平面解析几何

- 一、单项选择
- **1.** (2021•淄博一模 3) 圆 $x^2+y^2+2x-8=0$ 截直线 y=kx+1 ($k∈ \mathbf{R}$) 所得的最短弦长为(

- A. $2\sqrt{7}$ B. $2\sqrt{2}$ C. $4\sqrt{3}$ D. 2 2. (青岛一模 3) 已知双曲线 $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$ 的一条渐近线的倾斜角为 $\frac{\pi}{3}$,则该双曲线的离心率为()

- A. $\frac{1}{2}$ B. $\frac{3}{2}$ C. $\frac{2\sqrt{3}}{3}$
- **3. (秦安一模 5)** 已知直线 x+y+2=0 与圆 $x^2+y^2+2x-2y+a=0$ 有公共点,则实数 a 的取值范围为(

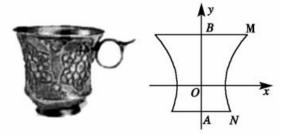
- A. $(-\infty, 0]$ B. $[0, +\infty)$ C. [0, 2) D. $(-\infty, 2)$
- **4. (烟台一模 4)** 已知 F 为抛物线 $C:y^2=8x$ 的焦点,直线 1 与 C 交于 A, B 两点,若 AB 中点的横坐标为 4, 则|AF|+|BF|=
- A.8
- B.10
- C.12 D.16
- 5. $(2021 \cdot$ 淄博一模 5) 实轴长与焦距之比为黄金数 $\frac{\sqrt{5}-1}{2}$ 的双曲线叫黄金双曲线. 若双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0, b>0) 是黄金双曲线,则 $\frac{a^2}{b^2}$ 等于(

- A. $\frac{\sqrt{5}-1}{2}$ B. $\frac{3-\sqrt{5}}{2}$ C. $\frac{\sqrt{5}-2}{2}$ D. $\frac{9-4\sqrt{5}}{4}$
- 6. (济南一模 5) 已知双曲线 $\frac{x^2}{m+1} \frac{y^2}{m} = 1 \text{ (m>0)}$ 的渐近线方程为 $x \pm \sqrt{3}$ y=0,则 m=
- A. $\frac{1}{2}$

- B. $\sqrt{3}$ -1
- C. $\frac{\sqrt{3}+1}{2}$
- D.2

- 7. (聊城一模 4) 如图为陕西博物馆收藏的国宝一唐•金筐宝 钿团花纹金杯, 杯身曲线内收, 玲珑娇美, 巧夺天工, 是唐 代金银细作的典范之作. 该杯的主体部分可以近似看作是双
- 曲 线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的 右 支 与 直 线

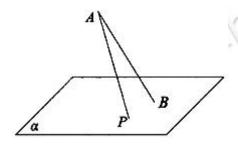
x = 0, y = 4, y = -2 围成的曲边四边形 ABMN 绕 y 轴旋转



一周得到的几何体,若该金杯主体部分的上口外直径为 $\frac{10\sqrt{3}}{3}$,下底外直径为 $\frac{2\sqrt{39}}{3}$,则双曲线 C 的离心 率为

潍坊高中数学 平面解析几何

- A. $\sqrt{2}$
- B. 2
- C. $\sqrt{3}$
- D. 3
- 8. (滨州一模 5) 如图,斜线段 AB 与平面 α 所成的角为 $\frac{\pi}{4}$,B 为斜足. 平面 α 上的动点 P 满足 $\angle PAB=$ BE TO TO $\frac{\pi}{\epsilon}$,则点P的轨迹为()



A. 圆

C. 双曲线的一部分

- 9. (聊城一模 7) 已知圆 $C: x^2 + y^2 = 1$, 直线 l: x + y + 2 = 0, P 为直线 l 上的动点, 过点 P 作圆 C 的两条切 线,切点分别为 A, B,则直线 AB 过定点
- A. $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ B. $\left(-1, -1\right)$ C. $\left(-\frac{1}{2}, \frac{1}{2}\right)$ D. $\left(\frac{1}{2}, -\frac{1}{2}\right)$

- **10.** (济宁一模 8) 已知 F_1 、 F_2 是双曲线 E: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的左、右交点,点 M 是双曲线 E 上的任意 一点(不是顶点),过 F_1 作 $\angle F_1MF_2$ 角平分线的垂线,垂足为N,0是坐标原点.若 $ON = \frac{|F_1F_2|}{4}$,则双曲线E的 渐近线方程为

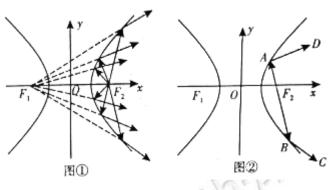
A.
$$y = \pm \frac{\sqrt{3}}{3} x$$

B.
$$y = \pm \frac{\sqrt{2}}{2}x$$
 C. $y = \pm \sqrt{2}x$ D. $y = \pm \sqrt{3}x$

C.
$$y = \pm \sqrt{2x}$$

D.
$$y = \pm \sqrt{3}x$$

11. (2021•临沂一模 8) 双曲线的光学性质为:如图①,从双曲线右焦点 F_2 发出的光线经双曲线镜面反射, 反射光线的反向延长线经过左焦点 F_1 .我国首先研制成功的"双曲线新闻灯",就是利用了双曲线的这个 光学性质. 某"双曲线新闻灯"的轴截面是双曲线一部分,如图②,其方程为 $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$, F_1 , F_2 为其 左、右焦点, 若从右焦点 F_2 发出的光线经双曲线上的点 A 和点 B 反射后, 满足 $\angle BAD = 90^\circ$, $\tan\angle ABC =$ $-\frac{3}{4}$,则该双曲线的离心率为(



- A. $\frac{\sqrt{5}}{2}$
- B. $\sqrt{5}$
- C. $\frac{\sqrt{10}}{2}$
- D. $\sqrt{10}$

二、多项选择

- **12. (潍坊一模 9)** 已知双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{9} = 1$ (a > 0)的左,右焦点分别为 F_1 , F_2 ,一条渐近线方程为 $y = \frac{3}{4}x$, P 为 C 上一点,则以下说法正确的是
 - A. C 的实轴长为 8 B. C 的离心率为 $\frac{5}{3}$ C. $|PF_1| |PF_2| = 8$ D. C 的焦距为 10
- **13. (青岛一模 9)** 关于圆 C: $x^2 + y^2 kx + 2y + \frac{1}{4}k^2 k + 1 = 0$,下列说法正确的是(
- A.k 的取值范围是 k > 0
- B.若 k=4,过 M(3,4)的直线与圆 C 相交所得弦长为 $2\sqrt{3}$, 其方程为 12x-5y-16=0
- D.若 k = 4 , m > 0, n > 0 , 直线 mx ny 1 = 0 恒过圆 C 的圆心,则 $\frac{1}{m} + \frac{2}{n} \ge 8$ 恒成立。
- **14.** (滨州一模 9) 已知椭圆 $M: \frac{\mathbf{x}^2}{25} + \frac{\mathbf{y}^2}{20} = 1$ 的左、右焦点分别是 F_1 , F_2 , 左右顶点分别是 A_1 , A_2 , 点 P 是

椭圆上异于 A_1 , A_2 的任意一点,则下列说法正确的是(

- A. $|PF_1| + |PF_2| = 5$
- B. 直线 PA_1 与直线 PA_2 的斜率之积为 $-\frac{4}{5}$
- C. 存在点 *P* 满足∠*F*₁*PF*₂=90°
- D. 若 $\triangle F_1 P F_2$ 的面积为 $4\sqrt{5}$,则点 P 的横坐标为 $\pm \sqrt{5}$
- **15. (烟台一模 10)** 已知双曲线 $C: \frac{x^2}{m} \frac{y^2}{m+7} = 1 (m \in R)$ 得一条渐近线方程为 4x-3y=0,则

 $A.(\sqrt{7},0)$ 为 C 得一个焦点

B.双曲线 C 的离心率为 $\frac{5}{3}$

C.过点(5,0)作直线与 C 交于 A, B 两点,则满足|AB|=15 的直线有且只有两条

D.设 A,B,M 为 C 上三点且 A,B 关于原点对称,则 MA,MB 斜率存在时其乘积为 $\frac{16}{9}$

16. (德州一模 11) 已知双曲线 $C: \frac{\mathbf{x}^2}{\mathbf{a}^2} - \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1 \ (a>0, b>0)$,A、B 分别为双曲线的左,右顶点, F_1 、 F_2

为左、右焦点, $|F_1F_2|=2c$,且 a,b,c 成等比数列,点 P 是双曲线 C 的右支上异于点 B 的任意一点,记 PA,PB 的斜率分别为 k_1 , k_2 ,则下列说法正确的是(

- A. 当 $PF_2 \perp x$ 轴时, $\angle PF_1F_2 = 30^\circ$
- B. 双曲线的离心率 $e = \frac{1+\sqrt{5}}{2}$
- C. $k_1 k_2$ 为定值 $\frac{1+\sqrt{5}}{2}$
- D. 若 I 为 $\triangle PF_1F_2$ 的内心,满足 $S^{\triangle IPF_1} = S^{\triangle IPF_2} + xS^{\triangle IF_1}F_2$ $(x \in \mathbb{R})$,则 $x = \frac{\sqrt{5}-1}{2}$
- **17.(济南一模 12)**画法几何的创始人一法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆。已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b>0)的离心率为 $\frac{\sqrt{2}}{2}$, F_1,F_2 分别为椭圆的左、右焦点,A,B为椭圆上两个动点.直线 l 的方程为 $bx+ay-a^2-b^2=0$.下列说法正确的是
- A.C 的蒙日圆的方程为 $x^2+y^2=3b$
- B.对直线 l 上任意点 P, $\overrightarrow{PA} \cdot \overrightarrow{PB} > 0$
- C.记点 A 到直线 l 的距离为 d,则 d- $|AF_2|$ 的最小值为 $\frac{4\sqrt{3}}{3}$ b
- D.若矩形 MNGH 的四条边均与 C 相切,则矩形 MNGH 面积的最大值为 $6b^2$
- 三、填空
- **18. (济宁一模 15)** 实数 x, y 满足 $x^2+(y-1)^2=1$, 则 $\sqrt{3}x+y$ 的取值范围是______.
- **19.** (**德州一模 14**) 已知抛物线 $C: y^2 = 4x$,点 $A \setminus B$ 在抛物线上,且分别位于 x 轴的上、下两侧,若 $\overrightarrow{OA} \cdot \overrightarrow{OB}$ = 5,则直线 AB 过定点_____.
- **20. (2021•淄博一模 14)** 若抛物线 $y^2 = 2px$ (p > 0) 上的点 A (x_0 , -2) 到焦点的距离是点 A 到 y 轴距离的 3 倍,则 p 等于______.
- **21.** (**烟台一模 15**) 已知点 A 为直线 l:y=3x 上一点,且 A 位于第一象限,点 B(10,0),以 AB 为直径的圆与 l 交于点 C(异于 A),若∠CBA≥60°,则点 A 的横坐标的取值范围为_____.
- **22.** (**聊城一模 14**) 已知抛物线 $C: y^2 = 2px(p>0)$ 的焦点为 F,A,B 是抛物线 C 上的两点,O 为坐标原

点, 若 A, F, B 三点共线, 且 $\overrightarrow{OA} \cdot \overrightarrow{OB} = -3$, 则 p = .

周长的取值范围为 (第一空 2 分,第二空 3 分)。

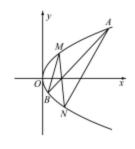
- **23.** (**潍坊一模 15**) 已知抛物线 C: $y^2 = 4x$ 的焦点为 F,准线为 l,点 P 在抛物线 C 上,PQ 垂直 l 于点 Q,QF 与 y 轴交于点 T,O 为坐标原点,且 |OT| = 2,则 $|PF| = ______$.
- **24.** (滨州一模 15) 已知双曲线 C: $\frac{\mathbf{x}^2}{\mathbf{a}^2} \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$ (a > 0, b > 0) 的左顶点为 A, 右焦点为 F, 以 F 为圆心的圆与双曲线 C 的一条渐近线相切于第一象限内的一点 B. 若直线 AB 的斜率为 $\frac{1}{2}$,则双曲线 C 的离心率为
- **25.** (**青岛一模 16**) 2021 年是中国传统的"牛"年,可以在平面坐标系中用抛物线与圆勾勒出牛的形象。已知 抛物线 $Z: x^2 = 4y$ 的焦点为 F,圆 $F: x^2 + (y-1)^2 = 4$ 与抛物线 Z 在第一象限的交点为 $P(m, \frac{m^2}{4})$,直线 l: x = t(0 < t < m) 与抛物线 Z 的交点为 A,直线 l 与圆 F 在第一象限的交点为 B,则 $m = ______;$ 三角形 FAB
- **26.** (**菏泽一模 15**) 在抛物线 $y^2 = 4x$ 上任取一点 A (不为原点),F 为抛物线的焦点,连接 AF 并延长交抛物线于另一点 B,过 A,B 分别作准线的垂线,垂足分别为 C,D. 记线段 CD 的中点为 T,则 $\triangle ATB$ 面积的最小值为_____.
- **27.** (**泰安一模 16**) 过抛物线 $C: y^2 = 2px (p>0)$ 的焦点 F 的直线 l, 交抛物线 C 的准线于点 A, 与抛物线 C 的一个交点为 B, 且 $\overrightarrow{AB} = k \overrightarrow{BF} (k \ge \sqrt{2})$,若 l 与双曲线 $\frac{\mathbf{x}^2}{\mathbf{a}^2} \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$ (a>0, b>0) 的一条渐近线垂直,则该双曲线离心率的取值范围是_____.
- **29.** (**日照一模 16**) 已知 F_1 , F_2 分别为双曲线 $C: \frac{x^2}{4} \frac{y^2}{12} = 1$ 的左、右焦点,E 为双曲线 C 的右顶点,过 F_2 的 直线与双曲线 C 的右支交于 A,B 两点(其中点 A 在第一象限),设 M, N分别为 Δ AF_1F_2 , Δ BF_1F_2 的内心,则 |ME| |NE| 的取值范围是______.

四、解答

30. (济南一模 20) 如图,A,B,M,N 为抛物线 $y^2=2x$ 上四个不同的点,直线 AB 与直线 MN 相交于点(1,0), 直线 AN 过点(2,0).

(1)记 A,B 的纵坐标分别为 ya,yB,求 ya·yB 的值;

(2)记直线 AN,BM 的斜率分别为 k_1,k_2 ,是否存在实数入,使得 k_2 = λk_1 ?若存在,求出 λ 的值;若不存在, 小作品。持持持 说明理由.

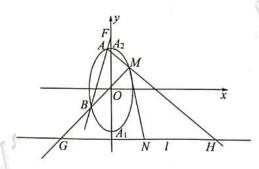


31. (滨州一模 21) 已知点 A(0, -1), B(0, 1), 动点 P满足 \overrightarrow{PB} \overrightarrow{AB} = \overrightarrow{PA} \overrightarrow{BA} . 记点 P 的轨迹为曲线 C.

(1) 求 C 的方程;

(2) 设D为直线y=-2上的动点,过D作C的两条切线,切点分别是E,F.证明:直线EF过定点.

32. (2021•淄博一模 21) 已知 A_1 , A_2 是椭圆 $E: \frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (a>b>0)长轴的两个端点,点 M(1, 2)在椭圆 E上, 直线 MA1, MA2的斜率之积等于-4.



(1) 求椭圆 E 的标准方程;

(2) 设 m>0, 直线 1 的方程为 y=-m, 若过点 F(0,m) 的直线与椭圆 E 相交于 A, B 两点,直线 MA, MB 与 l 的交点分 别为 H, G, 线段 GH 的中点为 N. 判断是否存在正数 m 使直线 MN 的斜率为定值,并说明理由,

潍坊高中数学 平面解析几何

33. (秦安一模 21) 已知椭圆 C: $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$ (a > b > 0) 的离心率为 $\frac{\sqrt{6}}{3}$, 短轴长为 $2\sqrt{2}$.

VEWSEN.F

- (1) 求椭圆C的方程;
- (2) 已知 A, B 是椭圆 C 上的两个不同的动点,以线段 AB 为直径的圆经过坐标原点 O. 是否存在以 O 为圆心的定圆恒与直线 AB 相切?若存在,求出定圆方程;若不存在,请说明理由.

- **34. (德州一模 21)** 已知椭圆 E: $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$ (a > b > 0) 的左、右焦点分别为 F_1 、 F_2 ,椭圆上的点到焦点 F_1 的距离的最小值为 $\sqrt{5}$ 1,以椭圆 E 的短轴为直径的圆过点(2,0).
 - (1) 求椭圆E的标准方程;
 - (2) 若过 F_2 的直线交椭圆 $E \pm A$ 、B 两点,过 F_1 的直线交椭圆 $E \pm C$,D 两点,且 $AB \perp CD$,求四边 形 ACBD 面积的取值范围.

35. (聊城一模 21) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 经过点 M(0, 3),离心率为 $\frac{\sqrt{2}}{2}$.

(1)求 C 的方程;

(2)直线 l: y = kx - 1 椭圆 C 相交于 A, B 两点,求 $|MA| \cdot |MB|$ 的最大值.

- **36. (青岛一模 21)** 在平面直角坐标系中,已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的离心率为 $\frac{\sqrt{3}}{2}$,右焦点为 F_2 ,上顶点为 A_2 ,点 P(a,b)到直线 F_2A_2 的距离等于 1.
- (1) 求椭圆 C 的标准方程;
- (2) 直线 l: y = kx + m(m > 0) 与椭圆 C 相交于 A,B 两点,D 为 AB 的中点,直线 DE,DF 分别与圆 $W: x^2 + (y 3m)^2 = m^2$ 相切于点 E,F。求 $\angle EWF$ 的最小值。

- **37. (烟台一模 21)** 已知 F_1,F_2 分别是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右焦点,A 为椭圆的上顶点, $\Delta A F_1 F_2$ 是面积为 4 的直角三角形.
- (1) 求椭圆 C 的方程;
- (2)设圆 $0: x^2 + y^2 = \frac{8}{3}$ 上任意一点 P 处的切线 l 交椭圆 C 于点 M,N,问: $\overrightarrow{PM} \cdot \overrightarrow{PN}$ 是否为定制?若是,求出此定制;若不是,说明理由.

- 38. (日照一模 21) 在平面直角坐标系中,0 为坐标原点,动点 G 到 $F_1(-\sqrt{3},0)$, $F_2(\sqrt{3},0)$ 两点的距离之和为 4.
 - (1) 试判断动点 G 的轨迹是什么曲线, 并求其轨迹方程 C:
 - (2) 已知直线 L: $y = k(x \sqrt{3})$ 与圆 F: $(x \sqrt{3})^2 + y^2 = \frac{1}{4}$ 交于 M、N 两点,与曲线 C 交于 P、Q 两点,

其中 M、P 在第一象限。d为原点 0 到直线 l 的距离,是否存在实数 k,使得 $T=(|NQ|-|MP|)\cdot d^2$ 取得最大值,若存在,求出 k;不存在,说明理由.

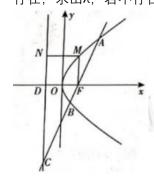
39. (**济宁一模 21**) 已知椭圆 C_1 : $\frac{\mathbf{x}^2}{2} + \frac{\mathbf{y}^2}{2} = 1$ (a > b > 0) 的离心率为 $\frac{\sqrt{3}}{2}$,椭圆 C_1 的上顶点与抛物线 C_1 :

 $x^2=2py$ (p>0) 的焦点 F 重合,且抛物线 C_2 经过点 P (2, 1) , O 为坐标原点.

- (1) 求椭圆 C_1 和抛物线 C_2 的标准方程;
- (2) 已知直线 l: y=kx+m 与抛物线 C_2 交于 A, B 两点,与椭圆 C_1 交于 C, D 两点,若直线 PF 平分 \angle APB,四边形 OCPD 能否为平行四边形?若能,求实数 m 的值;若不能,请说明理由. NEW SEL
- **40.** (**菏泽一模 21**) 已知椭圆 C_1 : $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$ ($\mathbf{a} > \mathbf{b} > 0$)的左、右焦点分别为 F_1 , F_2 , 点 $\mathbf{A}(\sqrt{3}, \frac{1}{2})$ 在 椭圆上; 直线 AF_1 交 y 轴于点 B,且 $\overrightarrow{AF_2} = -2\overrightarrow{OB}$,其中 O 为坐标原点.
 - (1) 求椭圆 C_1 的方程;
 - (2)直线 l 斜率存在,与椭圆 C_1 交于 D,E 两点,且与椭圆 C_2 : $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = \lambda$ (0< λ <<1)有公共点,求 $\triangle DOE$ 面积的最大值. 求 $\triangle DOE$ 面积的最大值.

潍坊高中数学 平面解析几何

- **41.** (2021•临沂一模 21) 如图,抛物线 $E:y^2 = 2px$ 的焦点为 F,四边形 DFMN 为正方形,点 M 在抛物线 E上,过焦点 F 的直线 I 交抛物线 E 于 A 、 B 两点,交直线 ND 于点 C。 (1)若 B 为线段 AC 的中点, 求直线 l 的斜率;
- _产分别. (2)若正方形 DFMN 的边长为 1,直线 MA,MB,MC 的斜率分别为 k_1,k_2,k_3 ,是否存在 λ 使得 $k_1+k_1=\lambda k_3$;若 存在, 求出\(\text{\chi}\), 若不存在, 请说明理由。



- th · 清洁·清洁 **42.** (**潍坊一模 22**) 在平面直角坐标系中, A_1 , A_2 两点的坐标分别为(-2,0),(2,0),直线 A_1 M, A_2 M 相 交于点 M 且它们的斜率之积是 $-\frac{3}{4}$, 记动点 M 的轨迹为曲线 E.
 - (1) 求曲线 E 的方程;
- (2) 过点 F(1, 0)作直线 l 交曲线 E + P, Q 两点,且点 P 位于 x 轴上方,记直线 A_1Q , A_2P 的斜率分 别为 k_1 , k_2 . ①证明: $\frac{k_1}{k_2}$ 为定值; ②设点 Q 关于x 轴的对称点为 Q_1 , 求 $\triangle PFQ_1$ 面积的最大值. 以为し

平面解析几何 专题十

一、单项选择

1.【答案】A

【分析】根据题意,由圆的方程分析圆心和半径,设圆的圆心为 C,由直线的方程分析可得直线恒过定 点(0,1),设M(0,1),由直线与圆的位置关系可得当MC与直线垂直时,圆截直线所得的弦长最短, 据此计算可得答案.

【解答】根据题意,圆 $x^2+y^2+2x-8==0$,即 $(x+1)^2+y^2=9$,以圆心为 (-1,0),半径 r=3, 设圆的圆心为C,

直线 y=kx+1,恒过定点(0,1),设 M(0,1),

当 MC 与直线 y=kx+1 垂直时,圆 $x^2+y^2+2x-8=0$ 截直线 y=kx+1 所得的弦长最短,

此时 $|MC| = \sqrt{2}$,

则截得的最短弦长为 $2\sqrt{r^2-|MC|^2}=2\sqrt{7}$,

故选: A.

2.【答案】C

【解析】双曲线焦点在 y 轴上,则双曲线的一条渐近线为y = $\frac{a}{b}x$,由倾斜角为 $\frac{\pi}{3}$,得 $\frac{a}{b} = \sqrt{3}$,离心率 $e = \frac{c}{a} = \sqrt{1 + \frac{b^2}{a^2}} = \frac{2\sqrt{3}}{3}$,故选 C.

3.【答案】A

【解析】依题意可知,直线与圆相交或相切.

圆 $x^2+y^2+2x-2y+a=0$ 即为 $(x+1)^2+(y-1)^2=2-a$.

由
$$\frac{|-1+1+2|}{\sqrt{2}}$$
 $\leq \sqrt{2-a}$,解得 $a \leq 0$.

∴实数 a 的取值范围为 $(-\infty, 0]$.

故选: A.

4.【答案】C

小流流流 【解析】由焦半径公式得, $|AF|=x_1+\frac{p}{2}=x_1+2$, $|BF|=x_2+\frac{p}{2}=x_2+2$, 所以 $|AF|+|BF|=x_1+x_2+4$, 因为 AB 中点横坐标为 4, 所以 x₁+x₂=8, 因此|AF|+|BF|=12, 故选 C。

5. 【答案】A

【分析】根据题中条件可知b = a的比值,再根据双曲线的性质,即可得到结果,

【解答】由题意可知 $\frac{2a}{2c} = \frac{\sqrt{5}-1}{2}$,

$$\therefore \frac{c}{a} = \frac{\sqrt{5}+1}{2},$$

$$\mathbb{H} \frac{c^2}{a^2} = \frac{a^2 + b^2}{a^2} = \frac{\sqrt{5} + 3}{2},$$

$$\therefore \frac{b^2}{a^2} = \frac{\sqrt{5}+1}{2},$$

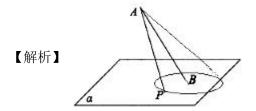
$$\therefore \frac{a^2}{h^2} = \frac{\sqrt{5}-1}{2},$$

故选: A.

6.【答案】A

y = 1【解析】由渐近线y = $\pm \frac{b}{a}x = \pm \frac{\sqrt{3}}{3}x$,所以 $\frac{b}{a} = \frac{\sqrt{3}}{3}$,则 $\frac{b^2}{a^2} = \frac{1}{3}$,即 $\frac{m}{m+1} = \frac{1}{3}$,m= $\frac{1}{2}$,故选 A。 元, 市

- 7.【答案】B
- 8. 【答案】B



用垂直于圆锥轴的平面去截圆锥,得到的是圆;

参考上图: 此题中平面 α 上的动点 P 满足 $\angle PAB = \frac{\pi}{6}$,可理解为 P 在以 AB 为轴的圆锥的侧面上,再由斜线段 AB 与平面 α 所成的角为 $\frac{\pi}{4}$,可知 P 的 Φ Φ Φ Φ Φ

可知P的轨迹符合圆锥曲线中椭圆定义,

故可知动点P的轨迹是椭圆.

故选: B.

- 9.【答案】A
- 10.【答案】D

【解析】延长 F_1N 与 MF_2 ,交于 K,连接 ON,

由题意可得 MN 为边 KF_1 的垂直平分线,则 MF_1 =MK,

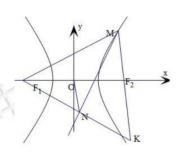
且 N 为 KF₁ 的中点,
$$|ON| = \frac{1}{2} |KF_2|$$
,

由双曲线的定义可得 $|MF_1|-|MF_2|=|MK|-|MF_2|=|F_2K|=2a$,

则
$$|ON|=a=\frac{1}{4}\times 2c$$
,即 $c=2a,b=\sqrt{c^2-a^2}=\sqrt{3}a$

可得双曲线的渐近线方程为 $y = \pm \frac{b}{a} x$,即 $y = \pm \sqrt{3}x$.

故选: D



11.【答案】C

【分析】设 $|AF_1|=n$,由同角的基本关系式求得 $\sin\angle ABF_1=\frac{3}{5}$,可得 $|BF_1|=\frac{5}{3}n$, $|AB|=\frac{4}{3}n$,再由双曲线的 定义, 求得 n=3a, 结合勾股定理和双曲线的离心率公式, 计算可得所求值.

【解答】设 $|AF_1|=n$,

$$\pm \tan \angle ABC = \frac{\sin \angle ABC}{\cos \angle ABC} = -\frac{3}{4}, \sin^2 \angle ABC + \cos^2 \angle ABC = 1,$$

可得
$$\sin \angle ABC = \frac{3}{5}$$
,即 $\sin \angle ABF_1 = \frac{3}{5}$,

可得
$$\sin \angle ABC = \frac{3}{5}$$
,即 $\sin \angle ABF_1 = \frac{3}{5}$,
在直角三角形 ABF_1 中,可得 $|BF_1| = \frac{5}{3}n$, $|AB| = \frac{4}{3}n$,
由双曲线的定义可得 $|BF_2| = \frac{5}{5}n - 2a$,

由双曲线的定义可得 $|BF_2| = \frac{5}{3}n - 2a$,

则
$$|AF_2| = \frac{4}{3}n - (\frac{5}{3}n - 2a) = 2a - \frac{1}{3}n$$
,

由双曲线的定义可得 $|AF_1|$ - $|AF_2|$ =2a,

即
$$n - (2a - \frac{1}{3}n) = 2a$$
,解得 $n = 3a$,

在直角三角形 AF_1F_2 中, $|AF_1|=3a$, $|AF_2|=a$, $|F_1F_2|=2c$,

则
$$(3a)^2 + a^2 = (2c)^2$$
,

即
$$c^2 = \frac{5}{2}a^2$$
,可得 $e = \frac{c}{a} = \frac{\sqrt{10}}{2}$,

故选: C.



二、多项选择

12.【答案】AD

【解析】首先可判断出 a=4, b=3, 所以实轴长为 8, A 正确; 根据 a=4, b=3, 得 c=5, 故 $e=\frac{5}{4}$, B 错 误;由于不知道点 P 在双曲线的左支还是右支,故 $|PF_1|-|PF_2|=8$ 或 -8,故 C 错误;根据 c=5,得 焦距为10,故D正确.综上选AD.

13.【答案】ACD

【解析】圆 C 的标准方程为 $(x-\frac{k}{2})^2+(y+1)^2=k$,则 k>0,A 正确; 当 k=4 是,圆 C 的标准方程为 $(x-2)^2+(y+1)^2=k$ $(y+1)^2 = 4$,圆心为(2,-1),半径 r=2,M 在圆外,因此过 M(3,4)与圆相交所得弦长为 $2\sqrt{3}$ 的直线有两条, B 错误; (2,-1)到(0,0)的距离为 $\sqrt{5}$, $1<\sqrt{5}<2+1$,两圆相交,C 正确;由直线 mx-ny-1=0 过圆心得,2m+n=1, 所以 $\frac{1}{m} + \frac{2}{n} = (2m+n)\left(\frac{1}{m} + \frac{2}{n}\right) = 4 + \frac{n}{m} + \frac{4m}{n} \ge 4 + 2\sqrt{4} = 8$, 当且仅当 n=2m= $\frac{1}{2}$ 时,等号成立,D 正确; 故 选 ACD。

14.【答案】BD

【解析】由椭圆方程可得: a=5, $c=\sqrt{5}$,

则
$$F_1(-\sqrt{5}, 0)$$
, $F_2(\sqrt{5}, 0)$, $A_1(-5, 0)$, $A_2(5, 0)$,

由椭圆的定义可知 $|PF_1|+|PF_2|=2a=10$,故A错误;

设点
$$P$$
 的坐标为 (m, n) ,则 $\frac{m^2}{25} + \frac{n^2}{20} = 1$,即 $n^2 = 20(1 - \frac{m^2}{25}) = \frac{4}{5}(25 - m^2)$,

则
$$k_{PA_1} = \frac{n}{m+5}$$
, $k_{PA_2} = \frac{n}{m-5}$,

所以
$$k_{PA_1} \cdot k_{PA_2} = \frac{n^2}{m^2 - 25} = \frac{\frac{4}{5}(25 - m^2)}{m^2 - 25} = \frac{4}{5}$$
,故 B 正确;

$$\overrightarrow{PF_1} = (-\sqrt{5} - m, -n), \overrightarrow{PF_2} = (\sqrt{5} - m, -n),$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_2} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow{PF_1} = m^2 - 5 + n^2 = 0,$$

$$\overrightarrow{AF_1PF_2} = 90^\circ, \overrightarrow{MPF_1} \cdot \overrightarrow$$

$$\overrightarrow{PF_1} = (-\sqrt{5} - m, -n), \overrightarrow{PF_2} = (\sqrt{5} - m, -n)$$

若
$$\angle F_1PF_2=90^\circ$$
,则 $\overline{\mathsf{PF}_1} \bullet \overline{\mathsf{PF}_2} = \mathsf{m}^2 - 5 + \mathsf{n}^2 = 0$,

又
$$n^2 = \frac{4}{5}(25 - m^2)$$
,联立可得: $\frac{1}{5}m^2 + 15 = 0$,方程无解,故 C 错误;

三角形
$$PF_1F_2$$
 的面积为 $S = \frac{1}{2} |F_1F_2| |y_P| = \frac{1}{2} \times 2\sqrt{5} \times |y_P| = 4\sqrt{5}$,

解得 $y_P = \pm 4$,代入椭圆方程可得 $x_P = \pm \sqrt{5}$,故 D 正确,

故选: BD.

15.【答案】BD

【解析】因为其中一条渐近线为 4x-3y=0, $\therefore \frac{b}{a} = \frac{4}{3}$, $\therefore \frac{b^2}{a^2} = \frac{m+7}{m} = \frac{16}{9}$, \therefore m=9,故 a=3,b=4,c=5,

焦点为($\pm 5,0$)A 错误; $e=\frac{c}{a}=\frac{5}{3},B$ 正确;过焦点(5,0)的直线与双曲线 C 有两个交点时,

①若交点位于双曲线的两支,弦长最短为实轴长 2a=6, :15>6,能做 2条;

②若交点位于同支,弦长最短为通径 $\frac{2b^2}{a} = \frac{32}{5} < 15$,又能作 2 条,所以共可以有 4 条, C 错误

设 A(x₁,y₁),B(-x₁,-y₁),C(x₀,x₀),
$$k_{MA} \times k_{MB} = \frac{y_0 - y_1}{x_0 - x_1} \times \frac{y_0 + y_1}{x_0 + x_1} = \frac{y_0^2 - y_1^2}{x_0^2 - x_1^2}, \quad \boxed{\chi}_{\frac{q}{9}}^{\frac{q}{2}} - \frac{y_1^2}{16} = 1, \quad \therefore y_1^2 = \frac{16}{9}x_1^2 - 16$$

同理,
$$y_0^2 = \frac{16}{9} x_0^2 - 16$$
, $\therefore k_{MA} \times k_{MB} = \frac{\frac{16}{9} x_0^2 - 16 + \frac{16}{9} x_1^2 + 16}{x_0^2 - x_1^2} = \frac{16}{9}$, D 正确。

16.【答案】BCD

【解析】因为 a, b, c 成等比数列, 所以 $b^2 = ac$,

$$A$$
中, $PF_2 \perp x$ 轴时, P 的坐标为: $(c, \frac{b^2}{a})$ 即 $P(c, c)$,

所以
$$\tan \angle PF_1F_2 = \frac{\left| \operatorname{PF}_2 \right|}{\left| \operatorname{F}_1 \operatorname{F}_2 \right|} = \frac{\operatorname{c}}{2\operatorname{c}} = \frac{1}{2}$$
,所以 $\angle PF_1F_2 \neq 30^\circ$,所以 A 不正确;

$$B$$
中,因为 $b^2=ac$,所以可得 $c^2-a^2=ac$,可得 $e^2-e-1=0$,又 $e>1$,

解得:
$$e=\frac{\sqrt{5}+1}{2}$$
,所以 B 正确;

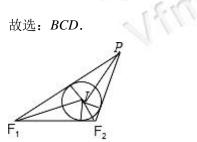
$$C$$
, 设 $P(x_0, y_0)$, 则 $\frac{{\bf x_0}^2}{{\bf a}^2} - \frac{{\bf y_0}^2}{{\bf b}^2} = 1$,所以 $y_0^2 = b^2 \cdot \frac{{\bf x_0}^2 - {\bf a}^2}{{\bf a}^2}$,

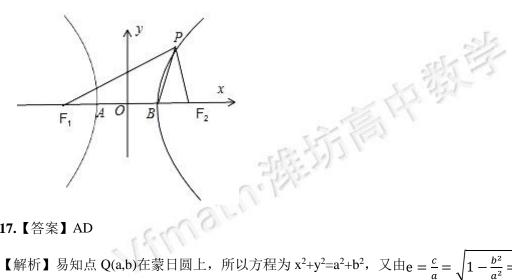
由题意可得
$$A(-a, 0)$$
, $B(a, 0)$,所以 $k_1k_2 = \frac{y_0}{x_0 + a} \cdot \frac{y_0}{x_0 - a} = \frac{y_0^2}{x_0^2 - a^2} = \frac{b^2}{a^2}$

由
$$b^2 = ac$$
,可得 $k_1k_2 = \frac{c}{a} = \frac{1+\sqrt{5}}{2}$,所以 C 正确;

$$D$$
 中因为 $S^{\triangle \text{IPF}}_1 = S^{\triangle \text{IPF}}_2 + xS^{\triangle \text{IF}}_1 + xS^{\triangle \text{IF}}$

可得
$$x = \frac{|PF_1| - |PF_2|}{|F_1F_2|} = \frac{2a}{2c} = \frac{2}{1 + \sqrt{5}} = \frac{\sqrt{5} - 1}{2}$$
,所以 D 正确;





17.【答案】AD

【解析】易知点 Q(a,b)在蒙日圆上,所以方程为 $x^2+y^2=a^2+b^2$,又由 $e=\frac{c}{a}=\sqrt{1-\frac{b^2}{a^2}=\frac{\sqrt{2}}{2}}$,得 $a^2=2b^2$,A 正 确; l 过顶点 P(b,a),而 Q 又满足蒙日圆方程,所以 P 在圆 $x^2+y^2=3b^2$ 上,当 A、B 恰为切点时, $\overrightarrow{PA}\cdot\overrightarrow{PB}=$ -1 < 0,B 错误;由 A 在椭圆上,故 $|AF_1| + |AF_2| = 2a$,所以 d- $AF_2 = d - (2a - AF_1) = d + AF_1 - 2a$,当 $F_1 A \perp l$ 时, d+AF₁有最小值,即 F₁到 l 距离 $d' = \frac{|-bc-a^2-b^2|}{\sqrt{a^2+b^2}}$,即 $d' = \frac{4}{3}\sqrt{3}b$,所以 $(d-AF_2)_{min} = \frac{4\sqrt{3}}{3}b-2a$,C 错误; 当矩形四边都与椭圆 C 相切时,它为蒙日圆得内接矩形,对角线为蒙日圆得直径,设边长为 x, y,则 $x^2+y^2=(2r)^2=4r^2=12b^2$, $S_{\textit{矩形}}=xy\leq \frac{x^2+y^2}{2}=6b^2$,D 正确;故选 AD。

18.【答案】[-1,3] 【解析】设 $\sqrt{3}x + y = t$,则 $y = -\sqrt{3}x + t$, t 表示斜率为 $-\sqrt{3}$ 的直线在 y 轴上的截距 又x,y满足 $x^2+(y-1)^2=1$,所以直线与圆有公共点,圆心(0,1)到直线的距离 $d = \frac{|1-t|}{\sqrt{1+3}} \le r = 1$, $\# -1 \le t \le 3$

19.【答案】(5,0)

【解析】设直线 AB 的方程为 x=my+b,设 $A(x_1, y_1)$, $B(x_2, y_2)$,

联立
$$\begin{cases} x=my+b \\ y^2=4x \end{cases}$$
, 整理可得: $y^2-4my-4b=0$,

所以
$$y_1y_2 = -4b$$
, $x_1x_2 = \frac{(y_1y_2)^2}{16} = b^2$,

因为 \overrightarrow{OA} • \overrightarrow{OB} =5 $\Rightarrow x_1x_2+y_1y_2=6$,

所以 b^2 - 4b=5,可得 b=5 或 b=0,

潍坊高中数学 平面解析几何

因为点 $A \times B$ 在抛物线上,且分别位于 x 轴的上、下两侧,直线 AB 不过原点,所以 b=5,

所以直线恒过点(5,0),

故答案为: (5,0).

20. 【答案】 2√2

【分析】由抛物线的方程可得准线方程,由抛物线的性质到焦点的距离等于到准线的距离,可得 x_0 与p的关系,再将A的坐标代入抛物线的方程可得 x_0 与p的关系,进而求p定值.

【解答】抛物线的准线方程为 $x=-\frac{p}{2}$,

由抛物线的性质可得 $x_0 + \frac{p}{2} = 3x_0$

所以
$$x_0 = \frac{p}{4}$$
①,

而 A 在抛物线上,即 $4=2p \cdot x_0(2)$,

由(1)(2)可得: $p=2\sqrt{2}$,

故答案为: $2\sqrt{2}$.

21.【答案】3√3+1

∵CB-【解析】若∠CBA≥60°,则cos∠CBA $\leq \frac{1}{2}$,:CB=3 $\sqrt{10}$, $\frac{3\sqrt{10}}{AB} \leq \frac{1}{2}$, \therefore AB $\geq 6\sqrt{10}$,

设 A
$$(x, 3x)$$
, 则 $(x-10)^2 + (3x-0)^2 \ge 360$,整理得: $x^2 - 2x - 26 \ge 0$ $(x>0)$

解得: $x \ge 3\sqrt{3} + 1$

22.【答案】2

23.【答案】5

【解析】根据题意首先判断出点 P、点 Q 的纵坐标都为 4,从而代入抛物线求得 P(4,4),故 PF=4+1=5.

24.【答案】 $\frac{5}{2}$

【解析】由题意可知A(-a,0),经过第一象限的渐近线方程为 $y=\frac{b}{a}x$,

过点F且与渐近线垂直的直线相交于点B,

$$\therefore \begin{cases} y = \frac{b}{a} \\ y = \frac{a}{b} (x - c) \end{cases}, \quad \text{MAP} \begin{cases} x = \frac{a^2}{c} \\ y = \frac{ab}{c} \end{cases}$$

$$\therefore B \left(\frac{a^2}{c}, \frac{ab}{c}\right)$$
,

平面解析几何

$$\therefore \frac{1}{2} = \frac{\frac{ab}{c} - 0}{\frac{a^2}{c} + a}, \quad \text{即 } a + c = 2b,$$

$$\therefore c^2 = a^2 + b^2,$$

$$\therefore c^2 = a^2 + \frac{(a + c)^2}{4}, \quad \text{即 } 3e^2 - 2e - 5 = 0,$$

$$\therefore e = \frac{5}{3},$$
故答案为: $\frac{5}{3}$.

5. 【答案】 2, (4,6)

【解析】 由 $\begin{cases} x^2 = 4y \\ x^2 + (y - 1)^2 = 4 \end{cases}$, 得 m=2 或 m=-2

$$c^2 = a^2 + b^2$$

∴
$$c^2 = a^2 + \frac{(a+c)^2}{4}$$
, $\mathbb{R} 3e^2 - 2e - 5 = 0$

$$\therefore e = \frac{5}{3}$$

25.【答案】2, (4,6)

【解析】由
$$\begin{cases} x^2 = 4y \\ x^2 + (y-1)^2 = 4 \end{cases}$$
,得 m=2 或 m=-2

因为 P 点在第一象限, 所以 m=2

如图, 抛物线得焦点为(0,1)与圆 F 的圆心重合, 因此|FB|=r=2,

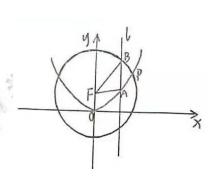
 $|AF|=y_A+1$, $|AB|=y_B-y_A$

 \triangle ABF 周长为 $|AF|+|BF|+|AB|=2+y_A+1+y_B-y_A=y_B+3$

又因为
$$0 < t < 2$$
, $y_B = \sqrt{4 - x^2} + 1$

所以 1< y_B <3, 4<y_B +3<6

所以△ABF周长的取值范围为(4,6).



26.【答案】4

【解析】由抛物线的方程可得焦点F的坐标为(1,0),

设直线 AB 的方程为 x=ky+1,

$$\stackrel{\text{id}}{\partial} A (x_1, y_1) \cdot B (x_2, y_2)$$
.

联立
$$\begin{cases} \mathbf{x} = \mathbf{ky} + 1 \\ \mathbf{y}^2 = 4\mathbf{x} \end{cases}$$
, 得 $\mathbf{y}^2 - 4\mathbf{ky} - 4 = 0$,

所以
$$y_1+y_2=4k$$
, $y_1y_2=-4$

所以
$$CT = DT = \frac{1}{2}CD$$

设直线
$$AB$$
 的 J 程 J $X = Ky + 1$,设 A (x_1, y_1) , B (x_2, y_2) ,
联立 $\begin{cases} \mathbf{x} = \mathbf{k}\mathbf{y} + 1 \\ \mathbf{y}^2 = 4\mathbf{x} \end{cases}$,得 $\mathbf{y}^2 - 4k\mathbf{y} - 4 = 0$,
 $\triangle = 16k^2 + 16 > 0$ 恒成立,
所以 $y_1 + y_2 = 4k$, $y_1 y_2 = -4$,
因为点 T 为 CD 的中点,
所以 $CT = DT = \frac{1}{2}CD$,
由抛物线的性质可得 $AC = AF$, $BD = BF$,
所以 $S_{\triangle ATB} = S$ _{徐形 $ACDB - S_{\triangle ACT} - S_{\triangle BDT} = \frac{1}{2}$} $(AC + BD)$ • $CD - \frac{1}{2}AC$ • $CT - \frac{1}{2}BD$ • DT ,

$$\mathbb{E}[S_{\triangle ATB}] = \frac{1}{4}CD \cdot (AC + BD) = \frac{1}{4}CD \cdot AB = \frac{1}{4}|y_1 - y_2| \cdot \sqrt{1 + k^2} \cdot |y_1 - y_2|,$$

因为
$$(y_1 - y_2)^2 = (y_1 + y_2)^2 - 4y_1y_2 = 16(1+k^2)$$
,

ـ ١٦ ٤٠ 所以 $S_{\triangle ATB} = 4\sqrt{1+k^2}$ (1+ k^2),

$$\Leftrightarrow t = \sqrt{1+k^2} \ (t \ge 1)$$
 ,

 $\diamondsuit S_{\triangle ATB} = f(t) = 4t^3 \ (t \ge 1) ,$

因为f(t) 在[1, + ∞) 上单调递增,

所以 $f(t)_{min} = f(1=4,$

故 $\triangle ATB$ 的面积最小值为 4.

故答案为: 4.

27.【答案】 (1, √2]

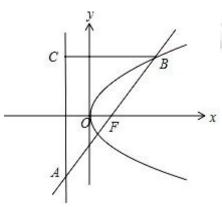
【解析】如图,

: 直线 l 的斜率 $k=\tan B$, $:: k \ge 1$;

∴
$$-\frac{b}{a} \cdot k = -1$$
, 则 $0 < \frac{b}{a} \le 1$, 即 $0 < \frac{c^2 - a^2}{a^2} \le 1$,

解得 $1 \le e \le \sqrt{2}$.

故答案为: $(1, \sqrt{2})$.



28. 【答案】
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
; $2x - 3y + 6 = 0$.

【分析】利用椭圆的定义即可求出 a 的值,再利用勾股定理即可求出 c,由此即可求解;设出点 A,B 的 坐标,代入椭圆方程,利用点差法以及中点坐标公式求出直线1的斜率,由此即可求解.

【解答】因为点 P 在椭圆上,所以 $|PF_1| + |PF_2| = \frac{4}{3} + \frac{14}{3} = 6 = 2a$,

所以 a=3,又在直角三角形 PF_1F_2 中, $|F_1F_2|=\sqrt{|PF_2|^2-|PF_1|^2}=\sqrt{20}=2\sqrt{5}$,

所以 $c = \sqrt{5}$,则 b = 2,

故椭圆的标准方程为 $\frac{x^2}{\alpha} + \frac{y^2}{4} = 1;$

设 $A(x_1, y_1)$, $B(x_2, y_2)$,

则
$$\begin{cases} \frac{x_1^2}{9} + \frac{y_1^2}{4} = 1\\ \frac{x_2^2}{9} + \frac{y_2^2}{4} = 1 \end{cases}$$
, 两式作差可得:
$$\frac{(x_1 - x_2)(x_1 + x_2)}{9} + \frac{(y_1 - y_2)(y_1 + y_2)}{4} = 0,$$

又由己知可得点 M 为 AB 的中点,即 $x_1+x_2=-3$, $y_1+y_2=2$,

所以
$$\frac{y_1-y_2}{x_1-x_2} = \frac{2}{3}$$
,即 $k_{AB} = \frac{2}{3}$,

所以直线 l 的方程为 $y - 1 = \frac{2}{3}(x + \frac{3}{2})$,即 2x - 3y + 6 = 0,

故答案为: $\frac{x^2}{9} + \frac{y^2}{4} = 1$; 2x - 3y + 6 = 0.

29. 【答案】
$$\left(-\frac{4\sqrt{3}}{3}, \frac{4\sqrt{3}}{3}\right)$$

【解析】
$$AF_1$$
, AF_2 , F_1F_2 上的切点分别为 H 、 I 、 J ,则 $AH=AI$, $F_1H=F_1J$, $F_2J=F_2I$. 由 $AF_1-AF_2=2a$ 得
$$(AH+HF_1)-(AI+IF_2)=2a, \ HF_1-IF_2=2a.$$
 即 $JF_1-JF_2=2a$.

设内心 M 的横坐标为 x_0 ,则点 J 的横坐标也为 x_0 ,则 $(c+x_0)-(c-x_0)=2a$

得 $x_0=a$, 所以 $JM \perp x$ 轴 ,则 E 为直线 JM 与x 轴的交点. 同理可 BF_1F 的内心在直线 JM 上.

设直线 AB 的倾斜角为
$$\theta$$
, $ME-NE=(c-a)\tan\frac{\pi-\alpha}{2}-(c-a)\tan\frac{\alpha}{2}=(c-a)\frac{2}{\tan\alpha}$

由题知,
$$a=2, c=4, \frac{b}{a}=\sqrt{3}$$
 , $\therefore \frac{\pi}{3} < \theta < \frac{2\pi}{3} \therefore -\frac{\sqrt{3}}{3} < \frac{1}{\tan \theta} < \frac{\sqrt{3}}{3}$ 四、解答

30. 【解析】

(1) 设直线 AB 的方程为 $x=my+1$,代入 $y^2=2x$,

四、解答

30. 【解析】

(1) 设直线 AB 的方程为 x = my + 1, 代入 $y^2 = 2x$,

得
$$y^2 - 2my - 2 = 0$$
,

所以
$$y_A \cdot y_R = -2$$
:

(2) 由 (1) 同理可得 $y_M \cdot y_N = -2$,

设直线
$$AN$$
 的方程 $x = ny + 2$,代入 $y^2 = 2x$,得 $y^2 - 2ny - 4 = 0$,

所以
$$y_A \cdot y_N = -4$$
,

又
$$k_1 = \frac{y_N - y_A}{x_N - x_A} = \frac{y_N - y_A}{\frac{y_N^2}{2} - \frac{y_A^2}{2}} = \frac{2}{y_N^+ y_A}$$
, 同理 $k_2 = \frac{2}{y_M^+ y_B}$;

所以
$$\lambda = \frac{k_2}{k_1} = \frac{y_A + y_N}{y_B + y_M} = \frac{y_A + y_N}{\frac{-2}{y_A} + \frac{-2}{y_N}} = \frac{y_A y_N}{-2} = 2$$
,

所以 存在实数 $\lambda=2$, 使得 $k_2=2k_1$.

31.【解析】 (1) 设P(x, y),则 $\overrightarrow{PA} = (-x, -1-y)$, $\overrightarrow{PB} = (-x, 1-y)$ 中歌学 \overrightarrow{AB} = (0, 2), \overrightarrow{BA} = (0, -2),

所以
$$|\overrightarrow{PB}|$$
 $|\overrightarrow{AB}|$ $=$ $\overrightarrow{PA} \cdot \overrightarrow{BA}$,所以 $\sqrt{(-x)^2 + (1-y)^2} = 1 + y$

化简得 $x^2=4y$,所以 C 的方程为 $x^2=4y$.

(2) 由题意可设
$$D(t, -2)$$
, $E(x_1, y_1)$, $F(x_2, y_2)$,

由题意知切线 DE, DF 的斜率都存在,

由
$$x^2 = 4y$$
, 得 $y = \frac{x^2}{4}$, 则 $y' = \frac{x}{2}$, 所以 $k_{DE} = \frac{x_1}{2}$,

直线 DE 的方程为
$$\mathbf{y}-\mathbf{y}_1 = \frac{\mathbf{x}_1}{2}(\mathbf{x}-\mathbf{x}_1)$$
,即 $\mathbf{y}-\mathbf{y}_1 = \frac{\mathbf{x}_1}{2}\mathbf{x}-\frac{\mathbf{x}_1^2}{2}$,①

因为
$$E(x_1, y_1)$$
在 $x^2=4y$ 上,所以 $\mathbf{x_1}^2=4\mathbf{y_1}$,即 $\frac{\mathbf{x_1}^2}{2}=2\mathbf{y_1}$,②

平面解析几何

将②代入①得 $x_1x - 2y_1 - 2y = 0$,

因为D(t, -2) 在直线DE上,所以 $tx_1 - 2y_1 + 4 = 0$, 又D(t, -2) 在直线DF上,所以 $tx_2 - 2y_2 + 4 = 0$, 所以直线EF的方程为tx - 2y + 4 = 0, 故直线EF

故直线 EF 过定点 (0, 2).

32.

21. (12 分)解:(1)由己知: $A_1(0,-a),A_2(0,a)$,因为M(1,2)在椭圆上,

直线 MA_1, MA_2 的斜率之积等于-4,

- (2) 设 $A(x_1,y_1)$, $B(x_2,y_2)$ 为过点F的直线与椭圆E的交点,
- ①若该直线的斜率存在,不妨设为k,则该直线的方程是v = kx + m,

联立方程得:

$$\begin{cases} 4x^2 + y^2 = 8\\ y = kx + m \end{cases}, \tag{4}$$

消元并化简得: $(4+k^2)x^2+2kmx+m^2-8=0$,

设
$$H(x_3,-m)$$
, $G(x_4,-m)$,

因为M,A,H三点共线,即 $\overrightarrow{MA}//\overrightarrow{MH}$,

所以
$$(x_3-1)(y_1-2)=(-m-2)(x_1-1)$$
,

由已知得,点M不在直线y=kx+m上,且 $y_1=kx_1+m$,

平面解析几何

所以
$$x_3 + x_4 = -\frac{(m+2)(x_1-1)}{kx_1+m-2} - \frac{(m+2)(x_2-1)}{kx_2+m-2} + 2$$
,
$$= -\frac{(m+2)[2kx_1x_2 + (m-2-k)(x_1+x_2) + 4 - 2m]}{k^2x_1x_2 + k(m-2)(x_1+x_2) + (m-2)^2} + 2$$
,

将
$$x_1 + x_2 = -\frac{2km}{4+k^2}$$
, $x_1x_2 = \frac{m^2 - 8}{4+k^2}$ 代入上式并化简得:

$$x_3 + x_4 = \frac{(m+2)(k-2)}{k-m+2} + 2$$
,

当
$$k-2 \neq 0$$
 时,直线 MN 的斜率 $k_{MN} = -\frac{2(k-m+2)}{k-2} = \frac{2(m-4)}{k-2} - 2$

因为 k_{MN} 与k的取值无关,所以m-4=0,即m=4,

②若经过点F的直线斜率不存在,此时A,B为椭圆E长轴端点,

不妨设 $A(0,2\sqrt{2})$, $B(0,-2\sqrt{2})$, 因为 M, A, H 三点共线,

$$H$$
 坐标为 $\left(\frac{m+2}{2\sqrt{2}-2}+1,-m\right)$,同理 G 坐标为 $\left(-\frac{m+2}{2\sqrt{2}+2}+1,-m\right)$,

所以
$$k_{MN} = \frac{-m-2}{\frac{m+4}{2}-1} = -2$$
,亦满足要求,

综合①②可知:存在m=4使得直线MN的斜率为定值-2. ………12分

33.【解析】(1)由题意可知
$$\begin{cases} \frac{c}{a} = \frac{\sqrt{6}}{3} \\ 2b = 2\sqrt{2} \\ a^2 = b^2 + c^2 \end{cases}$$
,解得:
$$\begin{cases} a = \sqrt{6} \\ b = \sqrt{2}, \\ c = 2 \end{cases}$$
 ∴椭圆 C 的方程为:
$$\frac{x^2}{6} + \frac{y^2}{2} = 1$$

∴椭圆 *C* 的方程为:
$$\frac{x^2}{6} + \frac{y^2}{2} = 1$$
.

(2) 设 $A(x_1, y_1)$, $B(x_2, y_2)$, 直线AB的方程为: x=my+t,

联立方程
$$\left\{\frac{x^2}{6} + \frac{y^2}{2} = 1, \text{ 消去 } x$$
 得: $(m^2+3) y^2 + 2mty + (t^2-6) = 0, x=my+t\right\}$

$$\therefore y_1 + y_2 = -\frac{2\pi t}{m^2 + 3}, \quad y_1 y_2 = \frac{t^2 - 6}{m^2 + 3},$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$$

$$x_1x_2+y_1y_2=0$$

:
$$(my_1+t)$$
 (my_2+t) $+y_1y_2=0$,

整理得:
$$(m^2+1)y_1y_2+mt(y_1+y_2)+t^2=0$$
,

整理得:
$$t^2 = \frac{3(m^2+1)}{2}$$

整理得:
$$t^2 = \frac{3(m^2 + 1)}{2}$$
,

②原点 $(0, 0)$ 到直线 AB : $x = my + t$ 的距离 $d = \frac{|t|}{\sqrt{1 + m^2}}$,

 $\therefore d^2 = \frac{t^2}{1 + m^2} = \frac{3}{2}$,

:.
$$d^2 = \frac{t^2}{1+m^2} = \frac{3}{2}$$

∴存在以 O 为圆心的定圆 $x^2+y^2=\frac{3}{2}$ 恒与直线 AB 相切.

34.【解析】(1)由题意可知,b=2, $a-c=\sqrt{5}-1$,

又
$$a^2=b^2+c^2$$
,解得 $a=\sqrt{5}$, $c=1$,

所以椭圆的标准方程为: $\frac{x^2}{5} + \frac{y^2}{4} = 1$;

(2) 设四边形 ACBD 的面积为 S,则 $S = \frac{1}{2} |AB| \cdot |CD|$,

①当
$$AB \perp x$$
 轴时, $|AB| = \frac{2b^2}{a}$, $|CD| = 2a$,所以 $S = \frac{1}{2} \times \frac{2b^2}{a} \times 2a = 2b^2 = 8$,

②当
$$CD \perp x$$
 轴时, $|CD| = \frac{2 b^2}{a}$, $|AB| = 2a$,所以 $S = \frac{1}{2} \times 2 a \times \frac{2b^2}{a} = 2b^2 = 8$,

(3)当 AB 与 CD 都不与 x 轴垂直时,直线 AB 的斜率存在且不为 0,

设 $A(x_1, y_1)$, $B(x_2, y_2)$, 设直线 AB 的斜率为 k, 则直线 CD 的斜率为 $-\frac{1}{k}$,

则设直线
$$AB$$
 的方程为: $y=k$ $(x-1)$,联立方程
$$\begin{cases} y=k(x-1) \\ \frac{x^2}{5} + \frac{y^2}{4} = 1 \end{cases}$$

消去 y 整理可得: $(4+5k^2) x^2 - 10k^2x + 5k^2 - 20 = 0$,

所以
$$x_1 + x_2 = \frac{10k^2}{4+5k^2}$$
, $x_1 x_2 = \frac{5k^2 - 20}{4+5k^2}$,

所以|
$$AB$$
|= $\sqrt{1+k^2}$ • $\sqrt{(x_1+x_2)^2-4x_1x_2}$ = $\sqrt{1+k^2}$ • $\frac{\sqrt{320(1+k^2)}}{4+5k^2}$ = $\frac{8\sqrt{5}(1+k^2)}{4+5k^2}$ (*),

过 F_2 做直线 CD 的平行线和椭圆 E 交于点 C_1 , D_1 , 由对称性知 $|C_1D_1|=|CD|$,

在 (*) 中的
$$k$$
 换成 $-\frac{1}{k}$, 得 $|C_1D_1| = \frac{8\sqrt{5}(1+\frac{1}{k^2})}{4+\frac{5}{k^2}} = \frac{8\sqrt{5}(1+k^2)}{5+4k^2}$,

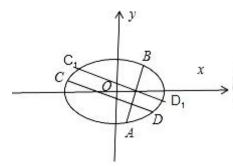
所以
$$|CD| = \frac{8\sqrt{5}(1+k^2)}{5+4k^2}$$
,

所以
$$S = \frac{1}{2}|B||CD| = \frac{1}{2} \cdot \frac{8\sqrt{5}(1+k^2)}{5+4k^2} \cdot \frac{8\sqrt{5}(1+k^2)}{5k^2+4} = \frac{160(1+k^2)^2}{(4+5k^2)(5+4k^2)}$$

令
$$t=1+k^2$$
,则 $t>1$,
所以 $S=\frac{160 t^2}{(5t-1)(4t+1)} = \frac{160 t^2}{20 t^2+t-1} = \frac{160}{-(\frac{1}{t})^2 + \frac{1}{t} + 20}$,

因为 -
$$(u - \frac{1}{2})^2 + \frac{81}{4} \in (20, \frac{81}{4}]$$
, 所以 $S \in [\frac{640}{81}, 8)$ 所以四边形 $ACBD$ 面积的取值范围[$\frac{640}{81}$, 8).

所以四边形 ACBD 面积的取值范围[$\frac{640}{81}$, 8).



35.【解析】(1)由已知得
$$\begin{cases} \frac{9}{b^2} = 1, \\ \frac{a^2 - b^2}{a^2} = \frac{1}{2}, \end{cases}$$
解得 $a = 3\sqrt{2}, b = 3$,

因此椭圆 C 的方程为 $\frac{x^2}{18} + \frac{y^2}{9} = 1$

(2)
$$\pm \begin{cases} \frac{x^2}{18} + \frac{y^2}{9} = 1, \\ y = kx - 1, \end{cases}$$
 $\mp (2k^2 + 1)x^2 - 4kx - 16 = 0,$

因为
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = x_1 x_2 + (y_1 - 3)(y_2 - 3) = x_1 x_2 + (kx_1 - 4)(kx_2 - 4)$$

$$= (k^2 + 1)x_1x_2 - 4k(x_1 + x_2) + 16 = \frac{-16(k^2 + 1)}{2k^2 + 1} - 4k \times \frac{4k}{2k^2 + 1} + 16 = 0$$

所以 MA L MB, 三角形 MAB 为直角三角形,

设 d 为点 M 到直线 l 的距离,故 $\left|MA\right|\left|MB\right|=\left|AB\right|=d$ 8 分

又因为
$$d = \frac{4}{\sqrt{1+4^2}}$$
,

$$|AB| = \sqrt{(1+k^2)[(x_1+x_2)^2-4x_1x_2]}$$

$$= \sqrt{\left(1+k^2\right)\left[\left(\frac{4k}{2k^2+1}\right)^2 - 4 \times \frac{-16}{2k^2+1}\right]}$$

$$= \frac{4\sqrt{(1+k^2)(9k^2+4)}}{2k^2+1}, \quad \text{fig} |MA||MB| = \frac{16\sqrt{9k^2+4}}{2k^2+1}, \quad \dots 10 \ \text{f}$$

设
$$2k^2 + 1 = t$$
 ,则 $|MA||MB| = 16\sqrt{\frac{81}{8} - \frac{1}{2}(\frac{1}{t} - \frac{9}{2})^2}$,由于 $\frac{1}{t} \in (0,1]$,

所以 $|MA||MB| \le 32$,当 $\frac{1}{t} = 1$,即 k=0 时,等号成立.

因此,|*MA*||*MB*| 的最大值为 32. ·······12 分

36.【解析】(1) 直线
$$F_2A_2$$
 的方程为 $\frac{x}{c} + \frac{y}{b} = 1 \Rightarrow bx + cy - bc = 0$

$$\frac{ab+bc-bc}{\sqrt{b^2+c^2}} = \frac{ab}{a} = b = 1$$
 P(a, b)到直线 F₂A₂ 的距离为

$$\frac{c}{a} = \frac{\sqrt{3}}{2}$$
 , $a^2 = b^2 + c^2$, $\therefore a = 2$, 椭圆 C 的标准方程为 $\frac{x^2}{4} + y^2 = 1$;

$$\begin{cases} y = kx + m \\ x^2 + 4y^2 = 4 \end{cases} \Rightarrow x^2 + 4(kx + m)^2 = 4$$

$$\therefore (1+4k^2)x^2 + 8kmx + 4m^2 - 4 = 0$$

$$\Delta = 64k^2m^2 - 4(1+4k^2)(4m^2 - 4) = 0 , :: x_0 = \frac{x_1 + x_2}{2} = \frac{-4km}{1+4k^2}$$

$$D\left(\frac{-4km}{1+4k^2}, \frac{m}{1+4k^2}\right)$$

$$\sin \angle EDW = \frac{m}{DW} = \frac{m}{\sqrt{\frac{16k^2m^2}{(1+4k^2)^2} + \left(\frac{m}{1+4k^2} - 3m\right)^2}} = \frac{1}{\sqrt{\frac{16k^2}{(1+4k^2)^2} + \left(\frac{1}{1+4k^2} - 3\right)^2}}$$

$$\frac{1}{\sqrt{1+4k^2}} = t \qquad \sin \angle EDW = \frac{1}{\sqrt{4t-4t^2+(t-3)^2}} = \frac{1}{\sqrt{-3t^2-2t+9}} \le \frac{1}{2}$$

37.

.解: (1) 由 ΔAF_1F_2 为直角三角形,故b=c

又
$$S_{\Delta F_1 F_2 A} = \frac{1}{2} \times 2c \times b = 4$$
,可得 $bc = 4$,

解得b=c=2, 所以 $a^2=8$,

(2) 当切线l的斜率不存在时,其方程为 $x = \pm \frac{2\sqrt{6}}{3}$.

将
$$x = \frac{2\sqrt{6}}{3}$$
 代入 $\frac{x^2}{8} + \frac{y^2}{4} = 1$, 得 $y = \pm \frac{2\sqrt{6}}{3}$, 不妨设 $M(\frac{2\sqrt{6}}{3}, -\frac{2\sqrt{6}}{3})$,

$$N(\frac{2\sqrt{6}}{3}, \frac{2\sqrt{6}}{3})$$
, $\nabla P(\frac{2\sqrt{6}}{3}, 0)$, $\overrightarrow{PM} \cdot \overrightarrow{PN} = -\frac{8}{3}$,

当切线l的斜率存在时,设方程为y=kx+m, $M(x_1,y_1)$, $N(x_2,y_2)$,因为l与圆

将
$$y = kx + m$$
 代入 $\frac{x^2}{8} + \frac{y^2}{4} = 1$, 得 $(2k^2 + 1)x^2 + 4kmx + 2m^2 - 8 = 0$,

$$\vec{\nabla} \overrightarrow{OM} \cdot \overrightarrow{ON} = x_1 x_2 + y_1 y_2 = x_1 x_2 + (k x_1 + m)(k x_2 + m)$$

$$= (k^2 + 1) x_1 x_2 + k m(x_1 + x_2) + m^2$$

$$= \frac{(k^2 + 1)(2m^2 - 8)}{2k^2 + 1} + \frac{-4k^2 m^2}{2k^2 + 1} + m^2$$

$$= \frac{3m^2 - 8k^2 - 8}{2k^2 + 1}, \qquad (10 \%)$$

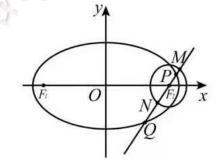
综上,
$$\overrightarrow{PM} \bullet \overrightarrow{PN} = -\frac{8}{3}$$
.

38. 【解析】(1)由题意知, $|GF_1| + |GF_2| = 4$,又 $4 > 2\sqrt{3}$,所以, 动点 G 的轨迹是椭圆……2 分

由椭圆的定义可知, $c=\sqrt{3}$, a=2,又因为 $a^2-b^2=c^2$ 所以 $b^2=1$,故 G 的轨迹方程 $\frac{x^2}{4}+y^2=1....4$ 分

(2)由题设可知,M 在椭圆外,N 在椭圆内,P 在圆 F_2 内,Q 在圆 F_2 外, 在直线 l 上的四点满足:|MP|=|MN|-|NP|,|NQ|=|PQ|-|NP|.

由
$$\begin{cases} \frac{x^2}{4} + y^2 = 1 \\ y = k(x - \sqrt{3}) \end{cases}$$
 消去 y 得: $(1 + 4k^2)x^2 - 8\sqrt{3}k^2x + 12k^2 - 4 = 0$.



因为直线l过椭圆 C 内的右焦点 F_2 ,所以该方程的判别式 $\Delta > 0$ 恒成立

设 P(
$$x_1, y_1$$
),Q(x_2, y_2),由韦达定理,得 $x_1 + x_2 = \frac{8\sqrt{3}k^2}{1+4k^2}$, $x_1 \cdot x_2 = \frac{12k^2 - 4}{1+4k^2}$

$$|PQ| = \sqrt{(1+k^2)[(x_1+x_2)^2 - 4x_1 \cdot x_2]} = \frac{4k^2 + 4}{4k^2 + 1} \dots 7$$

又因为圆 F₂的直径|MN|=1,所以

$$|NQ| - |MP| = |PQ| - |NP| - (|MN| - |NP|) = |PQ| - |MN| = |PQ| - 1 = \frac{3}{4k^2 + 1} ... 9$$

原点 O 到
$$y = k(x - \sqrt{3})$$
(即 $kx - y - \sqrt{3}k = 0$)的距离 $d = \frac{\sqrt{3}k}{\sqrt{k^2 + 1}}$

$$T = (|NQ| - |MP|) \cdot d^2 = \frac{9k^2}{(4k^2 + 1)(k^2 + 1)} = \frac{9k^2}{4k^4 + 5k^2 + 1} = \frac{9}{4k^2 + \frac{1}{k^2} + 5} \le \frac{9}{2\sqrt{4k^2 \times \frac{1}{k^2} + 5}} = 1$$

当且仅当
$$4k^2 = \frac{1}{k^2}$$
,即 $k = \frac{\sqrt{2}}{2}$,时等号成立.所以存在 $k = \frac{\sqrt{2}}{2}$ 满足题意......12 分

39.

因为椭圆 C_1 的离心率为 $\frac{\sqrt{3}}{2}$

所以
$$\frac{\sqrt{a^2-b^2}}{a} = \frac{\sqrt{a^2-1}}{a} = \frac{\sqrt{3}}{2}$$
解得 $a=2$

(2)将
$$y=kx+m$$
 代入 $x^2=4y$,消去 y 并整理得: $x^2-4kx-4m=0$

由题意知, $\Delta = 16k^2 + 16m > 0$

设直线 PA,PB 的斜率分别为 k_1,k_2

设
$$A(x_1, y_1), B(x_2, y_2), 则 \frac{y_1-1}{x_1-2} + \frac{y_2-1}{x_2-2} = 0$$

由
$$\begin{cases} y = -x + m \\ \frac{x^2}{4} + y^2 = 1 \end{cases}$$
 消 y 并整理得: $5x^2 - 8mx + 4m^2 - 4 = 0$

由題意知 $\Delta = 64m^2 - 4 \times 5 \times (4m^2 - 4) = 16(5 - m^2) > 0$

$$\therefore -\sqrt{5} < m < \sqrt{5}$$
,所以 $-1 < m < \sqrt{5}$ …… 9 分

设
$$C(x_3, y_3)$$
, $D(x_4, y_4)$, 则 $x_3 + x_4 = \frac{8m}{5}$, $y_3 + y_4 = -(x_3 + x_4) + 2m = \frac{2m}{5}$

若四边形 OCPD 为平行四边形

$$\therefore \begin{cases} \frac{8m}{5} = 2 \\ \frac{2m}{5} = 1 \end{cases}$$
 显然方程组无解

3 (4 **40.**【解析】(1)由 $\overrightarrow{AF}_2 = -2\overrightarrow{OB}$,可得 $F_2(\sqrt{3}, 0)$,即 $c = \sqrt{3}$,

因为 $A(\sqrt{3}, \frac{1}{2})$ 在椭圆上,

所以
$$\frac{3}{a^2} + \frac{1}{4b^2} = 1$$
,

即
$$\frac{3}{a^2} + \frac{1}{4(a^2 - 3)} = 1$$
,解得 $a^2 = 4$ 或 $a^2 = \frac{9}{4}$ (舍去),
所以椭圆 C_1 的方程为 $\frac{x^2}{4} + y^2 = 1$.

(2) 设直线 l 的方程为 y=kx+m,

原点到直线 l 的距离为 $d = \frac{|\mathbf{m}|}{\sqrt{1+1}\epsilon^2}$,

平面解析几何

联立
$$\begin{cases} x^2 + 4y^2 = 4 \\ y = kx + m \end{cases}$$
, 得 (1+4 k^2) $x^2 + 8kmx + 4m^2 - 4 = 0$,

设
$$D(x_1, y_1)$$
, $E(x_2, y_2)$,

则
$$x_1+x_2 = \frac{-8 \text{km}}{1+4 \text{k}^2}$$
, $x_1x_2 = \frac{4 \text{m}^2 - 4}{1+4 \text{k}^2}$,

联立
$$\begin{cases} \mathbf{x}^2 + 4\mathbf{y}^2 = 4 \\ \mathbf{y} = \mathbf{k}\mathbf{x} + \mathbf{m} \end{cases}$$
,得(1+4 k^2) $x^2 + 8kmx + 4m^2 - 4 = 0$,设 $D(x_1, y_1)$, $E(x_2, y_2)$,则 $x_1 + x_2 = \frac{-8km}{1 + 4k^2}$, $x_1 x_2 = \frac{4m^2 - 4}{1 + 4k^2}$,

所以 $|DE| = \sqrt{1 + k^2} \sqrt{(\frac{-8km}{1 + 4k^2})^2 - 4(\frac{4m^2 - 4}{1 + 4k^2})} = \sqrt{1 + k^2} \sqrt{\frac{(-8km)^2 - 16(m^2 - 1)(1 + 4k^2)}{(1 + 4k^2)^2}}$,

所以
$$S_{\triangle DOE} = \frac{1}{2} d \cdot |DE| = \frac{1}{2} |m| \sqrt{\frac{(-8 \text{km})^2 - 16 (\text{m}^2 - 1) (1 + 4 \text{k}^2)}{(1 + 4 \text{k}^2)^2}}$$

$$= \frac{1}{2} \sqrt{m^2 \left[\frac{(-8km)^2 - 16(m^2 - 1)(1 + 4k^2)}{(1 + 4k^2)^2} \right]}$$

$$=2\sqrt{\frac{m^2}{1+4k^2}-(\frac{m^2}{1+4k^2})^2},$$

由
$$\begin{cases} x^2 + 4y^2 = 4\lambda \\ y = kx + m \end{cases}$$
, 得 (1+4k²) $x^2 + 8kmx + 4m^2 - 4\lambda = 0$,

$$= \frac{1}{2} \sqrt{m^2 \left[\frac{(-8km)^2 - 16(m^2 - 1)(1 + 4k^2)}{(1 + 4k^2)^2} \right]}$$

$$= 2\sqrt{\frac{m^2}{1 + 4k^2} - (\frac{m^2}{1 + 4k^2})^2},$$

$$= \left\{ \frac{x^2 + 4y^2 = 4\lambda}{y = kx + m}, \ (1 + 4k^2) \ x^2 + 8kmx + 4m^2 - 4\lambda = 0, \right.$$
所以 $(8km)^2 - 4(1 + 4k^2) \ (4m^2 - 4\lambda) \ge 0, \ \mathbb{P} \lambda \ge \frac{m^2}{1 + 4k^2},$

故①当
$$0 < \lambda < \frac{1}{2}$$
时,则 $\frac{m^2}{1+4k^2} \le \lambda < \frac{1}{2}$,故 $\frac{m^2}{1+4k^2} = \lambda < \frac{1}{2}$,

即直线与椭圆 C_2 : $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = \lambda$ 相切时,面积最大为 $2\sqrt{\lambda - \lambda^2}$,

②当
$$\frac{1}{2} \le \lambda < 1$$
 时, $\frac{m^2}{1+4k^2} = \frac{1}{2}$ 时, $\triangle DOE$ 的面积最大为 1,

综上可得(
$$S_{\triangle DOE}$$
) $_{max} = \begin{cases} 2\sqrt{\lambda - \lambda^2}, & 0 < \lambda < \frac{1}{2} \\ 1, & \frac{1}{2} \leq \lambda < 1 \end{cases}$

41.

21.(1)过A,B分别向 ND 作垂线,垂足为 A',B',设 AB 中点为 P,过 P向 ND 作垂线,

又:: |AB| = |BC|

$$\therefore |PP'| = \frac{1}{3}|PC| \qquad 2 \text{ }$$

(2): 正方形边长为1,

$$\therefore M(\frac{1}{2},1), \qquad \qquad 65$$

设 $AB: y=k(x-\frac{1}{2}), A(x_1,y_1), B(x_2,y_2),$

$$\Delta = (4k^2 + 8)^2 - 4 \times 4k^2 \times k^2 = 64k^2 + 64 > 0.$$

$$k_1 + k_2 = \frac{y_1 - 1}{x_1 - \frac{1}{2}} + \frac{y_2 - 1}{x_2 - \frac{1}{2}}$$

$$=\frac{\left(y_{1}-1\right)\left(x_{2}-\frac{1}{2}\right)+\left(x_{1}-\frac{1}{2}\right)\left(y_{2}-1\right)}{\left(x_{1}-\frac{1}{2}\right)\left(x_{2}-\frac{1}{2}\right)}$$

$$=\frac{\left[k(x_1-\frac{1}{2})-1\right]+\left[k(x_2-\frac{1}{2})-1\right](x_1-\frac{1}{2})}{x_1x_2-\frac{1}{2}(x_1+x_2)+\frac{1}{4}}$$

$$= \frac{2kx_1x_2 - (k+1)(x_1 + x_2) + \frac{k}{2} + 1}{x_1x_2 - \frac{1}{2}(x_1 + x_2) + \frac{1}{4}}$$
 10 3

$$=\frac{\frac{k}{2} \cdot \frac{(k^2+2)(k+1)}{k^2} + \frac{k}{2} + 1}{\frac{1}{4} \cdot \frac{k^2+2}{2k^2} + \frac{1}{4}}$$

42.【解析】(1) 设点 M(x, y),则直线 A_1M, A_2M 的斜率分别为 $x+2, x-2, x \neq \pm 2$ 以数学

化简得
$$\frac{x^2}{4} + \frac{y^2}{3} = 1(x \neq \pm 2)$$
;

(2) ①设直线 l 的方程为 $x = my + 1, P(x_1, y_1), Q(x_2, y_2)(y_1 > 0, y_2 < 0)$,

$$\frac{k_1}{k_2} = \frac{\frac{y_2}{x_2 + 2}}{\frac{y_1}{x_1 - 2}} = \frac{(x_1 - 2)y_2}{(x_2 + 2)y_1} = \frac{(my_1 - 1)y_2}{(my_2 + 3)y_1} = \frac{my_1y_2 - y_2}{my_1y_2 + 3y_1} = \frac{my_1y_2 - (y_1 + y_2) + y_1}{my_1y_2 + 3y_1},$$

$$\frac{k_1}{k_2} = \frac{-\frac{9m}{3m^2 + 4} + \frac{6m}{3m^2 + 4} + y_1}{-\frac{9m}{3m^2 + 4} + 3y_1} = \frac{-\frac{3m}{3m^2 + 4} + y_1}{-\frac{9m}{3m^2 + 4} + 3y_1} = \frac{1}{3},$$

故 $\frac{k_1}{k_2}$ 为定值 $\frac{1}{3}$;

② Q_1 坐标为 $(x_2, -y_2)$,则直线 PQ_1 方程为 $y-y_1 = \frac{y_1 + y_2}{x_1 - x_2}(x - x_1)$,

$$x = \frac{(x_2 - x_1)y_1}{y_1 + y_2} + x_1 = \frac{x_2y_1 + x_1y_2}{y_1 + y_2} = \frac{(my_2 + 1)y_1 + (my_1 + 1)y_2}{y_1 + y_2} = \frac{2my_1y_2}{y_1 + y_2} + 1$$

$$=\frac{2m(-\frac{9}{3m^2+4})}{-\frac{6m}{3m^2+4}}+1=4,$$

中數學

即直线 PQ1 恒过 D(4,0),

故
$$S_{\triangle PFQ_1} = |S_{\triangle PFD} - S_{\triangle Q_1 FD}|$$

$$= |\frac{1}{2} \times 3|y_1| - \frac{1}{2} \times 3|y_2||$$

$$= \frac{3}{2}||y_1| - |y_2|||$$

平面解析几何

$$\begin{split} &= \frac{3}{2} |y_1 + y_2| \\ &= \frac{3}{2} \times \frac{6 |m|}{3m^2 + 4} \\ &= \frac{9}{3 |m| + \frac{4}{|m|}} \\ &\leqslant \frac{9}{2\sqrt{12}} = \frac{3\sqrt{3}}{4}, \end{split}$$

当 $m^2 = \frac{4}{3}$,即 $m = \pm \frac{2\sqrt{3}}{3}$ 时,等号成立,此时 $\triangle PFQ_1$ 面积最大值为 $\frac{3\sqrt{3}}{4}$.

VEMBER, The Till the state of

VEW SELV. THE LEVEL TO THE SELVE THE