专题二 复数

_ ,	单项选	择题
•	T-7XX	± J → NC3

1.	(2021 济宁二模 2)	已知 $(2-i)\cdot z=i$,	i 为虚数单位,则 z	= ()
	A. $\frac{\sqrt{5}}{5}$	B. 1	C. 2	D. $\sqrt{5}$
2.	(2021 泰安二模 2)	若复数 z 满足(3+4 i)	z = 4 - 3i ,则 z 的虚	注部为 ()
	A. $\frac{4}{5}$	B4	C. $-\frac{4}{5}$	D. 4
3.	(2021 省实验中学二	二 模 2) 已知复数 $z=(a)$	$a-3i$) (3+2 i) ($a \in \mathbb{R}$)的实部与虚部的和为 7,则 a 的值为
	()			
	A. 1	В. 0	C. 2	D 2
4.	(2021 日照二模 2)	若复数 z 满足 iz=2+3.	i,则 z 的实部与虚部之	之和为 ()
	A 1	B. 1	C 2	D. 3
5.	(2021 潍坊三模 2)	设复数 z_1 , z_2 在复平面	可内的对应点关于虚轴对	対称, $z_1=2+i$,则 $z_1z_2=$
	A. – 5	В. 5	C 4+ i	D 4 - i
6.	(2021 青岛三模 2)	z(1+i) = 2i(i为虚弦	数单位),则复数 z 对	应的点在 ()
	A. 第一象限	B. 第二象限	C. 第三象限	D. 第四象限
7.	(2021 潍坊四县 5 月	月联考 2)已知复数 z= <mark>1</mark> 2	$+\frac{\sqrt{2}}{2}$ i (i 为虚数单位	z),则
	A. $\frac{\sqrt{3}}{2}$	B. $\frac{3}{4}$	C. $\frac{\sqrt{11}}{2}$	D. $\frac{1}{4}$
8.	(2021 菏泽二模 2)	若复数 $z = 1 - i$,则 $ z $	$ z^2 - 2z = ($)	
	A. 0 B. 2	C. 4 D. 6		
9.		设 i 为虚数单位,则复		
	<u>3</u>	$\mathbf{p} = \frac{3}{2}$	9 (19)的877月時	D _ 9

A. $\frac{3}{2}$ B. $-\frac{3}{2}$ 维**扩言中数学** D. $-\frac{7}{2}$ 10. (2021 济南二模 1) 设复数 $z=\frac{2\mathbf{i}}{1+\mathbf{i}}$ (其中 i 为虚数单位),则复数 z 在复平面内对应的点所在的象限

为()

- A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

11. (2021 淄博二模 2) 若复数 $\bar{z} = \frac{1-2i}{i}$ (i 为虚数单位),则 |z| = ().

复数 **VFMATH**

A. $\sqrt{5}$	В. 2	C. $\sqrt{3}$	D. 1	
12. (2021 烟台适)	<u>应性练习一 2</u>)已知复数	$z=\frac{2}{1-i}$,则 \overline{z} 在复平面	内对应的点位于()	
A. 第一象限	B. 第二象限	C. 第三象限	D. 第四象限	
13.(2021 烟台三村	奠2)若复数 $z = \frac{1}{2} - \cos$	θ + $i\sin\theta$ 表示的点在	第三象限,则 $ heta$ 的取值范围为()
A. $\left(2k\pi-\frac{\pi}{3}, \frac{\pi}{3}\right)$	$2k\pi + \frac{\pi}{3}\bigg) \left(k \in \mathbf{Z}\right)$	B. $\left(2k\pi-\right)$	$(\frac{\pi}{3}, 2k\pi)$ $(k \in \mathbf{Z})$	
$C. \left(2k\pi - \frac{2\pi}{3}\right)$	$,2k\pi+\frac{\pi}{3}\bigg)\Big(k\in\mathbf{Z}\Big)$	D. $\left(2k\pi-\right)$	$\left(\frac{2\pi}{3}, 2k\pi\right) \left(k \in \mathbf{Z}\right)$	
14. (2021 烟台适)	应性练习二 2)已知复数	z 满足 $ z-1-i \leqslant 1$,	则 z 的最小值为()	
A. 1	B. $\sqrt{2}-1$	C. $\sqrt{2}$	D. $\sqrt{2}+1$	
15. (2021 日照三楼	(3)在复平面内,复数6+	5 <i>i</i> 与 - 3+4 <i>i</i> 对应向量	\overrightarrow{OA} 与 \overrightarrow{OB} ,则向量 \overrightarrow{AB} 对应的复数是(()
A 1+9 <i>i</i>	B. 9+ <i>i</i>	C9- <i>i</i>	D. 9 - <i>i</i>	
16.(2021 聊城二档	莫 2)已知复数 z _i = - 2+.	$i, z_2 = \frac{z_1}{i}, 在复平面$,复数 z₁和 z₂所对应的两点之间	们的距离
是 ()				
A. $\sqrt{5}$	B. $\sqrt{10}$	C. 5	D. 10	
17. (2021 聊城三村		为虚数单位,若 $\frac{a-3i}{2+4i}$	为实数,则 a 的值为()	
A. $\frac{3}{2}$	B. $\frac{2}{3}$	C. $-\frac{2}{3}$	D. $-\frac{3}{2}$	
18. (2021 枣庄二村	奠5)大数学家欧拉发现	了一个公式: e ^{ix} = cos	x+isinx, i 是虚数单位, e 为自然	《对数的
底数. 此公式被	皮誉为"数学中的天桥".	根据此公式, $(\cos \frac{\pi}{4})$	$+i\sin\frac{\pi}{4})^{2022} =$	
(注:底数是]	E实数的实数指数幂的运	算律适用于复数指数零	· 『的运算》	
A. 1	В1	C. 1 (1910) (187	D i	
19. (2021 潍坊二村	奠2)在复数范围内,也	知力,有为实数,私有	是关于 x 的方程 $x^2+px+q=0$ 的一个	`根,则
p+q= ()				
A. 2	B. 1	C. 0	D 1	
20. (2021 淄博三村	糞5) 己知 z∈C, 且 z-	i =1, i 为虚数单位	,则 z-1 的最大值是()	
A. 2	B. $\sqrt{2} + 1$	C. $\sqrt{2} - 1$	D. $\sqrt{2}$	

复数 VFMATH

二、多项选择题

- 21. (2021 青岛二模 9)已知复数 $z=\sqrt{3}+i$ (i 为虚数单位), \overline{z} 为 z 的共轭复数,若复数 $z_0=\frac{\overline{z}}{z}$,则下列结论正确的是(
 - A. zo 在复平面内对应的点位于第四象限
- B. $|z_0| = 1$

C. z_0 的实部为 $\frac{1}{2}$

- D. z_0 的虚部为 $\frac{\sqrt{3}}{2}$
- 22. (2021 德州二模 9) 已知复数 $z_1 = \frac{2}{-1+i}$ (i为虚数单位),下列说法正确的是().
 - A. z_1 对应的点在第三象限
 - B. z_1 的虚部为 -1
 - C. $z_1^4 = 4$
 - D. 满足 $|z| = |z_1|$ 的复数 z 对应的点在以原点为圆心,半径为 2 的圆上
- 23. (2021 临沂二模 10) 1487 年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式: $e^{i^{\theta}}$ = $\cos\theta + i\sin\theta$,这个公式在复变函数中有非常重要的地位,即著名的"欧拉公式",被誉为"数学中的天桥",据欧拉公式,则(
 - A. $e^{-\frac{\pi i}{2}} = i$

B. $|e^{-\frac{\pi i}{4}}| = 1$

C. $(\frac{1-\sqrt{3}i}{2})^{-3}=1$

D. $\cos \frac{\pi}{4} = \frac{e^{\frac{\pi i}{4}} + e^{-\frac{\pi i}{4}}}{2}$

复数 VFMATH

专题二 复数参考答案

一、单项选择题

1. 【答案】 A

【解析】::
$$(2-i)\cdot z=i$$
 ,所以, $z=\frac{i}{2-i}=\frac{i(2+i)}{(2-i)(2+i)}=\frac{2i-1}{5}=-\frac{1}{5}+\frac{2}{5}i$,

因此,
$$|z| = \sqrt{(-\frac{1}{5})^2 + (\frac{2}{5})^2} = \frac{\sqrt{5}}{5}$$
.

故答案为: A.

2. 【答案】C

【解析】由 (3+4*i*)
$$z=|4-3i|$$
,得 $z=\frac{5}{3+4i}=\frac{5(3-4i)}{(3+4i)(3-4i)}=\frac{3}{5}-\frac{4}{5}i$,

$$\therefore z$$
的虚部为 - $\frac{4}{5}$.

故选: C.

3. 【答案】C

【解析】
$$z = (a-3i) (3+2i) = 3a+2ai-9i-6i^2=3a+6+(2a-9) i$$
,

所以复数 z的实部与虚部分别为 3a+6, 2a-9,

则 3a+6+2a-9=7,得 a=2.

故选: C.

4. 【答案】B

【解析】:复数
$$z$$
满足 $iz=2+3i$,则 $z=\frac{2+3i}{i}=3-2i$,故 z 的实部与虚部之和 $3+(-2)=1$,

故选: B.

5. 【答案】A

【解析】由题意,得 $z_2 = -2 + i$,则 $z_1 z_2 = (2 + i)(-2 + i) = -5$,故选 A.

6. 【答案】A

【解析】(1+i) z=2i(i为虚数单位维坊高中数学

$$\therefore_{Z} = \frac{2i}{1+i} = \frac{2i(1-i)}{(1+i)(1-i)} = i+1,$$

则 z 在复平面内对应的点(1,1)在第一象限.

故选: A.

7. 【答案】A

复数 VFMATH

【解析】复数
$$z=\frac{1}{2}+\frac{\sqrt{2}}{2}i$$
 (*i* 为虚数单位),

$$\therefore \overline{z} - 1 = -\frac{1}{2} - \frac{\sqrt{2}}{2}i,$$

$$\mathbb{M}|\overline{z} - 1| = \sqrt{(-\frac{1}{2})^2 + (-\frac{\sqrt{2}}{2})^2} = \frac{\sqrt{3}}{2},$$

故选: A.

8. 【答案】B

【解析】由题意可得: z²=(1-i)²=-2i,则 z²-2z=(1-i)²-2(1-i)=-2i+2i=-2,所以|z²-2z|=|-2|=2.故选

9. 【答案】B

【解析】
$$z = \frac{|2-\sqrt{5}i|}{1+i} = \frac{\sqrt{2^2+(-\sqrt{5})^2}}{1+i} = \frac{3}{1+i} = \frac{3(1-i)}{(1+i)(1-i)} = \frac{3}{2} - \frac{3}{2}i,$$

∴复数 z 的虚部为 $-\frac{3}{2}$.

故选: B.

10. 【答案】A

【解析】::
$$z = \frac{2i}{1+i} = \frac{2i(1-i)}{(1+i)(1-i)} = 1+i$$
,

 \therefore 复数 z 所对应的点的坐标为 (1, 1) ,位于第一象限.

故选: A.

11. 【答案】 A

【解析】
$$|z| = |\bar{z}| = |\frac{1-2i}{i}| = \frac{|1-2i|}{|i|} = \sqrt{5}$$
.

或者
$$|z| = |\bar{z}| = |\frac{(1-2i)i}{i^2}| = |-2-i| = \sqrt{5}$$

故答案为: A

12. 【答案】D

【解析】
$$z = \frac{2}{1-i} = \frac{2(1+i)}{(1-i)(1+i)} = 1+i$$
,

则z=1-i在复平面内对应的点(1,维拉豪中激发学

故选: D.

13. 【答案】B

【解析】:复数 $z = \frac{1}{2} - \cos \theta + i \sin \theta$ 表示的点在第三象限,

复数 VFMATH

$$\therefore \begin{cases} \frac{1}{2} - \cos \theta < 0 \\ \sin \theta < 0 \end{cases}, \quad \text{if } \exists 2k\pi - \frac{\pi}{3} < \theta < 2k\pi, k \in \mathbb{Z}.$$

故选: B.

14. 【答案】B

【解析】::复数 z满足|z-1-i|=1,

 \therefore 点 z对应的点在以(1,1)为圆心,1为半径的圆上以及圆内,

要求 | z | 的最小值,只要找出圆上的点到原点距离最小的点即可,

连接圆心与原点,长度是 $\sqrt{2}$,

最短距离要减去半径,即 $\sqrt{2}-1$.

故选: B.

15. 【答案】C

【解析】由题意,
$$\vec{OA} = (6, 5)$$
, $\vec{OB} = (-3, 4)$,

则
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (-9, -1),$$

∴向量 \overrightarrow{AB} 对应的复数是 - 9 - i.

故选: C.

16. 【答案】B

【解析】
$$z_1 = -2+i$$
, $z_2 = \frac{z_1}{i} = \frac{-2+i}{i} = \frac{(-2+i)(-i)}{-i^2} = -i^2 + 2i = 1 + 2i$,

∴复数 Z₁和 Z₂所对应的两点的坐标分别为(-2,1),(1,2),

两点间的距离为
$$d=\sqrt{(-2-1)^2+(1-2)^2}=\sqrt{10}$$

故选: B.

17. 【答案】 D

【解析】
$$\frac{a-3i}{2+4i} = \frac{(a-3i)(2-4i)}{(2+4i)(2-4i)} = \frac{2a-12-(4a+6)i}{20}$$
,若其为实数,

则
$$4a+6=0$$
 ,即 $a=-\frac{3}{2}$

故答案为: D

18. 【答案】D

复数 VFMATH

【解析】
$$(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})^{2022} = [(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)^2]^{1011} = i^{1011} = i^3 = -i$$
,故选 D.

19. 【答案】C

【解析】因为 1 - i 是关于 x 的方程 $x^2+px+q=0$ 的一个根,

则 1+i 是方程 $x^2+px+q=0$ 的另一个根,

由韦达定理可得 1+i+(1-i)=-p, (1+i) (1-i)=q,

解得 p=-2, q=2,

所以 p+q=0.

故选: C.

20. 【答案】B

【解析】由|z-i|=1,z表示的轨迹为以 C(0,1) 为圆心,1 为半径的圆上.

设 P(1,0),

则|z-1|的最大值= $|CP|+1=\sqrt{2}+1$.

故选: B.

二、多项选择题

21. 【答案】ABC

【解析】
$$: z = \sqrt{3} + i$$
,

$$\therefore z_0 = \frac{\overline{z}}{z} = \frac{\sqrt{3} - i}{\sqrt{3} + i} = \frac{(\sqrt{3} - i)^2}{(\sqrt{3} + i)(\sqrt{3} - i)}$$

$$=\frac{3-2\sqrt{3}i+i^2}{(\sqrt{3})^2+1^2}=\frac{2-2\sqrt{3}i}{4}=\frac{1}{2}-\frac{\sqrt{3}}{2}i,$$

则 忍在复平面内对应的点位于第四象限,故 A 正确;

$$|z_0| = \sqrt{(\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2} = 1$$
, $B \to B$

 z_0 的实部为 $\frac{1}{2}$, 故 C正确;

 z_0 的虚部为 $-\frac{\sqrt{3}}{2}$, 故 D错误.

故选: ABC.

22. 【答案】 A, B

【解析】由题意,复数
$$z_1 = \frac{2}{-1+i} = \frac{2(-1-i)}{(-1+i)(-1-i)} = -1-i$$
 ,

所以复数 z_1 在复平面内对应的点 (-1,-1) 位于第三象限,所以 A 符合题意;

复数 VFMATH

由 $z_1 = -1 - i$,可得复数的虚部为 -1 ,所以 B 符合题意;

由
$$z_1$$
 $^4 = (-1-i)^4 = [(-1-i)^2]^2 = (2i)^2 = -4$,所以 C 不正确;

所以满足 $|z|=|z_1|$ 的复数 z 对应的点在以原点为圆心,半径为 $\sqrt{2}$ 的圆上,所以 D 不正确. 故答案为: AB.

23. 【答案】ABD

【解析】解: $A.e^{\frac{\pi i}{2}} = \cos{\frac{\pi}{2}} + i\sin{\frac{\pi}{2}} = i$, 正确;

$$C. \ \ \because \frac{1-\sqrt{3}i}{2} = cos(-\frac{\pi}{3}) + i sin(-\frac{\pi}{3}), \ \ \therefore (\frac{1-\sqrt{3}i}{2})^3 = cos(-\frac{3\pi}{3}) + i sin(-\frac{3\pi}{3}) = -1, \ \ \text{不正确};$$

D. 右边=
$$\frac{\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}} + \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})}{2} = \cos{\frac{\pi}{4}}$$
, 正确.

故选: ABD.

复数 VFMATH