专题二 复数

一、单项选择

1. (潍坊一模 2) 已知复数 $z = \cos\theta + i\sin\theta$ (i 为虚数单位),则|z-1|的最大值为

B. $\sqrt{2}$

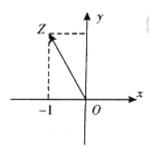
C. 2 D. 4

2. (日照一模 1) 复平面内表示复数z = i(a - i)(a < 0)的点位于

B. 第二象限 C. 第三象限

D. 第四象限

3. (菏泽一模 1) 若 z• (1+i) = 2i,则 z 的虚部是(


4. (泰安一模 2) 已知 i 是虚数单位,若复数 $z = \frac{5}{4+3i}$,则 z 的共轭复数 z = (

A. $\frac{4}{5} + \frac{3}{5}i$ B. $\frac{4}{5} - \frac{3}{5}i$ C. $-\frac{4}{5} + \frac{3}{5}i$

5. (德州一模 2) 复数 $z = \frac{1-2i}{1+i^3}$ 的共轭复数的虚部为(

A. $-\frac{1}{2}i$ B. $\frac{1}{2}i$

6. **(2021•临沂一模 2)** 如图,若向量 \vec{OZ} 对应的复数为 z,且 $|z|=\sqrt{5}$,则 $\frac{1}{z}=($

A. $\frac{1}{5} + \frac{2}{5}i$ B. $-\frac{1}{5} - \frac{2}{5}i$

7. (烟台一模 2) 若复数z = $\frac{3-i}{1-i}$,则|z| =

 $A.\sqrt{2}\,$

B.2

 $C.\sqrt{3}$ $D.\sqrt{5}$

8. (2021·淄博一模 2) 复数 *i* (2 - *i*) 的虚部为 (

A. - 2i

B. 2*i*

C. - 2

D. 2

9. (济宁一模 2) 已知复数 z 满足 $z \cdot i = 1 + i$ 则 z 在复平面内对应的点位于

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

10. (滨州一模 2) 棣莫弗公式[$r(\cos\theta+i\sin\theta)$] $^n=r^n(\cos n\theta, i\sin n\theta)$ (i 为虚数单位,r>0) 是由法国数学

家棣莫弗(1667 - 1754)发现的. 根据棣莫弗公式,在复平面内复数 $\left[2\left(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\right)\right]^{15}$ 对应的点位于(

- A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限
- **11.(青岛一模 4)**18 世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,|z|=|OZ|,也即复数 z 的模的几何意义为 z 对应的点 Z 到原点的距离,在复数平面内,复数 $z_0=\frac{a+2i}{1+i}$ (i 是虚数单位, $a\in R$)是纯虚数,其对应的点为 Z_0 ,Z 为曲线|z|=1上的动点,则 Z_0 与 Z 之间的最小距离为()
- $A.\,\frac{1}{2}$
- B.1
- $C.\frac{3}{2}$
- D.2

二、多项选择

- **12. (聊城一模 9)** 若 $m \in \mathbb{R}$,则复数 $\frac{m+i}{1-i}$ 在复平面内所对应的点可能在
- A. 第一象限
- B. 第二象限
- C. 第三象限

VEM Sth. William In the second

D. 第四象限

潍坊高中数学

三、填空

13. (济南一模 13) 已知复数 $z=\frac{2+i}{-i}$ (其中 i 为虚数单位),则zi的值为_____.

复数

答室解析

- 一、单项选择
- 1.【答案】C

【解析】
$$|z-1| = |\cos \theta - 1 + i\sin \theta| = \sqrt{(\cos \theta - 1)^2 + \sin^2 \theta} = \sqrt{2 - 2\cos \theta} \le 2$$
,故选 C.

2. 【答案】D

【解析】
$$z = i(a-i) = -i^2 + ai = 1 + ai$$
, 又 $a < 0$, 故选 D.

3.【答案】B

【解析】因为
$$z$$
• $(1+i) = 2i$

所以
$$z = \frac{2i}{1+i} = \frac{2i(1-i)}{(1+i)(1-i)} = i(1-i) = 1+i$$
,

4.【答案】A

故 z 的虚部是 1.
故选:
$$B$$
.
【答案】A
【解析】 复数 $z = \frac{5}{4+3i} = \frac{5(4-3i)}{(4+3i)(4-3i)} = \frac{4}{5} - \frac{3}{5}i$,
∴ z 的共轭复数 $z = \frac{4}{5} + \frac{3}{5}i$,
故选: A .
【答案】D

$$\therefore z$$
 的共轭复数 $\frac{1}{z} = \frac{4}{5} + \frac{3}{5}i$

故选: A.

5.【答案】D

【解析】
$$z = \frac{1-2i}{1+i^3} = \frac{1-2i}{1-i} = \frac{(1-2i)(1+i)}{(1-i)(1+i)} = \frac{3}{2} - \frac{1}{2}i,$$

$$\therefore z = \frac{3}{2} + \frac{1}{2}i,$$

$$\therefore 2 \pm \frac{1-2i}{1+i^3}$$
的共轭复数的虚部为 $\frac{1}{2}$,
bb.
【答案】D
【解答】根据图形可设 $z = -1+bi$, $b > 0$,

$$\therefore \overline{z} = \frac{3}{2} + \frac{1}{2}i,$$

∴复数
$$z = \frac{1-2i}{1+i}$$
的共轭复数的虚部为 $\frac{1}{2}$,

故选: D.

6. 【答案】D

【解答】根据图形可设 z= - 1+bi,b>0,

因为
$$|z| = \sqrt{5}$$
,所以 $\sqrt{(-1)^2 + b^2} = \sqrt{5}$,解得 $b = 2$,

所以
$$z=-1+2i$$
,则 $\overline{z}=-1-2i$,

所以
$$\frac{1}{z} = \frac{1}{-1-2i} = \frac{-1+2i}{(-1-2i)(-1+2i)} = \frac{-1+2i}{5} = -\frac{1}{5} + \frac{2}{5}i.$$

故选: D.

7.【答案】D

【答案】D
【解析】方法一:
$$z = \frac{3-i}{1-i} = \frac{(3-i)(1+i)}{2} = \frac{4+2i}{2} = 2+i$$
,所以 $|z| = \sqrt{4+1} = \sqrt{5}$;

方法二: $|z| = \left|\frac{3-i}{1-i}\right| = \frac{|3-i|}{|1-i|} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}$,故选 D

8.【答案】D

【解答】复数 i(2-i) = 1+2i 的虚部为 2, 故选: D.

9.【答案】D

【解析】
$$z = \frac{1+i}{i} = \frac{-i^2+i}{i} = 1-i$$
, 所以对应的点为(1,-1), 位于第四象限, 故选 D

10.【答案】A

【解析】由题意得,
$$\left[2\left(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\right)\right]^{15}=2^{15}\left(\cos\frac{15\pi}{7}+i\sin\frac{15\pi}{7}\right)=2^{15}\left(\cos\frac{\pi}{7}+i\sin\frac{\pi}{7}\right)$$
,其对应的点位于第一象限.

故选: A.

11.【答案】B

【解析】
$$z_0 = \frac{a+2i}{1+i} = \frac{(a+2i)(1-i)}{2} = \frac{(a+2)+(2-a)i}{2}$$
,因为 z_0 为纯虚数,所以 a=-2, $z_0 = 2i$, Z_0 点坐标为(0,2),设 z=x+yi,则由|z|=1,得 $x^2+y^2=1$ 表示以(0,0)为圆心,1 为半径的圆,因此 Z_0 与 Z 的最小距离为 1,故选 B。

- 二、多项选择
- 12.【答案】ABC
- 三、填空
- 13.【答案】√5

12. 【答案】ABC
三、填空
13. 【答案】
$$\sqrt{5}$$

【解析】 $|z| = \left|\frac{2+i}{-i}\right| = \frac{|2+i|}{|-i|} = \frac{\sqrt{5}}{1} = \sqrt{5}$

复数