唐山市 2021 年普通高等学校招生统一考试第一次模拟演练

数学参考答案

- .	选择题: CACD BBDC						
=.	选择题: ACD AD ABC BD						
Ξ.	填空题: 13. 31; 14. $\left(-\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$;						
	15. 0.150, 6.1 (第一空 2 分, 第二空 3 分) 16. 13π						
四.	解答题: (若有其他解法,请参照给分)						
17.	(1) 由 <i>C</i> =2 <i>B</i> 及 <i>B</i> =15°得 <i>C</i> =30°, 于是 <i>A</i> =135°.	···1 分					
	由正弦定理可得 $b = \frac{a\sin B}{\sin A} = 2\sqrt{2}\sin B = 2\sqrt{2}\sin 15^\circ = \sqrt{3} - 1$,	···4 分					
	因此 $S_{\triangle ABC} = \frac{1}{2}ab\sin C = \frac{\sqrt{3}-1}{2}$						
	(2) 由 $C=2B$ 得 $\sin C=\sin 2B=2\sin B\cos B$, 由正弦定理可得 $c=2b\cos B$, 又 $2ac\cos B=a^2+c^2-b^2$,所以 $ac^2=b(a^2+c^2-b^2)$,	···7 分					
	整理可得 $(a-b)[c^2-b(a+b)]=0$,将 $a+b=\sqrt{2}c$ 代入上式可得 $(a-b)^2(a+b)=0$,						
	因此 $a=b$,	•••9分					
	于是 $c=\sqrt{2}a=\sqrt{2}b$,即 $C=90^{\circ}$. 故 $\triangle ABC$ 为等腰直角三角形.	···10 分					
18.	解: (1) 由 $a_{n+1}+(-1)^n \cdot a_n=11-2n$ 可得						
		···1 分					
	所以 $a_2+a_3=11-4\times 1$, $a_4+a_5=11-4\times 2$, …, $a_{100}+a_{101}=11-4\times 50$, $(1+50)\times 50$						
	因此 $S_{101} = a_1 + 11 \times 50 - 4 \times \frac{(1+50)\times 50}{2} = -4551.$	…5 分					
	(2) 当 $n=2k-1$ ($k \in \mathbb{N}^*$) 时, $a_{2k}-a_{2k-1}=13-4k$ (ii), (i) 式减去 (ii) 式得 $a_{2k+1}+a_{2k-1}=-2$,	···6 分 ···7 分					
	又 $a_1 = -1$,于是 $a_{2k-1} = -1$ $(k \in \mathbb{N}^*)$, $a_{2k} = 12 - 4k$	…8分					
	可得 a_2 =8, a_4 =4, a_6 =0; 当 k >3(k ∈ \mathbf{N}^*)时, a_{2k} <0; 又 k ∈ \mathbf{N}^* , a_{2k-1} =−1<0,	…9 分					
	则 $n>6$ $(n\in\mathbb{N}^*)$ 时, $a_n<0$;	…10分					
	又 $S_1 = -1$, $S_2 = 7$, $S_3 = 6$, $S_4 = 10$, $S_5 = S_6 = 9$, $n > 6$ $(n \in \mathbb{N}^*)$ 时, $S_n > S_{n+1}$;	···11 分					
	因此 $n=4$ 时, S_n 取得最大值,且 $S_4=10$.	…12分					

19. 解:

(1) 侧面 ACC_1A_1 上底面 ABC, $\angle ACB = 90^\circ$,得 BC 上侧面 ACC_1A_1 ,

又
$$A_1C$$
 (侧面 ACC_1A_1),得 $BC \perp A_1C$

…2分

由 $BC//B_1C_1$,得 $B_1C_1\bot A_1C_1$

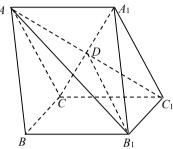
由
$$AC=CC_1=2$$
,得侧面 ACC_1A_1 是菱形, $AC_1\perp A_1C$,

…4 分

又 $B_1C_1 \cap AC_1 = C_1$,则 $A_1C \perp$ 平面 AB_1C_1 ,

又
$$AB_1$$
 二平面 AB_1C_1 ,则 $A_1C \perp AB_1$.

…6分



(2) 设 $AC_1 \cap A_1C = D$, 连接 B_1D .

由(1)可知 A_1C 上平面 AB_1C_1 , B_1D 为 A_1B_1 在平面 AB_1C_1 上的射影,

则
$$\angle A_1B_1D$$
 即为 A_1B_1 与平面 AB_1C_1 的所成角,

…8分

又
$$A_1B_1 = 2\sqrt{2}$$
,由 $\sin \angle A_1B_1D = \frac{\sqrt{2}}{4}$,得 $A_1D = 1$,

…9 分

则 $A_1C = A_1C_1 = CC_1 = 2$, $S_{\triangle A_1CC_1} = \sqrt{3}$

$$V$$
 四面体 $_{ACB_1A_1} = V$ 三棱锥 $_{B_1-ACA_1} = \frac{1}{3} \times S_{\triangle A_1CC_1} \times B_1C_1 = \frac{1}{3} \times \sqrt{3} \times 2 = \frac{2\sqrt{3}}{3}$. …12 分

20. 解:

(1) 由题意设 l 的方程为 y+2=k(x-1), 与 $x^2=4y$ 联立得,

$$x^2 - 4kx + 4k + 8 = 0$$

由
$$\Delta > 0$$
 得 $k^2 - k - 2 > 0$,即 $k < -1$,或 $k > 2$.

•••4 分

 $\mathbb{Z}_{k}>0$,

所以
$$k$$
 的取值范围是 $(2, +\infty)$.

…5 分

(2) 设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, $C(x_3, y_3)$, $D(x_4, y_4)$, 由 (1) 可得 $x_1+x_2=4k$;

…6分

由题意设 m 的方程为 y+2=-k(x-1), 与 $x^2=4y$ 联立得,

$$x^2+4kx-4k+8=0$$

得 $x_3+x_4=-4k$;

⋯8 分

$$k_{AC} = \frac{y_3 - y_1}{x_3 - x_1} = \frac{x_3^2 - x_1^2}{4(x_3 - x_1)} = \frac{x_3 + x_1}{4},$$

同理
$$k_{BD} = \frac{x_4 + x_2}{4}$$

…10分

因为
$$k_{AC}+k_{BD}=\frac{x_1+x_2+x_3+x_4}{4}=0$$

所以直线 AC, 直线 BD 及 y 轴围成等腰三角形.

…12 分

21. 解:

(1) 30, 7. ····4 分

(2) X的可能取值为 2, 3, 4, 5, 6, 7.

$$P(X=2) = (\frac{1}{2})^2 = \frac{1}{4}, \quad P(X=3) = C_2^1(\frac{1}{2})^3 = \frac{1}{4}, \quad P(X=4) = C_2^1(\frac{1}{2})^4 = \frac{3}{16},$$

$$P(X=5) = C_2^1(\frac{1}{2})^5 + (\frac{1}{2})^4 = \frac{3}{16}, \quad P(X=6) = P(X=7) = C_2^1(\frac{1}{2})^6 = \frac{1}{16},$$

分布列如下:

X	2	3	4	5	6	7
p	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
				4		

则
$$E(X) = 2 \times \frac{1}{4} + 3 \times \frac{1}{4} + 4 \times \frac{3}{16} + 5 \times \frac{3}{16} + 6 \times \frac{1}{16} + 7 \times \frac{1}{16} = \frac{15}{4}$$
. …8 分

(3) 乙经败者组进入决赛的概率为 $f(t)=C_{t}^{1}(1-t)t^{5}$,0 < t < 1.

$$f'(t) = 4t^4(5-6t)$$
, 当 $0 < t < \frac{5}{6}$ 时, $f'(t) > 0$, $f(t)$ 单调递增,

当
$$\frac{5}{6}$$
< t <1 时, $f'(t)$ <0, $f(t)$ 单调递减,

得
$$f(t)$$
的最大值为 $f(\frac{5}{6}) = 4 \times \frac{1}{6} \times (\frac{5}{6})^5 = \frac{4}{5} \times (\frac{5}{6})^6 = \frac{4}{5} \times (1 - \frac{1}{6})^6$,

由参考知识得
$$\left(1-\frac{1}{6}\right)^6 < \frac{1}{e}$$
,故 $f\left(\frac{5}{6}\right) < \frac{4}{5e} < \frac{3}{10}$,

所以, 乙经败者组进入决赛没有三成把握.

…12 分

22. 解:

$$f'(x) = \frac{1 - \frac{1}{x} - \ln x}{(x - 1)^2}, \quad \Leftrightarrow g(x) = 1 - \frac{1}{x} - \ln x, \quad \text{if } g'(x) = \frac{1}{x^2} - \frac{1}{x} = \frac{1 - x}{x^2}, \quad \dots 3 \text{ fr}$$

当 0 < x < 1 时,g'(x) > 0,g(x)单调递增;

当x>1时,g'(x)<0,g(x)单调递减,

所以
$$g(x) \leq g(1) = 0$$
, $f'(x) < 0$,

因此
$$f(x)$$
在 $(0, 1)$ 和 $(1, +\infty)$ 内分别单调递减.

由 $g(x) \le 0$ 得 $1 - \frac{1}{x} \le \ln x$,等号当且仅当 x = 1 时成立,

所以 $\ln x \leq x-1$,等号当且仅当 x=1 时成立.

$$\Leftrightarrow x_1 \in (0, 1), x_2 \in (1, +\infty),$$

于是 $\ln x_1 < x_1 - 1$, $\ln x_2 < x_2 - 1$, 又 $x_1 - 1 < 0$, $x_2 - 1 > 0$,

从而
$$\frac{\ln x_1}{x_1-1} > 1$$
, $\frac{\ln x_2}{x_2-1} < 1$,所以 $f(x_1) > f(x_2)$,

故
$$f(x)$$
在定义域内单调递减。

•••6 分

•••5 分

(2)
$$f(x) - \frac{2a}{x+a} = \frac{\ln x}{x-1} - \frac{2a}{x+a} = \frac{1}{x-1} \left[\ln x - \frac{2a(x-1)}{x+a} \right],$$

高三数学答案第3页(共4页)

当 $a^2-a^4 \ge 0$,即 $0 < a \le 1$ 时, $x^2-2a^2x+a^2 \ge 0$,所以 $h'(x) \ge 0$,于是 h(x)在 $(0, +\infty)$ 上单调递增,又 h(1)=0,

所以 0 < x < 1 时,h(x) < 0,从而 $f(x) - \frac{2a}{x+a} = \frac{1}{x-1}h(x) > 0$;

x>1 时,h(x)>0,从而 $f(x)-\frac{2a}{x+a}=\frac{1}{x-1}h(x)>0$,

因此,
$$0 < a \le 1$$
 时, $f(x) \ge \frac{2a}{x+a}$. …10 分

当 $a^2-a^4<0$,即 a>1 时,若 $1< x< a^2$, $x^2-2a^2x+a^2<0$,所以 h'(x)<0,于是 h(x)在(1, a^2)上单调递减,又 h(1)=0,

所以
$$1 < x < a^2$$
 时, $h(x) < 0$,从而 $f(x) - \frac{2a}{x+a} = \frac{1}{x-1} h(x) < 0$,与 $f(x) \geqslant \frac{2a}{x+a}$ 矛盾,

因此,a>1 不满足题设.

综上,a的取值范围是(0,1].

…12分