = 2\sin(\frac{\pi}{6} + \frac{\pi}{3}) = 2 \ge 2\sin(x + \frac{\pi}{3}) = f(x)$$
, 故选项 A 正确;

对于 B,
$$f(\frac{\pi}{6}+x) = 2\sin(x+\frac{\pi}{2}) = 2\cos x$$
, $f(\frac{\pi}{6}-x) = 2\sin(\frac{\pi}{2}-x) = 2\cos x$, 可得

$$f(\frac{\pi}{6}+x)=f(\frac{\pi}{6}-x)$$
, 故选项 B 正确;

对于
$$C$$
, $f(\frac{2\pi}{3}) = 2\sin(\frac{2\pi}{3} + \frac{\pi}{3}) = 2\sin\pi = 0$, 可得 $(\frac{2\pi}{3}, 0)$ 是函数 $f(x)$ 图象的对称中心,

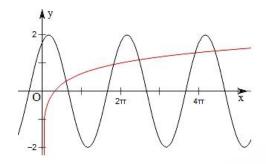
故选项 C正确;

对于 D,在同一坐标系中,作出函数 $f(x) = 2\sin(x + \frac{\pi}{3})$ 以及 $g(x) = \log_{2\pi} x$ 的图象,如图所示,

由图象可知,函数 y=f(x)与 y=g(x) 图象的交点超过 3个,

故方程 $f(x) = \log_{2\pi} x$ 的实根超过 3 个,故选项 D错误.

故选: ABC.



三、填空题

26. 【答案】 $\frac{4}{5}$

潍坊高中数学

【解析】:
$$\tan(\frac{\pi}{4} - \alpha) = \frac{1 - \tan \alpha}{1 + \tan \alpha} = \frac{1}{2}$$
 , 解得 $\tan \alpha = \frac{1}{3}$,

因此,
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{\cos^2 \alpha - \sin^2 \alpha}{\cos^2 \alpha + \sin^2 \alpha} = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} = \frac{1 - \frac{1}{9}}{1 + \frac{1}{6}} = \frac{4}{5}$$
.

故答案为: $\frac{4}{5}$.

27. 【答案】 $\frac{1}{2}$

$$=\sin 20^{\circ} \cos 10^{\circ} +\cos 20^{\circ} \sin 10^{\circ}$$

$$=\sin (20^{\circ} +10^{\circ})$$

$$=\sin 30^{\circ}$$

$$=\frac{1}{2}$$
.

故答案为:
$$\frac{1}{2}$$
.

28. 【答案】
$$-\frac{\sqrt{14}}{2}$$

【解析】:
$$\sin \alpha \cos \alpha = \frac{3}{8}$$
,

$$\therefore (\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + 2 \times \frac{3}{8} = \frac{7}{4},$$

$$: \alpha \in (0, \frac{\pi}{2}),$$

$$\therefore \sin \alpha > 0, \cos \alpha > 0, \ \therefore \sin \alpha + \cos \alpha = \frac{\sqrt{7}}{2},$$

$$\frac{\cos 2\alpha}{\sin(\alpha - \frac{\pi}{4})} = \frac{\cos^2\alpha - \sin^2\alpha}{\frac{\sqrt{2}}{2}(\sin\alpha - \cos\alpha)} = -\sqrt{2} \left(\sin\alpha + \cos\alpha\right) = -\sqrt{2} \times \frac{\sqrt{7}}{2} = -\frac{\sqrt{14}}{2}.$$

故答案为:
$$-\frac{\sqrt{14}}{2}$$
.

29. 【答案】 $\frac{1}{5}$

【解析】:
$$\tan \alpha = -\frac{1}{3}$$
,

$$\therefore 1 - \cos 2\alpha = 2\sin^2 \alpha = \frac{2\sin^2 \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \frac{2\tan^2 \alpha}{\tan^2 \alpha + 1} = \frac{\frac{2}{9}}{\frac{1}{9} + 1} = \frac{1}{5},$$

故答案为: $\frac{1}{5}$

30. 【答案】 $-\frac{24}{25}$.

潍坊高中数学

【解析】因为
$$\sin \left(\alpha - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \left(\sin \alpha - \cos \alpha\right) = \frac{3}{5}, \quad \alpha \in (0, \frac{\pi}{2})$$

可得 $\sin \alpha - \cos \alpha = \frac{3\sqrt{2}}{5}$,两边平方, $1 - 2\sin \alpha \cos \alpha = \frac{18}{25}$,可得 $2\sin \alpha \cos \alpha = \frac{7}{25}$,

所以
$$\sin \alpha + \cos \alpha = \sqrt{1 + 2\sin \alpha \cos \alpha} = \sqrt{1 + \frac{7}{25}} = \frac{4\sqrt{2}}{5}$$
,

则
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = (\cos \alpha - \sin \alpha) (\cos \alpha + \sin \alpha) = \frac{4\sqrt{2}}{5} \times (-\frac{3\sqrt{2}}{5}) = -\frac{24}{25}.$$
 故答案为: $-\frac{24}{25}$.

31. 【答案】-1

【解析】因为
$$\tan (\alpha + \beta) = \frac{1}{2}$$
, $\tan (\alpha - \beta) = \frac{1}{3}$

所以
$$\tan 2\alpha = \tan[(\alpha+\beta) + (\alpha-\beta)] = \frac{\tan(\alpha+\beta) + \tan(\alpha-\beta)}{1 - \tan(\alpha+\beta) \tan(\alpha-\beta)} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} = 1$$

所以
$$\tan (\pi - 2\alpha) = -\tan 2\alpha = -\frac{2\tan \alpha}{1-\tan^2 \alpha} = -1$$
.

故答案为: -1.

32. 【答案】2√2

【解析】:'*m*=2sin18°,

∴由 $m^2+n=4$, 得 $n=4-m^2=4-4\sin^2 18^\circ=4\cos^2 18^\circ$,

$$\text{M}\frac{\text{m+}\sqrt{\text{n}}}{\sin 63^{\circ}} = \frac{2\sin 18^{\circ} + 2\cos 18^{\circ}}{\sin 63^{\circ}} = \frac{2\sqrt{2}\sin(45^{\circ} + 18^{\circ})}{\sin 63^{\circ}} = \frac{2\sqrt{2}\sin 63^{\circ}}{\sin 63^{\circ}} = 2\sqrt{2},$$

故答案为: $2\sqrt{2}$

33. 【答案】16

【解析】因为振幅为 2, 所以 A=2,

因为
$$x_2 - x_1 = 2$$
,且 $f(x_2) = f(x_1) = \sqrt{3}$,

要使零点个数最少,周期就要越大,

所以 x_2 , x_1 应为两个相邻的在 $f(x) = \sqrt{3}$ 直线上的点,

即
$$\begin{cases} \sin(\omega \mathbf{x}_1 + \Phi) = \frac{\sqrt{3}}{2}, & \text{所以} \omega(\mathbf{x}_2 - \mathbf{x}_1) = \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}, \\ \sin(\omega \mathbf{x}_2 + \Phi) = \frac{\sqrt{3}}{2}, & \text{即} \omega = \frac{\pi}{6}, & \text{周期 } T = \frac{2\pi}{\omega} = 12, \end{cases}$$
 潍坊高中数学

为了使区间内零点最少,将第1个零点放在原点,

所以
$$102 \div 12 = 8 T + \frac{1}{2} T$$
,

最后 1 个零点恰好在 x=102 处,不在区间 (0, 102) 中,只计区间内的个数,

所以零点个数为 2×8=16 个.

故答案为: 16.

34. 【答案】2; $y = -\cos \pi x + \frac{1}{2}$

【解析】解: 把 f(x+1) = f(x-1) 中的 x 换成 x+1 可得 f(x) = f(x+2),

:.函数 f(x) 的最小正周期为 2;

由 f(1-x) + f(x) = 1 知, 函数 f(x) 图象关于 $(\frac{1}{2}, \frac{1}{2})$ 对称,

 $\therefore f(x)$ 的一个解析式为: $y = -\cos \pi x + \frac{1}{2}$.

故答案为: 2; $y = -\cos \pi x + \frac{1}{2}$.

35. 【答案】 $\frac{3\pi}{2}$.

【解析】根据图象可得, $y=4\cos(\omega x + \phi)$ 的周期为 2,

所以
$$\frac{2\pi}{\omega}$$
=2得 $\omega = \pi$, 且 $0=4\cos(\pi+\phi)$,

所以
$$\Phi = 2k\pi + \frac{\pi}{2}$$
, $k \in \mathbb{Z}$,

又因为 $0 < \phi < \pi$,

所以
$$\Phi = \frac{\pi}{2}$$
,故 $\omega + \varphi = \frac{3\pi}{2}$.

故填:
$$\frac{3\pi}{2}$$
.

36. 【答案】4

【解析】由于 M, N是函数 $f(x) = 2\cos(\omega x + \phi)(\omega > 0)$ 图像与直线 $y = \sqrt{3}$ 的两个不同的交点,

故 M, N的横坐标是方程 $2\cos(\omega_{X}+\phi)=\sqrt{3}$ 的解,

即 M, N的横坐标 x_1 , x_2 (不妨令 $x_1 < x_2$) 是方程 $\cos (\omega x + \phi) = \frac{\sqrt{3}}{2}$ 的解,

所以
$$\omega_{X_1}$$
+ $\Phi = -\frac{\pi}{6}$, ①,

潍坊高中数学

② - ①, 可得
$$\omega$$
 $(x_2 - x_1) = \frac{\pi}{3}$, $\mathbb{P} \frac{\pi}{12} \omega = \frac{\pi}{3}$

解得 $\omega = 4$.

故答案为: 4.

37. 【答案】50π

【解析】连结 OC, 因为 CD// OA, 所以 \(\angle DCO = \angle COA, \angle CDO = 180\circ - \angle DOA = 180\circ - 120\circ = 60\circ ,

在
$$\triangle OCD$$
中,由正弦定理可得, $\frac{OD}{\sin \angle DCO} = \frac{OC}{\sin \angle CDO}$

所以
$$\frac{\frac{200\sqrt{6}}{3}}{\sin \angle DCO} = \frac{200}{\frac{\sqrt{3}}{2}}$$
,解得 $\sin \angle DCO = \frac{\frac{200\sqrt{6}}{3} \times \frac{\sqrt{3}}{2}}{200} = \frac{\sqrt{2}}{2}$,

因为 \(\angle DCO = \angle COA, 且 0° < \angle COA < 120°,

故圆弧
$$\widehat{AC}$$
的长为 $\frac{45^{\circ}}{360^{\circ}} \times 2\pi \times 200 = 50\pi$.

故答案为: 50π.

38. 【答案】 $\sqrt{(a-c)(b-c)}$

【解析】解:如图所示,过点C作 $CD \perp AB$,交AB延长线与点D,

设
$$\angle BCD$$
= α , $\angle ACB$ = β , CD = x ,

由题意可得, AD=a-c, BD=b-c,

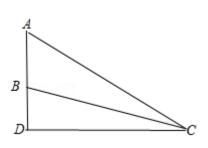
在
$$\triangle ACD$$
中, $tan(\alpha + \beta) = \frac{AD}{CD} = \frac{a-c}{r}$

在
$$\triangle BCD$$
中, $tan\alpha = \frac{BD}{CD} = \frac{a-c}{r}$

当且仅当
$$x = \frac{(a-c)(b-c)}{x}$$
, 等号成立, 即 $x = \sqrt{(a-c)(b-c)}$,

 \therefore 离此树的水平距离为 $\sqrt{(a-c)(b-c)}$ 米时看 A, B的视角最大,

故答案为:
$$\sqrt{(a-c)(b-c)}$$
.



四、解答题

- 39. 【解析】 (1) 这三个条件为: ① $\cos A = \frac{1}{2}$; ③ $a = \sqrt{3}$; ④b = 1.
 - (2) 由余弦定理可得: $a^2 = b^2 + c^2 2bc\cos A$,

即
$$3=1+c^2-2c\times\frac{1}{2}$$
,解得 $c=2$.

40. 【解析】若选①

因为
$$\sqrt{2}$$
asinC=ccos($\frac{\pi}{4}$ -A),由正弦定理得 $\sqrt{2}$ sinAsinC= $\frac{\sqrt{2}}{2}$ sinC(sinA+cosA),

所以
$$\sin A = \cos A$$
, $A \in (0, \pi)$,所以 $A = \frac{\pi}{4}$, $S_{\triangle ABC} = 3 = \frac{1}{2} b c s in A$,且 $b = 3$,得 $c = 2\sqrt{2}$,

由余弦定理得 $a^2 = b^2 + c^2 - 2bc\cos A$,解得 $a = \sqrt{5}$.

若选②

因为\(\sqrt{2}ccosA=acosB+bcos\)!,

由正弦定理得√2sinCcosA=sinAcosB+sinBcosA=sin(A+B)=sin,

所以
$$\cos A = \frac{\sqrt{2}}{2}$$
,

因为
$$A \in (0, \pi)$$
,所以 $A = \frac{\pi}{4}$, $S_{\triangle ABC} = 3 = \frac{1}{2} bcsinA$,且 $b = 3$,得 $c = 2\sqrt{2}$,

由余弦定理得 $a^2 = b^2 + c^2 - 2bc\cos A$,解得 $a = \sqrt{5}$.

若选③

因为
$$b^2+c^2=a^2+\sqrt{2}bc$$
, $b^2+c^2-a^2=\sqrt{2}bc$,得 $\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{\sqrt{2}}{2}$,

因为
$$A \in (0, \pi)$$
,所以 $A = \frac{\pi}{4}$, $S_{\triangle ABC} = 3 = \frac{1}{2} bcsinA$,且 $b = 3$,得 $c = 2\sqrt{2}$,

由余弦定理得 $a^2 = b^2 + c^2 - 2bc\cos A$,解得 $a = \sqrt{5}$.

41. 【解析】 (1) $f(x) = \overrightarrow{\pi} \cdot \overrightarrow{n} = 2\sin x \cos x + \sqrt{3}\cos 2x$,

$$=\sin 2x + \sqrt{3}\cos 2x = 2 \times \left(\frac{1}{2}\sin 2x + \frac{\sqrt{3}}{2}\cos 2x\right),$$

$$=2\sin(2x+\frac{\pi}{3}),$$

$$=2\sin(2x+\frac{\pi}{3})$$
,
 $\therefore f(x)$ 的最小正周期为: $T=\frac{2\pi}{\omega}=\frac{2\pi}{2}=\pi$,

$$\mathbb{Z} : 2\mathbf{k}\pi + \frac{\pi}{2} \leq 2\mathbf{k} + \frac{\pi}{3} \leq 2\mathbf{k}\pi + \frac{3\pi}{2}, \ \mathbf{k} \in \mathbb{Z},$$

$$\therefore k\pi + \frac{\pi}{12} \leqslant x \leqslant k\pi + \frac{7\pi}{12}, \ k \in \mathbb{Z},$$

$$\therefore f(x)$$
 的单调递减区间为 $\left[\frac{\pi}{12} + \mathbf{k}\pi, \frac{7\pi}{12} + \mathbf{k}\pi\right]$, $\mathbf{k} \in \mathbb{Z}$,

(2)
$$f(\frac{A}{2} - \frac{\pi}{6}) = 2\sin[2 \times (\frac{A}{2} - \frac{\pi}{6}) + \frac{\pi}{3}] = 2\sin A = \sqrt{3}$$
,

$$\therefore a=7$$
,由正弦定理可得 $\sin A = \sin B = \frac{c}{\sin C} = \frac{7}{\sqrt{3}} = 2R = \frac{14\sqrt{3}}{3}$ (R 为 $\triangle ABC$ 外接圆的半径),

$$:: \sin B + \sin C = \frac{b+c}{2R} = \frac{13\sqrt{3}}{14},$$

$$b+c = \frac{14\sqrt{3}}{3} \times \frac{13\sqrt{3}}{14} = 13.$$

42. 【解析】(1) 由
$$f(0) = \frac{1}{2}$$
, 得 $\sin \varphi = \frac{1}{2}$, 又 $0 < \varphi < \frac{\pi}{2}$, 故 $\varphi = \frac{\pi}{6}$,

由
$$f(\frac{5\pi}{12}) = 0$$
,得 $\sin(\omega \cdot \frac{5\pi}{12} + \frac{\pi}{6}) = 0$,

所以
$$\omega \cdot \frac{5\pi}{12} + \frac{\pi}{6} = k\pi$$
, $k \in \mathbb{Z}$

$$\sup \omega = \frac{2}{5}(6k-1), \quad k \in \mathbb{Z},$$

由
$$\omega > 0$$
, 结合函数图象可知 $\frac{1}{2} \cdot \frac{2\pi}{\omega} > \frac{5\pi}{12}$, 所以 $0 < \omega < \frac{12}{5}$,

所以有
$$0 < \frac{2}{5}(6k-1) < \frac{12}{5}$$
, 即 $\frac{1}{6} < k < \frac{7}{6}$, 又 $k \in \mathbb{Z}$, 所以 $k = 1$,

从而
$$\omega = \frac{2}{5} \times (6 \times 1 - 1) = 2$$
, 因此, $f(x) = \sin(2x + \frac{\pi}{6})$;

$$f(\frac{A-B}{2} - \frac{\pi}{12}) = \frac{3}{5}, \quad \text{(3)} \sin(A-B) = \frac{3}{5}$$

又
$$0 < A - B < \frac{\pi}{2}$$
,故 $\cos(A - B) = \frac{4}{5}$,

于是
$$\cos \frac{A-B}{2} = \sqrt{\frac{1+\cos(A-B)}{2}} = \frac{3}{\sqrt{10}}$$

又
$$A+B > \frac{\pi}{2}$$
,所以 $A = \frac{A+B}{2} + \frac{A-B}{2} > \frac{\pi}{4} + \frac{A-B}{2}$,

$$y = \sin x$$
在 $(0, \frac{\pi}{2})$ 上单调递增, $A \in (0, \frac{\pi}{2})$, $\frac{\pi}{4} + \frac{A - B}{2} \in (0, \frac{\pi}{2})$,

所以
$$\sin A > \sin(\frac{\pi}{4} + \frac{A - B}{2}) = \frac{\sqrt{2}}{2} \times (\frac{3}{\sqrt{10}} + \frac{1}{\sqrt{10}}) = \frac{2\sqrt{5}}{5}$$

43.【解析】解:
$$f(x) = 2\sin\omega x \cos(\omega x - \frac{\pi}{6}) - \frac{1}{2} = 2\sin\omega x (\cos\omega x \cos\frac{\pi}{6} + \sin\omega x \sin\frac{\pi}{6}) - \frac{1}{2} = 2\sin\omega x \cos\frac{\pi}{6} + \sin\omega x \sin\frac{\pi}{6}$$

 $\sqrt{3}\cos\omega x\sin\omega x + \sin^2\omega x - \frac{1}{2} = \frac{\sqrt{3}}{2}\sin^2\omega x - \frac{1}{2}\cos^2\omega x = \sin(2\omega x - \frac{\pi}{6}),$

①若 $x = -\frac{\pi}{6}$ 是函数 f(x) 图象的一条对称轴,

则
$$-\frac{\pi\omega}{3} - \frac{\pi}{6} = k\pi + \frac{\pi}{2}$$
, $k \in \mathbb{Z}$, 即 $-\frac{\pi\omega}{3} = k\pi + \frac{2\pi}{3}$, $k \in \mathbb{Z}$,

可得 $\omega = -3k - 2$, $k \in \mathbb{Z}$,

又 $0 < \omega < 2$,

当 k=-1 时,可得 $\omega=1$,

可得 $f(x) = \sin(2x - \frac{\pi}{6})$,

②若 $\frac{\pi}{12}$ 是函数 f(x) 的一个零点,

则
$$\frac{\pi}{12} \times 2 \omega - \frac{\pi}{6} = k \pi$$
,即 $\frac{\pi}{6} \omega = k \pi + \frac{\pi}{6}$,k \in Z,

可得 ω = 6k+1, $k \in \mathbb{Z}$,

 $\nabla 0 < \omega < 2$

所以当 k=0 时, ω=1,

所以 $f(x) = \sin(2x - \frac{\pi}{6})$.

③函数 f(x) 在[a, b]上单调递增,且 b-a的最大值为 $\frac{\pi}{2}$,

则 $T=\pi=\frac{2\pi}{2\omega}$,

故 $\omega = 1$,

所以 $f(x) = \sin(2x - \frac{\pi}{4})$,

由 $\frac{\pi}{2} + 2k\pi \le 2x - \frac{\pi}{6} \le \frac{3\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$, 可得 $\frac{\pi}{3} + k\pi \le x \le \frac{5\pi}{6} + k\pi$, $k \in \mathbb{Z}$,

 $\sqrt{1-\frac{\pi}{2}} \leq x \leq \frac{\pi}{2}$

潍坊高中数学

所以 f(x) 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的单调递减区间为: $\left[-\frac{\pi}{2}, -\frac{\pi}{6}\right], \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$.

44. 【解析】 (1) : $\triangle ABC$ 中, $\angle ABC = \frac{\pi}{3}$, BC = 4,

$$\therefore S_{\triangle ABC} = \frac{1}{2} AB \cdot BC \sin \angle ABC = 3\sqrt{3},$$

∴ *AB*=3

 $:: \triangle ABC$ 中,由余弦定理可得: $AC = AB^{\circ} + BC = 2AB^{\circ} BC \cos \angle ABC = 9 + 16 - 2 \times 3 \times 4 \times \frac{1}{2} = 13$,

$$\therefore AC = \sqrt{13}$$
;

(2) 设
$$\angle ACD$$
= α ,则 $\angle ACB$ = $\angle ACD$ + $\frac{\pi}{3}$ = α + $\frac{\pi}{3}$,

∴Rt
$$\triangle ACD + \Phi$$
, $AD = 3\sqrt{3}$,

$$\therefore AC = \frac{AD}{\sin \alpha} = \frac{3\sqrt{3}}{\sin \alpha},$$

$$\triangle ABC + \frac{\pi}{3} - \alpha$$

由正弦定理可得:
$$\frac{BC}{\sin\angle BAC} = \frac{AC}{\sin\angle ABC}$$
, $\mathbb{D} \frac{4}{\sin(\frac{\pi}{3} - \alpha)} = \frac{3\sqrt{3}}{\frac{\sqrt{3}}{2}\sin\alpha}$,

∴3sin (
$$\frac{\pi}{3}$$
 - α) =2sin α, 化简可得 tan α = $\frac{3\sqrt{3}}{7}$,

$$\therefore \tan \angle ACD = \frac{3\sqrt{3}}{7}.$$

45. 【解析】(1) $:sinC = \sqrt{3}sinB$,由正弦定理得: $c = \sqrt{3}b$,又 $b^2=c$,

联立解之得
$$b = \sqrt{3}$$
, $c = 3$.

选条件③
$$a^2 + c^2 - b^2 = \sqrt{3}ac$$

由余弦定理
$$\cos B = \frac{a^2 + c^2 - b^2}{2bc} = \frac{\sqrt{3}}{2}$$
, 所以 $B = \frac{\pi}{6}$

选条件②
$$\frac{bcosB}{c} = sinB$$
可得 $tanB = \frac{b}{c} = \frac{\sqrt{3}}{3}$,所以 $B = \frac{\pi}{6}$

选条件①
$$sinC = cosAsinB = \frac{\sqrt{3}}{2}$$
, $sin(A + B) = cosAsinB = \frac{\sqrt{3}}{2}sinA$

$$sinAcosB = \frac{\sqrt{3}}{2}sinA$$
,所以 $cosB = \frac{\sqrt{3}}{2}$,所以 $B = \frac{\pi}{6}$

(2) 由 (1)
$$B = \frac{\pi}{6}$$
,由正弦定理 $\frac{b}{sinB} = \frac{c}{sinC}$,所以 $sinC = \frac{\sqrt{3}}{2}$

(i) 当时
$$C = \frac{\pi}{3}$$
, $A = \frac{\pi}{2}$, 此时 \triangle ABC 的面积 $S = \frac{1}{2}bc = \frac{3\sqrt{3}}{2}$

(ii) 当
$$C = \frac{2\pi}{3}$$
时, $A = \frac{\pi}{6}$,此时 \triangle ABC 的面积 $S = \frac{1}{2}bcsinA = \frac{3\sqrt{3}}{4}$

综上, \triangle ABC 的面积为 $\frac{3\sqrt{3}}{2}$ 或 $\frac{3\sqrt{3}}{4}$.

46. 【解析】(1) 证明: 因为 $\frac{c}{b}$ <cosA,由正弦定理可得: $\frac{sinC}{sinB}$ <cosA,

由于 $\sin C = \sin (A+B) = \sin A \cos B + \cos A \sin B$,且 $\sin B > 0$,

所以不等式整理为 sinAcosB+cosAsinB<sinBcosA, 即 sinAcosB<0,

由于在三角形中 sinA>0,

所以 cosB<0,

所以得证 B为钝角;

(2) i) 若满足①②③,则正弦定理可得 $\frac{a}{sinA} = \frac{c}{sinC}$,即 $\frac{2}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{sinC}$,所以 $sinC = \frac{1}{2}$,

又 a>c,所以 A>C,在三角形中, $\sin A=\frac{\sqrt{2}}{2}$,所以 $A=\frac{\pi}{4}$ 或 $A=\frac{3\pi}{4}$,而由(1)可得 $A=\frac{\pi}{4}$

所以可得 $C = \frac{\pi}{6}$, $B = \pi - A - C = \pi - \frac{\pi}{4} - \frac{\pi}{6} = \frac{7\pi}{12}$

所以
$$b = \sqrt{a^2 + c^2 - 2accosB} = \sqrt{4 + 2 - 2 \times 2 \times \sqrt{2} \times (-\frac{\sqrt{6} - \sqrt{2}}{4})} = \sqrt{3} + 1$$
。

- ii)若满足①②④,由(1)B为钝角,A,C为锐角,及 $\sin A = \frac{\sqrt{2}}{2}$, $\sin C = \frac{\sqrt{3}}{2}$,可得 $A = \frac{\pi}{4}$, $C = \frac{\pi}{3}$,所以 $B = \frac{5\pi}{12}$ 不符合 B为钝角,故这种情况不成立;
- iii)若满足②③④,由 B为钝角, $\sin C = \frac{\sqrt{3}}{2}$,所以 $C = \frac{\pi}{3}$,而 a > c,所以 A > C,这时 $B < \frac{\pi}{3}$,不符合 B为 钝角的情况,所以这种情况不成立;

综上所述: 只有满足①②③时 $\triangle ABC$ 存在, $b=\sqrt{3}+1$.

47. 【解析】 (1) 因为 $\frac{\pi}{3}$ -B+ $\frac{\pi}{6}$ +B= $\frac{\pi}{2}$,

所以
$$\cos(\frac{\pi}{3}-B)\cdot\sin(\frac{\pi}{6}+B)=\sin^2(\frac{\pi}{6}+B)=\frac{3}{4}$$
, 即 $\sin(\frac{\pi}{6}+B)=\frac{\sqrt{3}}{2}$,

因为 *B*∈ (0, π),

所以B+
$$\frac{\pi}{6}$$
= $\frac{\pi}{3}$,或B+ $\frac{\pi}{6}$ = $\frac{2\pi}{3}$,

解得
$$B=\frac{\pi}{6}$$
,或 $B=\frac{\pi}{2}$.

(2) 由正弦定理
$$\frac{b}{\sin B}$$
=2R, 可得R= $\frac{b}{2\sin B}$,

所以 $\triangle ABC$ 外接圆面积 $S=\pi R^2 = \frac{\pi b^2}{4 \sin^2 B}$,

①当
$$B=\frac{\pi}{6}$$
时,由余弦定理可得: $b^2=a^2+c^2-2accos\frac{\pi}{6}=(a+c)^2-(2+\sqrt{3})ac=4-(2+\sqrt{3})ac$

因为 $ac \le (\frac{a+c}{2})^2$,

所以
$$b^2 \ge 4 - (2 + \sqrt{3}) \left(\frac{a + c}{2}\right)^2 = 2 - \sqrt{3}$$
,

因此
$$\triangle ABC$$
外接圆面积的最小值 $S = \frac{\pi (2-\sqrt{3})}{4\sin^2 \frac{\pi}{6}} = (2-\sqrt{3})\pi$.

三角函数与解三角形 VFMATH

②当 $B = \frac{\pi}{2}$ 时,由勾股定理可得 $b^2 = a^2 + c^2 \ge \frac{(a+c)^2}{2} = 2$

因此 $\triangle ABC$ 外接圆面积的最小值 $S = \frac{2\pi}{4\sin^2 \frac{\pi}{2}} = \frac{\pi}{2}$.

48.【解析】(1)解: :A, B, C 是三角形 ABC 的内角,则 $\sin\frac{A+C}{2}=\cos\frac{B}{2}$,又 $10\sin^2\frac{A+C}{2}=7-\cos2B$,

∴
$$10\cos^2\frac{B}{2} = 7 - \cos 2B$$
 , 即 $5 + 5\cos B = 7 - (2\cos^2 B - 1)$, 整理得 $2\cos^2 B + 5\cos B - 3 = 0$,

$$\therefore B = \frac{\pi}{3}$$

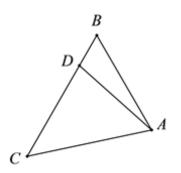
(2) 解:
$$S_{\triangle ABD} = \frac{1}{2}BD \cdot BA \cdot \sin B = \frac{3\sqrt{3}}{4}$$
,可得 $BD \cdot BA = 3$,

在
$$\triangle$$
 ABD 中, $AD^2 = BD^2 + BA^2 - 2BD \cdot BA\cos B = 7$,

$$\therefore BD = 1$$
 , $BA = 3$, $BC = 4$,

由余弦定理有 $AC^2 = BA^2 + BC^2 - 2BC \cdot BA \cdot \cos B = 13$,

$$\therefore AC = \sqrt{13}$$
.



49. 【解析】(1) 若选条件①: 因为 $\sqrt{3}b\cos A = 2c\sin C - \sqrt{3}a\cos B$,由正弦定理可得

$$\sqrt{3}(\sin B \cos A + \sin A \cos B) = 2\sin^2 C$$

進坊高中数学

所以
$$\sqrt{3}\sin(A+B)=2\sin^2 C$$
.

因为
$$A+B+C=\pi$$
,即 $A+B=\pi-C$,所以 $\sqrt{3}\sin C=2\sin^2 C$.

因为
$$\sin C \neq 0$$
,所以 $\sin C = \frac{\sqrt{3}}{2}$.

三角函数与解三角形 VFMATH

又因为 $\triangle ABC$ 为锐角三角形,所以 $C = \frac{\pi}{3}$.

若选条件②: 因为
$$\cos^2\left(\frac{\pi}{2}+C\right)+\cos C=\frac{5}{4}$$
,所以 $\left(-\sin C\right)^2+\cos C-\frac{5}{4}=0$,

$$\mathbb{E} 1 - \cos^2 C + \cos C - \frac{5}{4} = 0 ,$$

所以
$$\cos^2 C - \cos C + \frac{1}{4} = 0$$
,

解得
$$\cos C = \frac{1}{2}$$
.

因为 $\triangle ABC$ 为锐角三角形,所以 $C = \frac{\pi}{3}$.

若选条件③: 因为
$$a\sin\frac{A+B}{2}=c\sin A$$
,又 $\sin\frac{A+B}{2}=\cos\frac{C}{2}$,所以 $a\cos\frac{C}{2}=c\sin A$.

由正弦定理可得, $\sin A \cos \frac{C}{2} = \sin C \sin A$.

因为
$$\sin A \neq 0$$
,所以 $\cos \frac{C}{2} = \sin C$,

$$\mathbb{H}\cos\frac{C}{2} = 2\sin\frac{C}{2}\cos\frac{C}{2}.$$

因为 $\triangle ABC$ 为锐角三角形,所以 $\cos \frac{C}{2} \neq 0$,

则有
$$\sin \frac{C}{2} = \frac{1}{2}$$
, 所以 $\frac{C}{2} = \frac{\pi}{6}$, 所以 $C = \frac{\pi}{3}$.

潍坊高中数学
(2) 因为 $AB = \sqrt{3}$, $AC = \sqrt{2}$, 由正弦定理得 $\sin B = \frac{AC \cdot \sin C}{AB} = \frac{\sqrt{2}}{2}$.

因为 △ABC 为锐角三角形,

所以
$$B = \frac{\pi}{4}$$
,则 $A = \frac{5\pi}{12}$.

因为 CE 是角 C 的平分线,所以 $\angle ACE = \frac{\pi}{6}$,

故
$$\angle CEA = \pi - \frac{\pi}{6} - \frac{5\pi}{12} = \frac{5\pi}{12}$$
,所以 $\angle A = \angle CEA$,

则 $\triangle AEC$ 为等腰三角形,所以 $AC = CE = \sqrt{2}$.

故 CE的长为 $\sqrt{2}$.

50. 【解析】(1) $:: A + B + C = \pi$, $:: B + C = \pi - A$,

$$\therefore 4\cos^2\frac{A}{2} - \cos 2(B+C) = 2(1+\cos A) - \cos 2A = -2\cos^2 A + 2\cos A + 3 = \frac{7}{2}$$

解得
$$\cos A = \frac{1}{2}$$
,又 $0 < A < \pi$, ∴ $A = \frac{\pi}{3}$;

(2) 设 $\angle ABD = \theta$,

因为点
$$D$$
满足 $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AC}$, $|\overrightarrow{BD}| = \sqrt{3}$,所以 $c - \frac{2}{3}b = |AB| - |AD|$,

在
$$\triangle ABD$$
 中,由余弦定理可得: $\frac{|AD|}{\sin\theta} = \frac{|AB|}{\sin\left(\theta + \frac{\pi}{3}\right)} = \frac{|BD|}{\sin A} = 2$,

所以
$$|AB| = 2\sin\left(\theta + \frac{\pi}{3}\right)$$
, $|AD| = 2\sin\theta$,

所以
$$|AB|-|AD|=2\sin\left(\theta+\frac{\pi}{3}\right)-2\sin\theta$$
,

$$\mathbb{E} c - \frac{2}{3}b = \sqrt{3}\cos\theta - \sin\theta = 2\sin\left(\frac{\pi}{3} - \theta\right),$$

因为
$$\theta \in \left(0, \frac{2\pi}{3}\right)$$
,所以 $\frac{\pi}{3} - \theta \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$, $\sin\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$, $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$,

所以
$$c-\frac{2}{3}b\in\left(-\sqrt{3},\sqrt{3}\right)$$
.

51. 【解析】 (1)解: 若选①: 因为 $(\sin B - \sin C)^2 = \sin^2 A - \sin B \sin C$,

所以由正弦定理得 $(b-c)^2=a^2-bc$, 整理得 $b^2+c^2-a^2=bc$,

所以
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}$$
 ,

因为
$$0 < A < \pi$$
 ,所以 $A = \frac{\pi}{3}$.

若选②: 因为 $2a\sin C = c\tan A$,所以 $2\sin A\sin C = \sin C \cdot \frac{\sin A}{\cos A}$,

$$\mathbb{P} \cos A = \frac{1}{2} ,$$

因为 $0 < A < \pi$,所以 $A = \frac{\pi}{3}$.

若选③: 因为
$$2\cos^2\frac{B+C}{2} = \cos 2A + 1$$
 ,所以 $\cos(B+C) + 1 = 2\cos^2 A - 1 + 1$,

解得
$$\cos A = \frac{1}{2}$$
 或 $\cos A = -1$,

因为
$$0 < A < \pi$$
 , 所以 $A = \frac{\pi}{3}$.

(2) 因为 $\sin B = \sqrt{2} \sin C$,由正弦定理得 $b = \sqrt{2}c$,

因为
$$b = \sqrt{2}$$
 ,所以 $c = 1$,

所以
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times \sqrt{2} \times 1 \times \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{4}$$
.

52. 【解析】(1)根据正弦定理 $c\cos A = (\sqrt{2}b - a)\cos C$ 可化为 $\sin C\cos A = (\sqrt{2}\sin B - \sin A)\cos C$,

即 $\sin A\cos C + \sin C\cos A = \sqrt{2}\sin B\cos C$,则 $\sin (A+C) = \sqrt{2}\sin B\sin C$. 由于 $A+B+C=\pi$,

故 sin
$$(A+C) = \sin B$$
, 所以 sin $B = \sqrt{2} \sin B \sin C$, 又 sin $B \neq 0$, 所以 cos $C = \frac{\sqrt{2}}{2}$.

因为
$$C \in (0, \pi)$$
 ,所以 $C = \frac{\pi}{4}$.又 $A = \frac{\pi}{12}$,所以 $B = \pi - (A + C) = \frac{2\pi}{3}$.

由正弦定理有
$$\frac{\sin C}{AB} = \frac{\sin A}{BC}$$
,得 $AB = \frac{\sin C}{\sin A} \cdot BC = \frac{\sqrt{2}}{2} \times \frac{4}{\sqrt{6} \cdot \sqrt{2}} \times 1 = \sqrt{3} + 1$.

则 $BD=AB-AD=\sqrt{3}$,在 $\triangle BCD$ 中,由余弦定理得 $CD^0=BC^0+BD^0-2BC^0+BD^0\cos B=1^2+(\sqrt{3})^2-2\times 1\times \sqrt{3}$

$$\times (-\frac{1}{2}) = 4 + \sqrt{3}.$$

所以
$$CD = \sqrt{4 + \sqrt{3}}$$
, 则 $2R = \frac{CD}{\sin B} = \frac{2\sqrt{4 + \sqrt{3}}}{\sqrt{3}}$, 請好 $\sqrt{4 + \sqrt{3}}$.

故
$$\triangle BCD$$
的外接圆的面积为 $S=\pi$ $R=\pi \times \frac{4+\sqrt{3}}{3} = \frac{4\pi}{3} + \frac{\sqrt{3}\pi}{3}$.

(2) 由 (1) 可知 c=2、 $C=\frac{\pi}{4}$; 根据余弦定理 $c^2=a^2+b^2-2ab\cos C$;

得
$$4=a^2+b^2-2ab\times(\frac{\sqrt{2}}{2})=a^2+b^2-\sqrt{2}ab\geqslant 2ab-\sqrt{2}ab$$
(当且仅当 $a=b$ 时,等号成立),

三角函数与解三角形 VFMATH

所以
$$ab \le \frac{4}{2-\sqrt{2}} = 4+2\sqrt{2}$$
,故 $S_{\triangle ABC} = \frac{1}{2} ab \sin C = \frac{\sqrt{2}}{4} ab \le \frac{\sqrt{2}}{4} \times (4+2\sqrt{2}) = \sqrt{2}+1$ (当且仅当 $a=b$ 时,等号成立).

53. 【解析】若选条件①,

(1) 由
$$\sin A = \cos \frac{A}{2}$$
,可得 $2\sin \frac{A}{2}\cos \frac{A}{2} = \cos \frac{A}{2}$,

因为
$$A \in (0, \pi)$$
,可得 $\frac{A}{2} \in (0, \frac{\pi}{2})$, $\cos \frac{A}{2} \neq 0$,

所以
$$\sin \frac{A}{2} = \frac{1}{2}$$
,可得 $\frac{A}{2} = \frac{\pi}{6}$, $A = \frac{\pi}{3}$;

(2) 由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$, a=2,

则 $4=b^2+c^2-bc \ge 2bc-bc=bc$, 当且仅当 b=c=2 时等号成立,

所以
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A \leq \frac{1}{2} \times 4 \times \frac{\sqrt{3}}{2} = \sqrt{3}$$
, 即 $\triangle ABC$ 面积的最大值为 $\sqrt{3}$.

若选条件②,

(1) $\pm 2a\cos A = b\cos C + c\cos B$,

可得 $2\sin A\cos A = \sin B\cos C + \cos B\sin C$,即 $2\sin A\cos A = \sin (B+C) = \sin A$,

又
$$\sin A \neq 0$$
,故 $\cos A = \frac{1}{2}$,

又
$$0 < A < \pi$$
,故 $A = \frac{\pi}{3}$;

(2) 由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$, a=2,

则 $4=b^2+c^2-bc \ge 2bc-bc=bc$, 当且仅当 b=c=2 时等号成立,

所以
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A \leq \frac{1}{2} \times 4 \times \frac{\sqrt{3}}{2} = \sqrt{3}$$
,即 $\triangle ABC$ 面积的最大值为 $\sqrt{3}$.

若选条件③,

(1) $\pm a\cos C + (2b+c)\cos A = 0$,

可得 $\sin A\cos C+2\sin B\cos A+\sin C\cos A=\sin (A+C)+2\sin B\cos A=\sin B+2\sin B\cos A=0$,

因为 sin B≠0,

可得
$$\cos A = -\frac{1}{2}$$
,

潍坊高中数学

又
$$0 < A < \pi$$
,故 $A = \frac{2\pi}{3}$;

(2) 由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$, a=2,

则 $4=b^2+c^2+bc \ge 2bc+bc=3bc$,即 $bc \le \frac{4}{3}$,当且仅当 b=c=2 时等号成立,

三角函数与解三角形 VFMATH

所以 $S_{\triangle ABC} = \frac{1}{2}bc\sin A \leq \frac{1}{2} \times \frac{4}{3} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$,即 $\triangle ABC$ 面积的最大值为 $\frac{\sqrt{3}}{3}$.

54. 【解析】解: (1) $S_{\triangle ABM} = \frac{1}{2}AB \cdot BM \sin \angle ABM$, $S_{\triangle BCM} = \frac{1}{2}BC \cdot BM \sin \angle MBC$.

因为
$$S_{\triangle ABM} = 2S_{\triangle BCM}$$
, $\angle ABM = \angle MBC$,

所以AB = 2BC.

由正弦定理得
$$\frac{\sin C}{\sin A} = \frac{AB}{BC} = 2$$

(2) 由
$$\frac{\sin C}{\sin A}$$
 = 2 得 c = 2 a ,

由余弦定理得 $b^2 = a^2 + c^2 - 2ac\cos B$,

又因为
$$\cos B = \frac{1}{4}$$
, $b = 2$,

所以
$$4=a^2+4a^2-4a^2\times\frac{1}{4}$$
,

所以a=1,从而c=2.

又因为
$$\cos B = \frac{1}{4} \pm 0 < B < \pi$$
,

所以
$$\sin B = \frac{\sqrt{15}}{4}$$
.

因此
$$S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{1}{2} \times 1 \times 2 \times \frac{\sqrt{15}}{4} = \frac{\sqrt{15}}{4}$$

55. 【解析】 (1) 解: $\pm \cos(A-C) + \cos B = \frac{3}{2}$

可知
$$\cos(A-C)-\cos(A+C)=\frac{3}{2}$$
,

可得
$$sin A sin C = \frac{3}{4}$$
.

潍坊高中数学

由 $\vec{m}//\vec{n}$ 可得 $b^2 - ac = 0$,

由正弦定理可知 $\sin^2 B = \sin A \sin C = \frac{3}{4}$,

因为
$$B \in (0,\pi)$$
 ,所以 $\sin B = \frac{\sqrt{3}}{2}$,因此 $B = \frac{\pi}{3}$ 或 $\frac{2\pi}{3}$.

分别代入 $\cos(A-C)+\cos B=\frac{3}{2}$,可知当 $B=\frac{2\pi}{3}$ 时, $\cos(A-C)=2$,不成立.

因此 $B = \frac{\pi}{3}$.

(2) 解: 由
$$B = \frac{\pi}{3}$$
 可知 $\cos(A - C) = 1$,即 $A = C$,

因此 $\triangle ABC$ 为等边三角形,即 a = b = c

$$S_{\triangle ACD} = \frac{1}{2}AC \cdot CD\sin \angle ACD = \frac{1}{2}b(5-a)\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{4}a(5-a) = \sqrt{3}$$
,

整理可得
$$a(5-a) = 4$$
 , 即 $a^2 - 5a = -4$,

由余弦定理可知,在 △ABD 中,

$$AD^2 = AB^2 + BD^2 - 2AB \cdot BD \cdot \cos \frac{\pi}{3} = c^2 + 25 - 5c = a^2 + 25 - 5a = 21$$
,

因此 AD 的长为 $\sqrt{21}$.

56. 【解析】 (1) 解: 由题意得 $6\sin^2 A + \cos A = 5$,

整理得 $6\cos^2 A - \cos A - 1 = 0$,解得 $\cos A = \frac{1}{2}$ 或 $\cos A = -\frac{1}{3}$.

又
$$A \in (0, \frac{\pi}{2})$$
 ,所以 $\cos A = \frac{1}{2}$,即 $A = \frac{\pi}{3}$;

(2) 解:由余弦定理
$$a^2 = b^2 + c^2 - 2bc\cos A$$
 得 $4 = b^2 + c^2 - bc$,

由正弦定理得
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{2}{\frac{\sqrt{3}}{3}} = \frac{4\sqrt{3}}{3}$$
,

即
$$b=rac{4\sqrt{3}}{3}{
m sin}B$$
 , $c=rac{4\sqrt{3}}{3}{
m sin}C$, 而 ${
m C}=rac{2\,\pi}{3}-B$,

$$bc = \frac{16}{3}\sin B \sin C = \frac{16}{3}\sin B \sin(\frac{2\pi}{3} - B) = \frac{8\sqrt{3}}{3}\sin B \cos B + \frac{8}{3}\sin^2 B$$

$$=\frac{4\sqrt{3}}{3}\sin 2B - \frac{4}{3}\cos 2B + \frac{4}{3} = \frac{8}{3}\sin(2B - \frac{\pi}{6}) + \frac{4}{3},$$

又 {
$$0 < B < \frac{\pi}{2}$$
 , 解得 $\frac{\pi}{6} < B < \frac{\pi}{2}$,

所以
$$\frac{\pi}{6} < 2B - \frac{\pi}{6} < \frac{5}{6} \pi$$
 ,所以 $\sin(2B - \frac{\pi}{6}) \in (\frac{1}{2}, 1]$

即
$$bc \in (\frac{8}{3}, 4]$$
 ,所以 $b^2 + c^2 = 4 + b$ 能 類学

57. 【解析】: ∠B=60°, AB=4, 过 A作 BC的垂线 AO, 垂足为 O,

则
$$AO = 4\sin 60^{\circ} = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$
.

- ① $AD=\sqrt{5}$ < $2\sqrt{3}$,此时满足条件的 $\triangle ABD$ 有0个;
- ② $AD=\sqrt{15}$ ∈ $(2\sqrt{3}, 4)$,此时满足条件的三角形有 2 个;

VFMATH

③ $AD=2\sqrt{7}\in (4, 4\sqrt{3})$,此时满足条件的 $\triangle ABD$ 有1个.

此时 AD = AB + BD - 2AB • BD • cos 60°,

∴ $28=16+BD^2-2\times4\times BD\times\frac{1}{2}$, 解得 BD=6.

58. 【解答】解: (1) 若选①,由于 2sinAcosB=2sinC+sinB,可得 2sinAcosB=2sin(A+B)+sinB=2sinAcosB+2cosAsinB+sinB,可得 2cosAsinB+sinB=0,

因为 sin B≠0,

所以 $2\cos A+1=0$,解得 $\cos A=-\frac{1}{2}$

因为 $A \in (0, \pi)$, 所以 $A = \frac{2\pi}{3}$.

若选②,因为 $\cos A + \cos \frac{A}{2} = 0$,可得 $2\cos \frac{2A}{2} + \cos \frac{A}{2} - 1 = 0$,

解得 $\cos \frac{A}{2} = -1$,或 $\frac{1}{2}$,

 $X \in (0, \pi), \frac{A}{2} \in (0, \frac{\pi}{2}), \cos \frac{A}{2} \in (0, 1),$

所以 $\cos \frac{A}{2} = \frac{1}{2}$, 可得 $\frac{A}{2} = \frac{\pi}{3}$, 可得 $A = \frac{2\pi}{3}$.

(2) 因为 b+c=10,且 $\triangle ABC$ 面积为 $2\sqrt{3}$,

又 $A=\frac{2\pi}{3}$, AD 是 $\triangle ABC$ 的内角平分线,可得 $\angle BAD=\angle DAC=\frac{1}{2}\angle BAC=\frac{\pi}{3}$,

由等面积法可得: $S_{\triangle ABC} = S_{\triangle BAD} + S_{\triangle DAC}$,

所以 $2\sqrt{3} = \frac{1}{2}b^{\bullet}AD\sin\frac{\pi}{3} + \frac{1}{2}c^{\bullet}AD^{\bullet}\sin\frac{\pi}{3}$,即 $2\sqrt{3} = \frac{1}{2} \times AD \times \frac{\sqrt{3}}{2} \times 10$,

解得 $AD=\frac{4}{5}$.

59. 【解析】选①: 由 m// n 得 acos B= (2c - b) cos A,

得 $\sin A\cos B$ = $2\sin C\cos A$ - $\sin B\cos A$, 得 $\sin (B+A) = 2\sin C\cos A$,

又 $\sin(B+A) = \sin C$, $\sin C \neq 0$, 所以 $\cos A = \frac{1}{2}$, 又 $0 < A < \pi$, 所以 $A = \frac{\pi}{3}$.

②因为b=acosC+^{√3}csinA, 潍坊高中数学

根据正弦定理得 $\sin B = \sin A \cos C + \frac{\sqrt{3}}{3} \sin C \sin A$,

所以 $\sin(A+C) = \sin A \cos C + \frac{\sqrt{3}}{3} \sin C \sin A$,

所以 $sinAcosC+cosAsinC=sinAcosC+\frac{\sqrt{3}}{3}sinCsinA$,

所以 $\cos A \sin C = \frac{\sqrt{3}}{3} \sin C \sin A$. 因为 $\sin C \neq 0$,所以 $\tan A = \sqrt{3}$,

又
$$0 < A < \pi$$
,所以 $A = \frac{\pi}{3}$.

③因为 $\cos^2 A + \cos A \cos (C - B) = \sin B \sin C$,

所以 $\cos A[-\cos(B+C)+\cos(C-B)]=\sin B\sin C$,

所以 2cos Asin Bsin C=sin Bsin C.

因为 $B \in (0, \pi)$, $C \in (0, \pi)$, 所以 $\sin B \sin C \neq 0$, 所以 $\cos A = \frac{1}{2}$

又
$$0 < A < \pi$$
,所以 $A = \frac{\pi}{3}$.

(2) 在 $\triangle ABC$ 中,由 a= $\sqrt{3}$,A= $\frac{\pi}{3}$,得 $b^2+c^2-bc=3$.

由 $\triangle ABC$ 的面积为 $\frac{\sqrt{3}}{2}$,得 bc=2,所以 $b^2+c^2=5$.

因为 M是 BC的中点,所以 $\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC})$,

从而
$$|\overrightarrow{AM}|^2 = \frac{1}{4} (|\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AC}) = \frac{1}{4} (b^2 + c^2 + bc) = \frac{7}{4},$$

所以 $AM = \frac{\sqrt{7}}{2}$.

60. 【解析】解: (1) 若选① $\sin^2 A - \sin^2 B - \sin^2 C = -\sqrt{3}\sin B\sin C$,

由正弦定理得 $a^2 - b^2 - c^2 = -\sqrt{3}bc$,

由余弦定理得 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{\sqrt{3}}{2}$,

由 A 为三角形内角得 $A=\frac{\pi}{6}$;

$$(2) S_{\triangle ABC} = \frac{1}{4}b,$$

由正弦定理得
$$b = \frac{csinB}{sinC} = \frac{sin(\frac{5\pi}{6} - C)}{sinC} = \frac{\frac{1}{2}cosC + \frac{\sqrt{3}}{2}sinC}{sinC} = \frac{1}{2tanC} + \frac{\sqrt{3}}{2}$$

所以 $\tan C > \sqrt{3}$,

故
$$\frac{\sqrt{3}}{2}$$
 $<$ b $<$ $\frac{2\sqrt{3}}{3}$,从而 $\frac{\sqrt{3}}{8}$ $<$ $S_{\triangle ABC}$ $<$ $\frac{\sqrt{3}}{6}$,

故 $\triangle ABC$ 面积的取值范围 $(\frac{\sqrt{3}}{8}, \frac{\sqrt{3}}{6});$

(1) 若选②
$$b = a\cos C + \frac{1}{2}c$$
,

由正弦定理得 $\sin B = \sin A \cos C + \frac{1}{2} \sin C$,

所以 $\sin (A+C) = \sin A \cos C + + \frac{1}{2} \sin C$,

所以 $\sin A \cos C + \sin C \cos A = \sin A \cos C + \frac{1}{2} \sin C$,

化简得 $\sin C \cos A = \frac{1}{2} \sin C$,

因为 $\sin C > 0$,所以 $\cos A = \frac{1}{2}$,

由 A 为三角形内角得 $A=\frac{\pi}{3}$;

(2)
$$S_{\triangle ABC} = \frac{\sqrt{3}}{4}b$$
,

由正弦定理得
$$b = \frac{csinB}{sinC} = \frac{sin(\frac{2\pi}{3} - C)}{sinC} = \frac{\frac{1}{2}sinC + \frac{\sqrt{3}}{2}cosC}{sinC} = \frac{1}{2} + \frac{\sqrt{3}}{2tanC}$$

由题意得
$$0 < C < \frac{\pi}{2}$$
 $0 < \frac{\pi}{2}$ 解得 $\frac{\pi}{6} < C < \frac{\pi}{2}$

所以 $\tan C > \frac{\sqrt{3}}{3}$,

故
$$\frac{1}{2} < b < 2$$
,从而 $\frac{\sqrt{3}}{8} < S_{\triangle ABC} < \frac{\sqrt{3}}{2}$,

故 $\triangle ABC$ 面积的取值范围 $(\frac{\sqrt{3}}{8}, \frac{\sqrt{3}}{2});$

(1) 若选③ $(\cos C - \sqrt{3}\sin C)\cos A + \cos B = 0$,

所以 $(\cos C - \sqrt{3}\sin C)\cos A - \cos(A + C) = 0$,

化简得 $\sin A \sin C = \sqrt{3} \sin C \cos A$,

因为 $\sin C > 0$,所以 $\tan A = \sqrt{3}$,

由 A 为三角形内角得 $A=\frac{\pi}{3}$;

$$(2) S_{\triangle ABC} = \frac{\sqrt{3}}{4}b,$$

由正弦定理得
$$b = \frac{c sinB}{sinC} = \frac{sin(\frac{2\pi}{3} - C)}{sinC} = \frac{\frac{1}{2} sinC + \frac{\sqrt{3}}{2} cosC}{sinC} = \frac{1}{2} + \frac{\sqrt{3}}{2 tanC}$$

由题意得
$$\left\{ \begin{array}{l} 0 < C < \frac{\pi}{2} \\ 0 < \frac{2\pi}{3} - C < \frac{\pi}{2} \end{array} \right.$$
 解得 $\frac{\pi}{6} < C < \frac{\pi}{2}$,

所以 $\tan C > \frac{\sqrt{3}}{3}$,

故
$$\frac{1}{2}$$
 < b < 2,

从而
$$\frac{\sqrt{3}}{8}$$
 $<$ $S_{\triangle ABC}$ $<$ $\frac{\sqrt{3}}{2}$,

故 $\triangle ABC$ 面积的取值范围 $(\frac{\sqrt{3}}{8}, \frac{\sqrt{3}}{2})$.

61. 【解析】解: (1) 方案一: 条件①:

已知:
$$\sqrt{3}$$
sinC+cosC= $\frac{b+c}{a}$,

整理得:
$$\sqrt{3}$$
sinC+cosC= $\frac{\sin B + \sin C}{\sin A}$,

所以√3sinCsinA+cosCsinA=sin(A+C)+sin(,

化简得: (√3sinA-cosA)sinC=sin(,

所以√3sinA-cosA=1,

故 sin (
$$A$$
-30°) = $\frac{1}{2}$,

由于 0° <A<180°,

所以 A=60°.

所以 ZOAC= ZABO,

在
$$\triangle AB0$$
中, $\frac{A0}{\sin \angle AB0} = \frac{3}{\sin 120^{\circ}}$,

所以 A0=2√3sin∠ABO,

在
$$\triangle ACO$$
中, $\frac{1}{\sin 150^{\circ}} = \frac{AO}{\sin \angle ACO} = \frac{AO}{\sin (30^{\circ} - \angle ABO)}$,

所以 $AO=2\sin(30^\circ - \angle ABO) = 2\sqrt{3}\sin\angle ABO$,

整理得: cos∠ABO=3√3sin∠ABO,

故
$$tan \angle AB0 = \frac{\sqrt{3}}{9}$$
.

方案二: 选②时, ② $\sin^2 B + \sin^2 C - \sin^2 A = \sin B \sin C$,

所以 $b^2+c^2-a^2=bc$,

$$\text{所以}_{\text{cosA}} = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}$$
, 潍坊高中数学

由于 0° <A<180°,

所以 A=60°,

(2) 由于 \(\textit{OAC}\textit \textit{OAB} = 60\cappa \) , \(\textit{OAB}\textit \textit{ABO} = 180\cappa \) - 120\cappa = 60\cappa \) ,

所以 $\angle OAC = \angle ABO$,

在 $\triangle AB0$ 中, $\frac{A0}{\sin \angle AB0} = \frac{3}{\sin 120^{\circ}}$,

所以 AO=2√3sin∠ABO,

在 $\triangle ACO$ 中, $\frac{1}{\sin 150^{\circ}} = \frac{AO}{\sin \angle ACO} = \frac{AO}{\sin (30^{\circ} - \angle ABO)}$,

所以 $AO=2\sin(30^{\circ}-\angle ABO)=2\sqrt{3}\sin\angle ABO$,整理得: $\cos\angle ABO=3\sqrt{3}\sin\angle ABO$,

故tan $\angle AB0 = \frac{\sqrt{3}}{9}$.

方案三: 选条件③, $2\cos A$ ($c\cos B+b\cos C$) = a,

整理得: $2\cos A \left(\sin C\cos B + \sin B\cos C\right) = \sin A$,

所以 $2\cos A\sin A = \sin A$,整理得: $\cos A = \frac{1}{2}$,

由于 0° <A<180°,

所以 A=60°.

(2) 由于 \(\angle OAC + \angle OAB = 60^\circ\) , \(\angle OAB + \angle ABO = 180^\circ\) - 120^\circ\ = 60^\circ\) ,

所以 \(\alpha OAC = \(\alpha ABO \),

在 $\triangle ABO$ 中, $\frac{AO}{\sin \angle ABO} = \frac{3}{\sin 120}$,

所以 A0=2√3sin∠ABO,

在 $\triangle ACO$ 中,

$$\frac{1}{\sin 150^{\circ}} = \frac{AO}{\sin \angle ACO} = \frac{AO}{\sin (30^{\circ} - \angle ABO)},$$

所以 $AO=2\sin(30^\circ - \angle ABO) = 2\sqrt{3}\sin\angle ABO$,

整理得: cos∠ABO=3√3sin∠ABO,

故
$$\tan$$
 \angle ABO = $\frac{\sqrt{3}}{9}$.

三角函数与解三角形 VFMATH