2021 年安庆市高三模拟考试 (二模)

数学试题(理科)参考答案

第I卷

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	С	В	С	A	D	A	В	С	С	A	D	В

1. 【解析】由
$$A \cap B = A$$
知 $A \subseteq B$,故 $\begin{cases} -a < 2 \\ a+3 \ge 4 \end{cases}$,得 $a \ge 1$. 故选 C.

2. 【解析】
$$z^2 + \frac{2}{z} = (1+i)^2 + \frac{2}{1+i} = 2i+1-i = 1+i$$
 , $\left|z^2 + \frac{2}{z}\right| = \sqrt{2}$. 故选 B.

- 3. 【解析】可分两种情况:第一种情况,只有 1 位女生入选,不同的选法有 $C_2^1C_4^2=12$ (种);第二种情况,有 2 位女生入选,不同的选法有 $C_2^2C_4^1=4$ (种).根据分类加法计数原理知,至少有 1 位女生人选的不同的选法有 16 种.故选 C.
- 4. 【解析】由函数解析式知函数 f(x) 是定义在 R 上的奇函数和单调递增函数,于是原不等式可化为 f(2x-1) < f(-3),所以 2x-1 < -3,解得 $x \in (-\infty, -1)$. 故选 A.
- 5. 【解析】画出线性约束区域,所以当直线 $y = \frac{1}{2}x \frac{1}{2}z$ 经过(3.0)点时,目标函数 z = x 2y 有最大值,最大值为 3. 故选 D.

6. 【解析】由
$$\sqrt{2}\sin\left(\alpha+\frac{\pi}{4}\right)=\sin\alpha\tan\frac{\alpha}{2}-1$$
,得 $\sin\alpha+\cos\alpha=2\sin^2\frac{\alpha}{2}-1$.

因为 $\cos\alpha=1-2\sin^2\frac{\alpha}{2}$,所以 $\sin\alpha+\cos\alpha=-\cos\alpha$,即 $\sin\alpha=-2\cos\alpha$,所以 $\tan\alpha=-2$,故选 A.

7. 【解析】设
$$\{a_n\}$$
是等比数列的公比为 q , $\frac{S_2}{S_2+S_4}=\frac{1}{5}$,故 $S_4=4S_2$,从而 $a_3+a_4=3(a_1+a_2)$,

即
$$(a_1 + a_2)q^2 = 3(a_1 + a_2)$$
,解得 $q^2 = 3$, $\frac{a_2}{a_2 + a_4} = \frac{a_1q}{a_1q + a_1q^3} = \frac{1}{1 + q^2} = \frac{1}{4}$,故选 B.

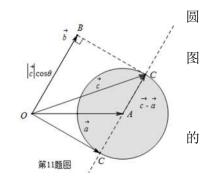
- 8.【解析】由图象可知 $\frac{T}{2} < 2 < \frac{3T}{4}$,即 $\frac{\pi}{\omega} < 2 < \frac{3\pi}{2\omega}$,得 $\frac{\pi}{2} < \omega < \frac{3\pi}{4}$. 因为 ω 为正整数,所以 $\omega = 2$. 又 x = 2 时, $y_{\min} = -1$, 所以 $4 + \varphi = 2k\pi + \pi$, 即 $\varphi = 2k\pi + \pi 4$, $k \in \mathbb{Z}$, 已知 $|\varphi| < 2$, 所以 $\varphi = \pi 4$. 故选 C.
- 9. 【解析】由题意可知,直线 AB 的方程为 $y = \sqrt{3}(x \frac{p}{2})$,代入 $y^2 = 2px$,整理得 $x^2 \frac{5}{3}px + \frac{1}{4}p^2 = 0$. 设点 $A \setminus B$ 的坐标分别为 $\left(x_1, y_1\right)$, $\left(x_2, y_2\right)$,因为点 A 位于 x 轴上方,所以 $x_1 = \frac{3}{2}p$, $x_2 = \frac{1}{6}p$,所以 $\frac{S_1}{S_2} = \frac{|y_1|}{|y_2|} = \frac{\sqrt{2px_1}}{\sqrt{2px_2}} = \sqrt{\frac{x_1}{x_2}} = 3$,故选 C.
- 10. 【解析】设"方亭"的上底面边长为a,下底面边长为b,高为h,则 $V = \frac{1}{3}h(a^2 + ab + b^2)$,

$$V_1 = \frac{1}{2}ha(a+b) = \frac{1}{2}h(a^2 + ab)$$

$$V_2 = V - V_1 = \frac{1}{3}h(a^2 + ab + b^2) - \frac{1}{2}h(a^2 + ab) = \frac{1}{6}h(-a^2 - ab + 2b^2)$$

$$\therefore \frac{V_2}{V_1} = \frac{\frac{1}{6}h(2b^2 - a^2 - ab)}{\frac{1}{2}h(a^2 + ab)} = \frac{1}{3} \times \frac{2 - \left(\frac{a}{b}\right)^2 - \frac{a}{b}}{\left(\frac{a}{b}\right)^2 + \frac{a}{b}} = \frac{1}{3} \Rightarrow \frac{a}{b} = \frac{\sqrt{5} - 1}{2}.$$
 故选A.

11.【解析】解法 1: 取 $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$,则点 C 在以 A 为心,半径为 1 的圆面上(包括边界),设向量 $\overrightarrow{b}, \overrightarrow{c}$ 的夹角为 θ ,由可知, θ 取值范围为 $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$; $\overrightarrow{b} \cdot \overrightarrow{c} = \left|\overrightarrow{b}\right| \overrightarrow{c} \left|\cos\theta = 2\left|\overrightarrow{c}\right|\cos\theta$,由于 $\left|\overrightarrow{c}\right|\cos\theta$ 为向量 \overrightarrow{c} 在向量 \overrightarrow{b} 上的投影,且 $0 \le \left|\overrightarrow{c}\right|\cos\theta \le 2$.故 $\overrightarrow{b} \cdot \overrightarrow{c}$ 取值范围是[0,4].选 D.



解法 2: 不妨设 $\vec{a} = (2,0)$, $\vec{b} = (1,\sqrt{3})$, $\vec{c} = (x,y)$. 因为 $|\vec{c} - \vec{a}| \le 1$, 所以 $(x-2)^2 + y^2 \le 1$, 设 $x = 2 + r\cos\alpha$, $y = r\sin\alpha$, $0 \le r \le 1$, $\alpha \in \mathbb{R}$,

所以
$$\vec{b} \cdot \vec{c} = x + \sqrt{3}y = 2 + r\cos\alpha + \sqrt{3}r\sin\alpha = 2 + 2r\sin\left(\alpha + \frac{\pi}{6}\right)$$
,

由于
$$-1 \le -r \le r \sin \left(\alpha + \frac{\pi}{6} \right) \le r \le 1$$
,故 $\vec{b} \cdot \vec{c} \in [0,4]$. 故选 D.

12. 【解析】由题意知
$$(\ln x - k)x > 3 \ln x$$
,有 $k < \left[\frac{(x-3)\ln x}{x}\right]_{\min}$, $x \in \left[\frac{1}{e}, e^2\right]$

$$\Rightarrow g(x) = \frac{(x-3)\ln x}{x}$$
, $\emptyset g'(x) = \frac{3\ln x + x - 3}{x^2}$. $\Rightarrow \varphi(x) = 3\ln x + x - 3$,

易知其单调递增,因为
$$\varphi(2)=3\ln 2-1>0$$
, $\varphi\left(\frac{3}{2}\right)=3\ln\frac{3}{2}-\frac{3}{2}=3\ln\frac{3}{2\sqrt{e}}<0$,所以存在

$$x_0 \in \left(\frac{3}{2}, 2\right)$$
, $\notin \emptyset(x_0) = 3\ln x_0 + x_0 - 3 = 0$,

因此
$$g(x) = \frac{(x-3)\ln x}{x}$$
 在 $\left[\frac{1}{e}, x_0\right]$ 单调递减, $\left[x_0, e^2\right]$ 单调递增, $g(x)_{\min} = \frac{(x_0-3)\ln x_0}{x_0}$

$$=2-\frac{1}{3}\left(x_0+\frac{9}{x_0}\right)\in\left(-\frac{1}{2},-\frac{1}{6}\right)$$
, 所以最大整数 k 为 -1 , 故选 B.

第Ⅱ卷

- 二、填空题: 本题共4小题,每小题5分,共20分.
- 13. 【解析】因为 $f'(x) = \frac{\cos x \sin x}{e^x}$, f'(0) = 1, f(0) = 0, 所以切线方程为 y = x.
- 14.【解析】由题意, $\mu = 40$,则 $X \sim N(40$, σ^2),由 $P(30 \le X \le 50) = 0.3$,可得 $P(X \ge 50) = 0.35$,故累计时长超过 50 小时的人数大约有 0.35n 人.
- 15. 【解析】已知焦点 F_1 , F_2 的坐标分别为(-c,0), (c,0), 其中 $c = \sqrt{a^2 + b^2}$. 根据对称性,不妨设点G 在渐近线 $y = \frac{b}{a}x$ 上,则直线 F_2G 的方程为 $y = -\frac{a}{b}(x-c)$,与 $y = \frac{b}{a}x$ 联立,得 $G(\frac{a^2}{a^2}, \frac{ab}{a})$,所以 $k = \frac{ab}{c} = \frac{ab}{c}$,由 $kk = -\frac{1}{a}$,

$$G\left(\frac{a^2}{c}, \frac{ab}{c}\right)$$
, $fightharpoonup k_1 = \frac{\frac{ab}{c}}{\frac{a^2}{c} + c} = \frac{ab}{a^2 + c^2}$, $fightharpoonup k_1 = \frac{ab}{c}$

得
$$\frac{ab}{a^2+c^2} \cdot \left(-\frac{a}{b}\right) = -\frac{1}{3}$$
, 化简得 $c^2 = 2a^2$, 故 $e = \sqrt{2}$.

16.【解析】由
$$S_{\Delta ABC}=rac{1}{2}AC\cdot BC\cdot \sin C=rac{3\sqrt{15}}{4}$$
,得 $\sin C=rac{\sqrt{15}}{4}$,若角 C 为锐角,则 $\cos C=rac{1}{4}$,

此时 $AB^2=AC^2+BC^2-2AC\cdot BC\cos C=10$,即 $AB=\sqrt{10}$,由于 AB>BC>AC,则 ΔABC 为 锐角三角形,不符合题意.故 C 为钝角,此时 $\cos C=-\frac{1}{4}$,

 $AB^2 = AC^2 + BC^2 - 2AC \cdot BC \cos C = 16$,故AB = 4.在 ΔACD 中,由正弦定理得

$$\frac{AD}{\sin \angle ACD} = \frac{CD}{\sin \angle CAD}, \quad \boxed{\text{同理,}} \quad \boxed{E \Delta ABD} + , \quad \frac{AD}{\sin \angle ABD} = \frac{BD}{\sin \angle BAD}, \quad \boxed{\text{而在}} \Delta ABC + , \\ \frac{AC}{\sin \angle ABD} = \frac{AB}{\sin \angle ACD}, \quad \boxed{\text{由于}} \angle CAD = \angle BAD, \quad \boxed{\text{故}} \frac{CD}{BD} = \frac{AC}{AB} = \frac{1}{2}, \quad \boxed{\text{由于}} BC = 3, \boxed{\text{故}} CD = 1,$$

所以 $AD^2 = AC^2 + CD^2 - 2AC \cdot CD \cos C = 6$, 所以 $AD = \sqrt{6}$.

- 三、解答题: 共 70 分. 解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考题,每个试题考生都必须作答. 第 22、23 题为选考题,考生根据要求作答.
- (一) 必考题: 60 分.
- 17. (本小题满分 12 分)

$$(II) \triangleq (I) \approx \frac{1}{(n+1)a_n} = n, \quad \therefore a_n = \frac{1}{n(n+1)}$$

$$(2n+1)a_n^2 = \frac{2n+1}{n^2(n+1)^2} = \frac{(n+1)^2 - n^2}{n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2}$$

$$\therefore S_n = \left(\frac{1}{1^2} - \frac{1}{2^2}\right) + \left(\frac{1}{2^2} - \frac{1}{3^2}\right) + \dots + \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right) = 1 - \frac{1}{(n+1)^2}.$$

所以
$$\frac{3}{4} \leq S_n < 1$$
.

-----12 分

18. (本小题满分 12 分)

【解析】(I)如图 1,取 BC 的中点 D , B_1C_1 的中点 D_1 , 连接 AD , A_1D_1 , DD_1 , 根据棱柱的性质可得, $DD_1 /\!\!/\!\!/ BB_1$, $AA_1 /\!\!/\!\!/ BB_1$, 所以 $AA_1 /\!\!/\!\!/ DD_1$,

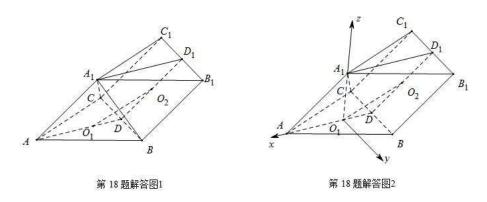
所以四边形 ADD, A, 是平行四边形,

所以 O_1O_2 二平面 ADD_1A_1 .

因为 O_1O_2 ,与 DD_1 相交,

所以 O_1O_2 与 AA_1 相交.

..... 5分



(Π)因为四面体 A_1ABC 是正四面体, O_1 是 \triangle ABC 的中心,所以 A_1O_1 上平面 ABC , AO_1 上 BC . 所以以 O_1 为坐标原点, $\overrightarrow{O_1A_1}$, $\overrightarrow{O_1A_1}$ 方向分别为 x 轴, z 轴正方向,|AB| 为单位长度,建立空间直角坐标系 O_1-xyz .

易得
$$A\left(\frac{\sqrt{3}}{3},0,0\right)$$
, $B\left(-\frac{\sqrt{3}}{6},\frac{1}{2},0\right)$, $C\left(-\frac{\sqrt{3}}{6},-\frac{1}{2},0\right)$, $A_1\left(0,0,\frac{\sqrt{6}}{3}\right)$, $B_1\left(-\frac{\sqrt{3}}{2},\frac{1}{2},\frac{\sqrt{6}}{3}\right)$, $C_1\left(-\frac{\sqrt{3}}{2},-\frac{1}{2},\frac{\sqrt{6}}{3}\right)$, $O_2\left(-\frac{\sqrt{3}}{3},0,\frac{\sqrt{6}}{6}\right)$.

所以 $\overline{A_1O_2} = \left(-\frac{\sqrt{3}}{3},0,-\frac{\sqrt{6}}{6}\right)$, $\overline{BC} = (0,-1,0)$, $\overline{BB_1} = \left(-\frac{\sqrt{3}}{3},0,\frac{\sqrt{6}}{3}\right)$,

所以 $\overrightarrow{A_1O_2} \cdot \overrightarrow{BC} = 0$, $\overrightarrow{A_1O_2} \cdot \overrightarrow{BB_1} = 0$, 故 $\overrightarrow{A_1O_2}$ 是平面 BCC_1B_1 的法向量.

又 $\overrightarrow{A_1O_1}$ 是平面ABC的法向量, $\overrightarrow{A_1O_1} = \left(0,0,-\frac{\sqrt{6}}{3}\right)$,设平面 BCC_1B_1 与平面ABC所成的锐二

面角为 θ ,则

$$\cos \theta = \left| \frac{\overline{A_1 O_2} \cdot \overline{A_1 O_1}}{\left| \overline{A_1 O_2} \right| \left| \overline{A_1 O_1} \right|} \right| = \frac{\frac{\sqrt{6}}{6} \times \frac{\sqrt{6}}{3}}{\sqrt{\left(\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{\sqrt{6}}{6}\right)^2} \times \frac{\sqrt{6}}{3}} = \frac{\sqrt{3}}{3}.$$
 12 /x)

19. (本小题满分 12 分)

(II) X 可能取 6,7,9,10,11,14,16,17,18,19.随机变量 X 的分布列为

X	6	7	9	10	11	14	16	17	18	19
P	$\frac{1}{4}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{12}$		$\frac{1}{36}$	$\frac{1}{9}$	$\frac{1}{18}$	$\frac{1}{36}$	$\frac{1}{72}$

······ 7 分

(Ⅲ) 小强同学能通过比赛的概率

注: 答题得分情况如下

初始		A		В		C		D	累计	能否通
分	对错	得分1分	对错	得分2分	对错	得分3分	对错	得分6分	得分	过比赛
10	√	11		13	√	16			16	能
10	√	11	\checkmark	13	×	11	√	17	17	能
10	√	11		13	×	11	×	9	9	否
10		11	×	9	√	12	√	18	18	能
10		11	×	9		12	×	10	10	否
10		11	×	9	×	7			7	否
10	×	8	√	10	√	13	√	19	19	能
10	×	8		10	√	13	×	11	11	否

10	×	8		10	×	8	√	14	14	能
10	×	8		10	×	8	×	6	6	否
10	×	8	×	6					6	否

20. (本小题满分12分)

【解析】(I)设
$$|F_1F_2|=2c$$
,则 $\triangle PF_1F_2$ 的面积等于 $\frac{1}{2}|F_1F_2||OP|=cb$,所以 $cb=\sqrt{2}$.① 由 $\cos 2\angle OPF_2=\cos \angle F_1PF_2=-\frac{1}{3}$,即 $2\cos^2 \angle OPF_2-1=-\frac{1}{3}$,

得
$$\cos \angle OPF_2 = \frac{\sqrt{3}}{3}$$
.

因为在直角
$$\triangle OPF_2$$
中, $|OP|=b$, $|OF_2|=c$, $|PF_2|=\sqrt{|OP|^2+|OF_2|^2}=\sqrt{b^2+c^2}=a$,所以

$$\cos \angle OPF_2 = \frac{b}{a}$$
, 所以 $\frac{b}{a} = \frac{\sqrt{3}}{3}$. ②

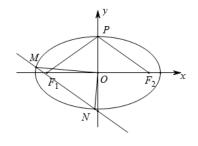
由①②及
$$a^2 = b^2 + c^2$$
, 得 $a = \sqrt{3}$, $b = 1$, $c = \sqrt{2}$

所以椭圆
$$C$$
 的标准方程为 $\frac{x^2}{3} + y^2 = 1$.

(II) 因为直线
$$PF_2$$
的斜率为 $-\frac{\sqrt{2}}{2}$,所以可设直线 l 的方程为 $y=-\frac{\sqrt{2}}{2}x+m$,代入

$$\frac{x^2}{3} + y^2 = 1, \quad \text{整理得} \frac{5}{6} x^2 - \sqrt{2}mx + m^2 - 1 = 0.$$
由 $\Delta = \left(\sqrt{2}m\right)^2 - 4 \times \frac{5}{6} \left(m^2 - 1\right) > 0, \quad \text{得} \ m^2 < \frac{5}{2}.$
设 $M\left(x_1, -\frac{\sqrt{2}}{2}x_1 + m\right), \quad N\left(x_2, -\frac{\sqrt{2}}{2}x_2 + m\right),$

$$\text{ If } x_1 + x_2 = \frac{6\sqrt{2}m}{5} \text{ , } x_1 x_2 = \frac{6\left(m^2 - 1\right)}{5}.$$



若以线段MN为直径的圆经过坐标原点O,则 $\overrightarrow{OM} \cdot \overrightarrow{ON} = 0$,即

$$x_1x_2 + \left(-\frac{\sqrt{2}}{2}x_1 + m\right)\left(-\frac{\sqrt{2}}{2}x_2 + m\right) = 0, \quad \left(\frac{3}{2}x_1x_2 - \frac{\sqrt{2}}{2}m(x_1 + x_2) + m^2\right) = 0,$$

所以
$$\frac{3}{2} \times \frac{6(m^2-1)}{5} - \frac{\sqrt{2}}{2} m \times \frac{6\sqrt{2}m}{5} + m^2 = 0$$
, 得 $m^2 = \frac{9}{8}$.

因为
$$\frac{9}{8} < \frac{5}{2}$$
,所以 $m = \pm \frac{3\sqrt{2}}{4}$.

所以存在满足条件的直线
$$l$$
 ,方程为 $y = -\frac{\sqrt{2}}{2}x + \frac{3\sqrt{2}}{4}$ 或 $y = -\frac{\sqrt{2}}{2}x - \frac{3\sqrt{2}}{4}$.

······ 12 分

21. (本小题满分 12 分)

【解析】(I) 当 a=1, b=0 时, $f(x)=x^2+x-\ln x$,

所以
$$f'(x) = 2x + 1 - \frac{1}{x} = \frac{(2x-1)(x+1)}{x}$$
, $x > 0$,

所以当 $x > \frac{1}{2}$ 时,f'(x) > 0;当 $0 < x < \frac{1}{2}$ 时,f'(x) < 0,所以当且仅当 $x = \frac{1}{2}$ 时,f(x)有最

小值. 因为
$$f\left(\frac{1}{2}\right) = \frac{3}{4} + \ln 2$$
, $f\left(\frac{1}{2}\right) - \frac{5}{4} = -\frac{1}{2} + \ln 2 = \frac{1}{2} (\ln 4 - 1) > 0$,

(II) 解法 1: $f(x) \ge x^2$ 恒成立,即 $x - \ln(ax + b) \ge 0$,且要求ax + b > 0,

所以 $e^x - ax \ge b$,

①若 a < 0 ,对任意的实数 b ,当 x < 0 且 $x < \frac{1-b}{a}$ 时,由于 $0 < e^x < 1$, ax + b > 1 , 故不等式 $e^x - ax \ge b$ 不成立.

②若a > 0, 设 $g(x) = e^x - ax$, 则 $g'(x) = e^x - a$.

$$\exists x \in (-\infty, \ln a), \ g'(x) < 0, \ \exists x \in (\ln a, +\infty), \ g'(x) > 0,$$

从而 $g(x) = e^x - ax$ 在 $(-\infty, \ln a)$ 上单调递减,在 $(\ln a, +\infty)$ 单调递增;

故
$$g(x) = e^x - ax$$
有最小值 $g(\ln a) = a - a \ln a$

因此 $b \le a - a \ln a$, 所以 $ab \le a^2 - a^2 \ln a$.

设
$$h(a) = a^2 - a^2 \ln a$$
 ($a > 0$) 则 $h'(a) = a(1 - 2 \ln a)$

所以
$$h(a) = a^2 - a^2 \ln a$$
 在 $\left(0, e^{\frac{1}{2}}\right)$ 上单调递增,在 $\left(e^{\frac{1}{2}}, +\infty\right)$ 上单调递减.

从而
$$h(a) = a^2 - a^2 \ln a$$
 的最大值为 $h\left(e^{\frac{1}{2}}\right) = e - e \ln e^{\frac{1}{2}} = \frac{e}{2}$.

解法 2: $f(x) \ge x^2$ 恒成立, 即 $x - \ln(ax + b) \ge 0$ 恒成立.

若 a<0,对任意的实数 b,当 x<0 且 $x<\frac{1-b}{a}$ 时, $\ln(ax+b)>0$,不等式 $x-\ln(ax+b)\ge 0$ 不成立,所以 a>0.

令
$$g(x) = x - \ln(ax + b)$$
,则 $g'(x) = 1 - \frac{a}{ax + b} = \frac{a}{ax + b} \left(x - \frac{a - b}{a}\right)$,由于 $ax + b > 0$,

当
$$-\frac{b}{a} < x < \frac{a-b}{a}$$
时, $g'(x) < 0$,当 $x > \frac{a-b}{a}$ 时, $g'(x) > 0$,所以 $g(x) = x - \ln(ax + b)$ 在

$$\left(-\frac{b}{a},+\infty\right)$$
上有最小值,最小值为 $g\left(\frac{a-b}{a}\right) = \frac{a-b}{a} - \ln a$.

由
$$x-\ln(ax+b) \geqslant 0$$
恒成立,得 $g\left(\frac{a-b}{a}\right) = \frac{a-b}{a} - \ln a \geqslant 0$,

所以 $b \le a - a \ln a$ (以下同解法一)

解法 3: $f(x) \ge x^2$ 恒成立,即 $x - \ln(ax + b) \ge 0$,从而 $e^x \ge ax + b$,曲线 $y = e^x$ 不在直线 y = ax + b的下方.

设与直线 y = ax + b 平行且与曲线 $y = e^x$ 相切的直线与曲线 $y = e^x$ 相切的切点为 $\left(x_0, e^{x_0}\right)$,则该切线方程为 $y = e^{x_0}\left(x - x_0\right) + e^{x_0}$,所以 $a = e^{x_0}$.

要使曲线 $y = e^x$ 不在直线 y = ax + b 的下方,必须 $b \le -x_0 e^{x_0} + e^{x_0}$

因为 $a = e^{x_0} > 0$,所以 $ab \le e^{x_0} \left(-x_0 e^{x_0} + e^{x_0} \right) = e^{2x_0} \left(1 - x_0 \right)$,

令 $g(x) = e^{2x}(1-x)$,则 $g'(x) = e^{2x}(1-2x)$,所以函数 g(x) 在 $(-\infty, \frac{1}{2})$ 上单调递增,在 $(\frac{1}{2}, +\infty)$ 上单调递减,所以 $[g(x)]_{min} = g(\frac{1}{2}) = \frac{e}{2}$,即 $ab \leq \frac{e}{2}$

故 ab 的最大值为 $\frac{e}{2}$.

(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](本小题满分10分)

【解析】(I)曲线 C_1 的普通方程为 $x^2 + y^2 = r^2(r > 0)$,

曲线 C_2 的普通方程为 $x^2 + (y-4)^2 = 1$

若 C_1 与 C_2 有公共点,则r-1 | $\leq \sqrt{(0-0)^2+(4-0)^2} \leq r+1$,所以 $3 \leq r \leq 5$.

..... 5分

(II) 设
$$P(\cos\alpha, \sin\alpha)$$
, 由 $|PQ|^2 = |PC_2|^2 - |C_2Q|^2 = |PC_2|^2 - 1$,

得
$$|PQ|^2 = \cos^2 \alpha + (\sin \alpha - 4)^2 - 1 = 16 - 8\sin \alpha \ge 16 - 8 = 8$$
.

23. [选修 4-5: 不等式选讲] (本小题满分 10 分)

【解析】(I)由|3x+1|+|x-2|>5得

$$\begin{cases} x < -\frac{1}{3} & \text{if } \begin{cases} -\frac{1}{3} \le x < 2 \\ -3x - 1 - x + 2 > 5 \end{cases} & \text{if } \begin{cases} x \ge 2 \\ 3x + 1 - x + 2 > 5 \end{cases},$$

解得x < -1或1 < x < 2或 $x \ge 2$.

(II) 由题意知, 当 $x \in [0,3]$ 时, $|3x+1|+|x-2| \ge x^2 + m$ 恒成立.

若2
$$\leq x \leq 3$$
,则 $3x+1+x-2 \geq x^2+m$, $m \leq (-x^2+4x-1)_{\min} = 2$.

综上可知,实数m的取值范围是 $(-\infty,2]$. ············10分