2021 年北京大学强基计划笔试数学试题回忆版

◎猿辅导

本试卷共 20 题,每一道题均为单选题,下为回忆版,部分题目条件可能与实际考试有 所出入,仅供参考.

1. 已知 O 为 $\triangle ABC$ 的外心,AB、AC 与 $\triangle OBC$ 的外接圆交于 D、E. 若 DE = OA,则 $\angle OBC =$

答案: $\frac{\pi}{4}$

解:

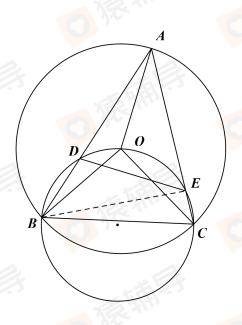


图 1: 第 1 题图

如图 1 所示,联结 BE.

因为 DE = OC,在 $\triangle OBC$ 外接圆中, $\angle DBE = \angle OBC$,进而可得 $\angle DBO = \angle EBC$. 另外在 $\bigcirc O$ 中, $\angle AOB = 2\angle ACB$.

以及 $\angle AOB + 2\angle OBD = 180^{\circ}$.

即 $\triangle EBC$ 为直角三角形,且 BC 为直角边, BC 为第二个圆的直径.

所以
$$\angle OBC = \frac{\pi}{4}$$
.

2. 方程 $y^3 + f^4 = d^5$ 的正整数解 (y, f, d) 的组数为 ______

答案: 无穷

解: 考虑到 $2^n + 2^n = 2^{n+1}$, 取 $n \equiv 0 \pmod{3}$, $n \equiv 0 \pmod{4}$, $n \equiv -1 \pmod{5}$ 即可. 例如取 n = 60k + 24, $k \in \mathbb{N}$.

此时
$$(2^{20k+8})^3 + (2^{15k+6})^4 = (2^{12k+5})^5$$
.

3. 若实数 a, b, c, d 满足 ab + bc + cd + da = 1,则 $a^2 + 2b^2 + 3c^2 + 4d^2$ 的最小值为______.

答案: 2

解: 因式分解可得 (a+c)(b+d) = 1.

根据柯西不等式可得 (a^2+3c^2) $\left(1+\frac{1}{3}\right) \geqslant (a+c)^2$,即 $a^2+3c^2 \geqslant \frac{3}{4}(a+c)^2$.

同样地, $(2b^2+4d^2)\left(\frac{1}{2}+\frac{1}{4}\right)\geqslant (b+d)^2$,即 $2b^2+4d^2\geqslant \frac{4}{3}(b+d)^2$.

因此 $a^2 + 2b^2 + 3c^2 + 4d^2 \geqslant \frac{3}{4}(a+c)^2 + \frac{4}{3}(b+d)^2 \geqslant 2(a+c)(b+d) = 2.$

等号成立条件为 a:b:c:d=3:2:1:1,其中 $c=d=\pm \frac{\sqrt{3}}{6}$.

4. 已知 $Y = \sum_{i=0}^{2021} \left[\frac{2^i}{7} \right]$,则 Y 的个位数字是 _____.

答案: 5

解: 由 $2^3 \equiv 1 \pmod{7}$,可知 2^i 模 7 是三循环的,

 $2^{3k} \equiv 1 \pmod{7}$, $2^{3k+1} \equiv 2 \pmod{7}$, $2^{3k+2} \equiv 4 \pmod{7}$, $\not \exists \ k \in \mathbb{N}$.

$$Y = \sum_{i=0}^{2021} \left[\frac{2^i}{7} \right] = \sum_{i=0}^{2021} \frac{2^i}{7} - \frac{2022}{3} \left(\frac{1}{7} + \frac{2}{7} + \frac{4}{7} \right) = \frac{2^{2022} - 1}{7} - 674$$

$$=\frac{(2^3-1)(1+2^3+2^6+\cdots+2^{2019})}{7}-674=1+2^3+2^6+\cdots+2^{2019}-674.$$

结合 $8^{4k} \equiv 6 \pmod{10}$, $8^{4k+1} \equiv 8 \pmod{10}$, $8^{4k+2} \equiv 4 \pmod{10}$, $8^{4k+3} \equiv 2 \pmod{10}$ (其中 $k \in \mathbb{N}$),可知

 $Y \equiv 1 + 168(8 + 4 + 2 + 6) + 8 - 674 \equiv 5 \pmod{10}$.

5. 若平面上有 100 条二次曲线,则这些曲线可以把平面分成若干个连通区域,则连通区域数量最大值为

答案: 20101

解: 从第 k 个二次曲线开始计算,新增加一个二次曲线变成 k+1 条的情形,这条二次曲线与原来每一个二次曲线最多有 4 个交点,相当于最多新增加 4k 个交点.

- (1) 如果是椭圆或者圆,被分成 4k 段圆弧,相当于增加连通区域最多 4k 个;
- (2) 如果是抛物线,被分成4k+1段曲线,相当于最多增加连通区域4k+1个;
- (3) 如果是双曲线,被分成4k+2段曲线,相当于最多增加连通区域4k+2个;
- (4) 如果是两条直线,明显相交直线更优,相当于依次加入两条直线,最多增加连通区域 4k+3 个.

如果包括二次曲线的退化情形,例如两条相交直线,则从第一个曲线开始,每次均引入相交直线,答案为 $4+(4\times 1+3)+(4\times 2+3)+\cdots+(4\times 99+3)=20101$. 选取 200 条直线两两相交,但交点不重合的情形均可. \square

【注】 如果二次曲线只计算圆,椭圆,双曲线,抛物线,则从第一个曲线开始,每次均引入双曲线,答案为 $3+(4\times 1+2)+(4\times 2+2)+\cdots+(4\times 99+2)=20001.$ 选取 200 条离心率足够大 (几乎一组平行直线),绕着其中心旋转 180° 过程中,选取任意 200 个位置即可.

6. 已知实数 $x_0 \in [0,1)$. 数列 $\{x_k\}$ 满足: 若 $x_{n-1} < \frac{1}{2}$,则 $x_n = 2x_{n-1}$,若 $x_{n-1} \ge \frac{1}{2}$,则 $x_n = 2x_{n-1}$, $x_n = 2x_{n-1}$, $x_n = 2x_{n-1}$, 现知 $x_n = x_{n-1}$,则可能的 $x_n = x_{n-1}$.

答案: 2²⁰²¹ - 1

解: 首先我们证明 $x_n \in [0,1)$ 恒成立.

若
$$x_i \in \left[0, \frac{1}{2}\right)$$
,则 $x_{i+1} = 2x_i \in [0, 1)$;

若
$$x_i \in \left[\frac{1}{2}, 1\right)$$
,则 $x_{i+1} = 2x_i - 1 \in [0, 1)$.

由数学归纳法知, $x_n \in [0,1)$ 对 $\forall n \in \mathbb{N}^*$ 成立, 那么有

$$x_n = \{x_n\} = \{2^n x_0\}, 其中\{\alpha\}$$
表示 α 的小数部分.

$$\therefore x_{2021} = \{2^{2021}x_0\}.$$

$$\therefore \{2^{2021}x_0\} = x_0, \quad \text{即 } 2^{2021}x_0 - x_0 \text{ 为整数.}$$

$$\therefore x_0 = \frac{k}{2^{2021} - 1} \ (k = 0, 1, 2, \cdots, 2^{2021} - 2).$$

7. 设 $y_n = 1 \underbrace{22 \cdots 2}_{n} 1$. 若 $10^9 - 1 | y_n$,则 n 的最小值为_____.

答案: 80

解: 由于
$$y_n = \overbrace{11\cdots 1}^{n+1} \times 11 = \frac{10^{n+1} - 1}{9}$$
,

那么由 $10^9 - 1|y_n$ 可得

$$10^9 - 1 \left| \frac{10^{n+1} - 1}{9} \times 11. \right|$$

故

$$9 \times (10^9 - 1)|10^{n+1} - 1.$$

于是 $10^9 - 1|10^{n+1} - 1$.

利用辗转相除法可以证明 $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$ (a) 为大于 1 的正整数).

于是, 我们有 9|n+1. 令 n+1=9k, 代入原式则有 $9\times(10^9-1)|10^{9k}-1$.

而

$$10^{9k} - 1 = (10^9 - 1) \times (10^{9(k-1)} + 10^{9(k-2)} + \dots + 10^9 + 1),$$

因此,我们有

$$9|10^{9(k-1)} + 10^{9(k-2)} + \dots + 10^9 + 1,$$

继而 9|k. 所以 $k \ge 9$. 再结合 $n+1 \ge 81$ 可知, n 的最小值为 80.

8. 已知 a、b、c 是三个不全相等的实数且满足 a=ab+c、b=bc+a、c=ca+b. 则 a+b+c=_____.

答案: 3

解: 先证明 a、b、c 均不为 0,若否,不妨设 a=0,则由 a=ab+c 可得 c=0,同理可得 b=0,与 a、b、c 不全相等矛盾. 所以 a、b、c 均不为 0.

题目中三式相加容易得到 ab + bc + ca = 0,

又因为题目中三式等价于 a(1-b) = c、b(1-c) = a、c(1-a) = b,

此三式相乘得到 abc(1-a)(1-b)(1-c) = abc.

由 $abc \neq 0$,所以 (1-a)(1-b)(1-c) = 1,即 1-(a+b+c)-(ab+bc+ca)-abc = 1.

由于ab + bc + ca = 0,所以abc = -(a + b + c),

又因为题目中三式等价于 $ac = abc + c^2$ 、 $ab = abc + a^2$ 、 $bc = abc + b^2$,

此三式相加得到 $ab + bc + ca = 3abc + a^2 + b^2 + c^2$,

$$\mathbb{II} \ 3(ab + bc + ca) = 3abc + (a + b + c)^{2}.$$

由
$$ab + bc + ca = 0$$
 及 $abc = -(a + b + c)$ 得到 $-3(a + b + c) + (a + b + c)^2 = 0$

因为
$$a+b+c=-abc\neq 0$$
,

所以
$$a+b+c=3$$
.

9. 如图,AD 为 $\triangle ABC$ 中 $\angle A$ 的 $\overline{\mathbf{P}}$ 为线. 过 A 作 AD 的 垂线 \overline{AH} ,过 C 作 \overline{CE} // AD 交 AH 于点 E. 若 BE 与 AD 交于点 F,且 AB = 6, AC = 8, BC = 7. 则 CF = ______.

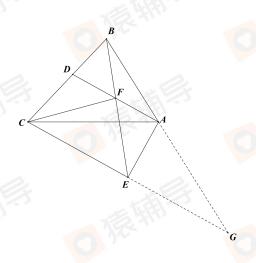


图 2: 第 9 题图

答案: √31

解: 延长 CE, BA 交于 G.AE 是 $\angle BAC$ 的外角平分线,结合 AE 垂直于 CE 易可知 E 为 CG 的中点,从而 F 为 AD 的中点. 因此,

$$|\overrightarrow{CF}| = \frac{1}{2}|\overrightarrow{CD} + \overrightarrow{CA}|$$

$$= \frac{1}{2}\sqrt{|\overrightarrow{CD}|^2 + |\overrightarrow{CA}|^2 + 2\overrightarrow{CD} \cdot \overrightarrow{CA}}$$

$$= \frac{1}{2}\sqrt{4^2 + 8^2 + 2 \times 4 \times 8 \times \cos \angle BCA}$$

$$= \frac{1}{2}\sqrt{124}$$

$$= \sqrt{31}.$$

故
$$CF = \sqrt{31}$$
.

10. 如果一个十位数 F 的各位数字之和为 81,则称 F 是一个"小猿数".则小猿数的个数

答案: 48619

解: 设 $F = \overline{a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}}$.

则

$$a_1 + a_2 + \dots + a_{10} = 81,$$

其中 $1 \le a_1 \le 9,0 \le a_i \le 9,i = 2,3,\cdots,10.$

$$b_1 + b_2 + \cdots + b_{10} = 9$$
,

其中 $0 \le b_1 \le 8, 0 \le b_i \le 9, i = 2, 3, \dots, 10$

而该方程的非负整数解共 $C_{9+10-1}^{10-1} = C_{18}^9 = 48620$ 组.

除去唯一一组不合题意的 $(9,0,\cdots,0)$, 故共有 48620-1=48619 个小猿数.

11. 设 a_n 是与 $\sqrt{\frac{n}{2}}$ 的差的绝对值最小的整数, b_n 是与 $\sqrt{2n}$ 的差的绝对值最小的整数. 记 $\left\{\frac{1}{a_n}\right\}$ 的前 n 项和为 S_n , $\left\{\frac{1}{b_n}\right\}$ 的前 n 项和为 T_n . 则 $2T_{100} - S_{100}$ 的值为______.

答案: 1

解:
$$a_n = k \Leftrightarrow \sqrt{\frac{n}{2}} \in \left(k - \frac{1}{2}, k + \frac{1}{2}\right) \Leftrightarrow \frac{n}{2} \in \left(k^2 - k + \frac{1}{4}, k^2 + k + \frac{1}{4}\right)$$

$$\Leftrightarrow n \in \left(2k^2 - 2k + \frac{1}{2}, 2k^2 + 2k + \frac{1}{2}\right) \Leftrightarrow n \in [2k^2 - 2k + 1, 2k^2 + 2k].$$

故有 $4k \uparrow n$ 使得 $a_n = k$

于是

$$S_{100} = \sum_{k=1}^{6} \left(\frac{1}{k} \times 4k \right) + \frac{1}{7} \times 16 = 24 + \frac{16}{7}.$$

类似地, $b_n = k \Leftrightarrow \sqrt{2n} \in \left(k - \frac{1}{2}, k + \frac{1}{2}\right) \Leftrightarrow n \in \left[\frac{k^2 - k}{2} + 1, \frac{k^2 + k}{2}\right].$

故共有 k 个 n 使得 $b_n = k$.

厠

$$T_{100} = \sum_{k=1}^{13} \left(\frac{1}{k} \times k\right) + \frac{1}{14} \times 9 = 13 + \frac{9}{14}.$$

故 $2T_{100} - S_{100} = 2(13 + \frac{9}{14}) - (24 + \frac{16}{7}) = 1.$

12. 设正整数 $n \leq 2021$,且 $n^5 - 5n^3 + 4n + 7$ 是完全平方数. 则可能的 n 的个数为___

答案: 0

M: $n^5 - 5n^3 + 4n + 7 = n(n^2 - 1)(n^2 - 4) + 7$.

由于完全平方数模 4 ± 0 或 1,故 $(n^2-1)(n^2-4)$ 被 4 整除. 从而 $n(n^2-1)(n^2-4)+7$ 模 4 ± 3 ,不可能是完全平方数. 故这样的 $n \pm 0$ 个.

13. 方程 $x^2 - 2xy + 3y^2 - 4x + 5 = 0$ 的整数解的组数为 _______

答案: 2

解: 方程等价于 $x^2 - (2y+4)x + 3y^2 + 5 = 0$,

判別式 $\Delta = (2y+4)^2 - 4(3y^2+5) = 4(-2y^2+4y-1) = 4(1-2(y-1)^2) \le 4$.

判别式是一个平方数,经检验只能 $\Delta = 4$,此时 y = 1.

方程转化为 $x^2 - 6x + 8 = 0$,解得x = 2或x = 4.

因此 $(x,y) \in \{(2,1),(4,1)\}.$

14. 现有 7 把钥匙和 7 把锁. 用这些钥匙随机开锁,则 D_1, D_2, D_3 这三把钥匙不能打开对应的锁的概率是______.

答案: $\frac{67}{105}$

解:全部情形共 7! 种.

记第 i 把锁所被打开的情形构成集合 A_i , i = 1, 2, 3.

则 $|A_i| = 6!$, $|A_i \cap A_j| = 5!$, $|A_1 \cap A_2 \cap A_3| = 4!$.

由容斥原理知概率为 $\frac{7!-3\times 6!+3\times 5!-4!}{7!}=\frac{67}{105}$.

15. 设正整数 m, n 均不大于 2021,且 $\frac{m}{n+1} < \sqrt{2} < \frac{m+1}{n}$. 则这样的数组 (m, n) 个数为 .

答案: 3449.

解: 原式等价于 $\sqrt{2}n-1 < m < \sqrt{2}(n+1)$.

记区间 $I_n = (\sqrt{2}n - 1, \sqrt{2}(n+1)).$

则 $I_j \cap I_{j+1} = (\sqrt{2}(j+1) - 1, \sqrt{2}(j+1))$,且 $I_j \cap I_k = \emptyset$ $(k \ge j+2)$.

由于 $\sqrt{2}(j+1)$ 不为整数,故 $I_j \cap I_{j+1}$ 内恰有一个整数.

当 $n \ge 1430$ 时, $\sqrt{2}n - 1 > 2021$.

故所求数组 (m,n) 的个数是诸 $|I_n|$ $(n=1,2,\cdots,1429)$ 之和.

每个 $m \in \{1, 2, \cdots, 2021\}$ 都出现在某个 I_n 之中,且当且仅当对于某个 $j, m \in I_j \cap I_{j+1}$ 时,m 会出现在两个 I_n 内.

因此,所求数组个数为 2021 + 1428 = 3449. □

16. 有三个给定的经过原点的平面. 过原点作第四个平面 α ,使之与给定的三个平面形成的三个二面角均相等. 则这样的 α 的个数是

答案: 1或4

解:若三个平面法向量共面(记平面为 β),则只有一个和他们均垂直的平面满足要求. 这是因为 α 的法向量在 β 上的投影必须在这三个平面法向量两两形成的角的角平分线上,因此投影只能是零向量,也就是 α 的法向量需要与 β 垂直.

若三个平面法向量不共面,则任意两个法向量所在基线均有两个角分面. 我们考虑第一个平面和第二个平面的两个角分面,以及第二个平面和第三个平面的两个角分面,一共可以产生四条交线,这四条交线即为第四个平面法向量的基线. 极特殊情况,前三个平面如果两两垂直,即可以考虑空间直角坐标系中 xOy, yOz, zOx, 与他们三个夹角一样的第四个平面法向量的方向,即为每个卦限的中分线,一共四条,对应四个平面.

【注】 非常容易产生的一种错误是认为此题的答案仅有 4. 这是因为没有考虑三个平面的法向量共面的情形.

17. 若 a,b,c 为非负实数,且 $a^2+b^2+c^2-ab-bc-ca=25$,则 a+b+c 的最小值为

答案: 5

M: $(a+b+c)^2 \ge a^2 + b^2 + c^2 - ab - bc - ca = 25$.

当 (a,b,c) = (5,0,0),(0,5,0) 或 (0,0,5) 取等.

18. 已知数列 $\{a_n\}$ 满足 $a_1 = 2$, $a_{n+1} = 2^{a_n}$. 数列 $\{b_n\}$ 满足 $b_1 = 5$, $b_{n+1} = 5^{b_n}$. 若正整数 m 满足 $b_m > a_{25}$,则 m 的最小值为_____.

答案: 24

解:分两步证明:

(1) 先证明对任意正整数 n 有 $b_n > a_{n+1}$,

采用数学归纳法,

当 n=1 时有 $b_1=5>2^2=a_2$ 显然成立,

假设当n = k时结论成立,即 $b_k > a_{k+1}$,

则当 n=k+1 时,有 $b_{k+1}=5^{b_k}>5^{a_{k+1}}>2^{a_{k+1}}=a_{k+2}$

所以对 n = k + 1 结论也成立.

所以对任意正整数 n 有 $b_n > a_{n+1}$.

(2) 再证明对任意正整数 n 有 $a_{n+2} > 3b_n$,

当 n=1 时,有 $a_3=16>15=3b_1$,

假设当 n=k 时结论成立,即 $a_{k+2}>3b_k$,

则当
$$n=k+1$$
时, $a_{k+3}=2^{a_{k+2}}>2^{3b_k}=8^{b_k}=\left(\frac{8}{5}\right)^{b_k}\times 5^{b_k}\geqslant \left(1+\frac{3}{5}\right)^5>3\times 5^{b_k}$

所以对n = k + 1结论也成立.

所以对任意正整数 n 有 $a_{n+2} > 3b_n$.

此时我们由 (1) 可以得到 $b_{24} > a_{25}$,

由 (2) 可以得到 $a_{25} > 3b_{23} > b_{23}$,

所以满足 $b_m > a_{25}$ 的 m 的最小值为 24. \square

答案: 85

解: 显然 $x_1 = x_2 = \ldots = x_7 = 0$ 是满足条件的一组解, 且只要 x_1, x_2, \ldots, x_7 中有 0, 则剩余的必须全为 0.

下面只考虑 $x_1, x_2, ..., x_7$ 非零的情形. 不妨设 $0 < x_1 \le x_2 \le ... \le x_7$. 则 $x_1 x_2 ... x_7 \le 7x_7 \Rightarrow x_1 x_2 ... x_6 \le 7$.

显然此时必有 $x_1 = x_2 = x_3 = x_4 = 1$ (否则 $x_4x_5x_6 \ge 2^3 = 8 > 7$, 矛盾). 于是命题等价于 $x_5x_6x_7 = 4 + x_5 + x_6 + x_7$, 且由 $x_5x_6 \le 7$, 可得 $x_5 \le 2$.

情形 1: $x_5 = 1$.

满足条件的解有 $(x_6, x_7) = (2,7), (3,4)$.

情形 2: $x_5 = 2$.

则 $x_6 = 2$ 或 3.

 $x_6 = 2$ 时, $4x_7 = 8 + x_7$ (舍);

 $x_6 = 3$ 时, $6x_7 = 9 + x_7$ (舍).

故此类情形无解.

综上 $(x_1, x_2, \dots, x_7) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (1, 1, 1, 1, 1, 2, 7)$ 或 (1, 1, 1, 1, 1, 3, 4).

考虑到轮换性,故共有 7×6×2+1 = 85 组解. □

20. 已知 a, b, $c \in \mathbb{R}^+$, 且 $(a+b-c)\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)=3$, 求 $(a^4+b^4+c^4)\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)$ 的最小值.

答案: $417 + 240\sqrt{3}$

解:原式整理可得

$$(a+b-c)\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{c}\right) = 3$$

$$\Rightarrow \left(\frac{a}{b} + \frac{b}{a} + 2\right) - (a+b)\left(\frac{c}{ab} + \frac{1}{c}\right) + 1 = 3$$

$$\Rightarrow (a+b)\left(\frac{c}{ab} + \frac{1}{c}\right) = \frac{a}{b} + \frac{b}{a}$$

$$\Rightarrow \frac{c}{ab} + \frac{1}{c} = \frac{a^2 + b^2}{ab(a+b)} \geqslant \frac{2}{\sqrt{ab}}.$$

由齐次性,不妨设 ab=1. 则 $\frac{a^2+b^2}{a+b}\geqslant 2$,即 $(a+b)^2-2\geqslant 2(a+b)$. 因此 $a+b\geqslant 1+\sqrt{3}$. 于是,

$$a^4 + b^4 = (a^2 + b^2)^2 - 2 \ge \left(\left(1 + \sqrt{3}\right)^2 - 2\right)^2 - 2 = 14 + 8\sqrt{3}.$$

故

$$(a^{4} + b^{4} + c^{4}) \left(\frac{1}{a^{4}} + \frac{1}{b^{4}} + \frac{1}{c^{4}} \right)$$

$$= (a^{4} + b^{4}) \left(\frac{1}{a^{4}} + \frac{1}{b^{4}} \right) + (a^{4} + b^{4}) \left(\frac{1}{c^{4}} + \frac{c^{4}}{a^{4}b^{4}} \right) + 1$$

$$\geqslant (a^{4} + b^{4})^{2} + (a^{4} + b^{4}) \cdot 2\sqrt{\frac{1}{c^{4}} \cdot \frac{c^{4}}{a^{4}b^{4}}} + 1$$

$$= (a^{4} + b^{4} + 1)^{2}$$

$$\geqslant (15 + 8\sqrt{3})^{2}$$

$$= 417 + 240\sqrt{3}.$$

当 $c = 1, ab = 1, a + b = 1 + \sqrt{3}$ 时等号成立. 这样的 a, b 显然是存在的