2021 届 T8 第一次联考数学试题参考答案

一、选择题:

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	A	В	С	С	D	С	C	D	BC	ABC	BCD	ACD

二、填空题:

13. 6

14. 12

15. 3

16. $(e, +\infty)$

部分选填题解答:

8. 解:对于选项 A:
$$y = \sinh x \cosh x = \frac{e^{2x} - e^{-2x}}{4}$$
 是奇函数,所以 A 错误;

対于选项 B:
$$\cosh x \cosh y - \sinh x \sinh y = \frac{e^x + e^{-x}}{2} \cdot \frac{e^y + e^{-y}}{2} - \frac{e^x - e^{-x}}{2} \cdot \frac{e^y - e^{-y}}{2}$$

$$= \frac{e^{x+y} + e^{-x-y} + e^{x-y} + e^{y-x}}{4} - \frac{e^{x+y} + e^{-x-y} - e^{x-y} - e^{y-x}}{4} = \frac{e^{x-y} + e^{y-x}}{2} = \cosh(x-y),$$

所以B错误:

对于选项 C、D: 设
$$A(m, \frac{e^m + e^{-m}}{2})$$
, $B(m, \frac{e^m - e^{-m}}{2})$,

则曲线
$$C_1$$
 在点 A 处的切线方程为: $y - \frac{e^m + e^{-m}}{2} = \frac{e^m - e^{-m}}{2}(x - m)$,

曲线
$$C_2$$
在点 B 处的切线方程为: $y - \frac{e^m - e^{-m}}{2} = \frac{e^m + e^{-m}}{2}(x - m)$,

联立求得点
$$P$$
的坐标为 $(m+1,e^m)$,则 $|BP|^2=1+(e^m-\frac{e^m-e^{-m}}{2})^2=1+\frac{(e^m+e^{-m})^2}{4}$,

 $S_{\Delta PAB} = \frac{1}{2} |AB| = \frac{1}{2} e^{-m}$,所以|BP|随m的增大而先减小后增大, ΔPAB 的面积随m的增大而减小,所以C错误,D正确.

11. **解:**
$$\Rightarrow g(x) = (x + a_1)(x + a_2) \cdots (x + a_7)$$
, \emptyset $f(x) = xg(x)$,

$$\therefore f'(x) = g(x) + xg'(x)$$
, $\therefore f'(0) = g(0) = a_1 a_2 \cdots a_7 = 1$, 因为 $\{a_n\}$ 是等比数列,所以 $a_1 a_2 \cdots a_7 = a_4^7 = 1$, 即 $a_4 = 1 = a_1 q^3$, $\therefore a_1 > 1$, $\therefore 0 < q < 1$, B 正确;

$$\because \lg a_n = \lg a_1 q^{n-1} = \lg a_1 + (n-1)\lg q$$
, $\therefore \{\lg a_n\}$ 是公差为 $\lg q$ 的递减等差数列,A 错误;

$$:: S_n - \frac{a_1}{1-q} = \frac{a_1}{1-q} (1-q^n-1) = \frac{a_1q}{q-1} \cdot q^{n-1}$$
, $:: \{S_n - \frac{a_1}{1-q}\}$ 是首项为 $\frac{a_1q}{q-1} < 0$,公比为 q 的递增等比数列,C 正确:

$$\because a_1 > 1 \text{ , } 0 < q < 1 \text{ , } a_4 = 1 \text{ , } ∴ n \le 3 \text{ bt , } a_n > 1 \text{ , } n \ge 5 \text{ bt , } 0 < a_n < 1 \text{ , } ∴ n \le 4 \text{ bt , } T_n > 1 \text{ , }$$

$$: T_7 = a_1 a_2 \cdots a_7 = a_4^7 = 1, : n \ge 8 \text{ ft}, : T_n = T_7 a_8 a_9 \cdots a_n < T_7 = 1, : \exists T_5 = \frac{T_7}{a_2 a_2} > 1,$$

$$T_6 = \frac{T_7}{a_7} > 1$$
,所以使得 $T_n > 1$ 成立的 n 的最大值为 6 , D 正确.

12. **解**:对于选项 A:连接交 NS 交 AC 于 G 点,连接 BG ,

则由 AB = BC, $AQ = \frac{2}{3}AM$,可得 BG 必过点 Q,且 $BQ = \frac{2}{3}BG$,因为 $PS \subset \text{im } BB_{\text{I}}NG$,

 $PS // \overline{\square} AMB_1$, $\overline{\square} AMB_1 \cap \overline{\square} BB_1 NG = B_1 Q$, 所以 $PS // B_1 Q$, A 正确;

对于选项 B: $: PS // B_1Q$, $:: \angle NPS = \angle NBQ = \angle B_1QB$, $:: Rt\Delta PNS \sim Rt\Delta QBB_1$,

$$\therefore \frac{PN}{BQ} = \frac{NS}{BB_{\perp}} = \frac{1}{2} , \quad \text{BI } PN = \frac{1}{2} BQ = \frac{1}{2} \cdot \frac{2}{3} BG = \frac{1}{3} B_{1} N ,$$

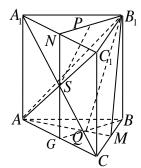
 $\therefore P$ 为靠近 N 的三等分点,B 错误;

对于选项 C: :: $AC \perp NG$, $AC \perp BG$,

 $\therefore AC \perp \overline{\text{m}}BB_{1}NG$, $\therefore AC \perp PS$, C正确;

对于选项 D: $: B_1P//BQ$, 且 $B_1P=BQ$, $::BB_1PQ$ 是矩形,

$$\therefore V_{P-AB_1M} = V_{B-AB_1M} = V_{B_1-ABM} = \frac{1}{3} \cdot 2 \cdot \frac{1}{2} \cdot 2 \cdot 1 = \frac{2}{3}$$
, D 正确.



15. **M**: $: a = c(\cos B + \sqrt{3}\cos C)$, $: \sin A = \sin C(\cos B + \sqrt{3}\cos C)$,

 $\therefore \sin A = \sin(B+C) = \sin B \cos C + \cos B \sin C,$

化简得 $\cos C \sin B = \sqrt{3} \sin C \cos C$, $\therefore \triangle ABC$ 非直角三角形, $\therefore \cos C \neq 0$,

$$\therefore \sin B = \sqrt{3} \sin C \,, \quad \Box b = \sqrt{3}c \,,$$

$$\therefore S = \sqrt{\frac{1}{4}[c^2a^2 - (\frac{c^2 + a^2 - b^2}{2})^2]} = \frac{1}{2}\sqrt{\frac{-4c^4 + 72c^2 - 81}{4}} , \quad \text{当且仅当} \ c^2 = 9 , \quad \text{即} \ c = 3$$
 时, S 有最大值。

16. P: :
$$f(x) = ae^x + \ln \frac{a}{x+2} - 2 > 0$$
, $\mathbb{M} e^{x+\ln a} + \ln a > \ln(x+2) + 2$,

两边加上 x 得到 $e^{x+\ln x} + x + \ln a > x + 2 + \ln(x+2) = e^{\ln(x+2)} + \ln(x+2)$, :: $y = e^x + x$ 单调递增, :: $x + \ln a > \ln(x+2)$,即 $\ln a > \ln(x+2) - x$,

$$\Rightarrow g(x) = \ln(x+2) - x$$
, $\bowtie g'(x) = \frac{1}{x+2} - 1 = \frac{-x-1}{x+1}$, $\therefore x \in (-2, -1)$ \bowtie , $g'(x) > 0$,

g(x) 单调递增, $x \in (-1, +\infty)$,g'(x) < 0 ,g(x) 单调递减,

$$\therefore \ln a > g(x)_{\text{max}} = g(-1) = 1, \quad \therefore a > e.$$

四、解答题:

17. 解: (1) 设等差数列的公差为 d ,等比数列的公比为 q , $:: a_2 = a_3 - b_3$, $a_3 = S_3 + b_2$,

$$\therefore \begin{cases} d = q^2 \\ 1 + 2d = 1 + q + q^2 + q \end{cases}, \quad \text{if } \text{if } \begin{cases} q = 2 \\ d = 4 \end{cases} \begin{cases} q = 0 \\ d = 0 \end{cases} \text{ (\pm),}$$

(2) : $\{a_n\}$ 是等差数列,所以 $a_n + a_{n+2} = 2a_{n+1}$,又由(1)知: $b_{n+2} = 2b_{n+1}$,

$$\therefore k = -1$$
,此时对称轴方程为 $x = -\frac{\pi}{12}$,即所求对称轴方程为 $x = -\frac{\pi}{12}$. ······6 分

(2) 由己知得:
$$f(x) = \sqrt{2}\sin[\omega(x - \frac{\pi}{3}) + \frac{\pi}{3}]$$
,

令
$$f(x) = 0$$
 得: $\omega x + \frac{\pi}{3} - \frac{\pi}{3} \omega = k\pi, k \in \mathbb{Z}$, 即 $x = \frac{k\pi + \frac{\pi}{3} \omega - \frac{\pi}{3}}{\omega}, k \in \mathbb{Z}$, ……8 分

$$\frac{\pi}{2} \leq \frac{k\pi + \frac{\pi}{3}\omega - \frac{\pi}{3}}{\omega} \leq \pi$$

$$\frac{(k-1)\pi + \frac{\pi}{3}\omega - \frac{\pi}{3}}{\omega} \leq \frac{\pi}{2}, k \in \mathbb{Z}, \quad :: \omega > 0,$$

$$\frac{(k+1)\pi + \frac{\pi}{3}\omega - \frac{\pi}{3}}{\omega} > \pi$$

$$\therefore \begin{cases} \frac{3k-1}{2} \le \omega \le 6k-2 \\ \omega > 6k-8 \\ \omega < \frac{3k+2}{2} \end{cases}, \quad \because \omega > 0, \quad \therefore \begin{cases} 6k-2 > 0 \\ \frac{3k-1}{2} \le 6k-2, & \text{piff: } \frac{1}{3} \le k < 2, \\ 6k-8 < \frac{3k+2}{2} \end{cases}$$

因为E为半圆弧CD上一点,所以 $CE \perp ED$,

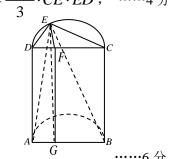
所以
$$V_{E-ABCD} = \frac{1}{3} \cdot S_{ABCD} \cdot EF = \frac{1}{3} \times \sqrt{5} \times 2\sqrt{5} \times \frac{CE \cdot ED}{CD} = \frac{2\sqrt{5}}{3} \cdot CE \cdot ED$$
, ······4 分

因为 $CE^2 + ED^2 = CD^2 = 5$,

$$\therefore V_{E-ABCD} \le \frac{2\sqrt{5}}{3} \times \frac{CE^2 + ED^2}{2} = \frac{2\sqrt{5}}{3} \times \frac{5}{2} = \frac{5\sqrt{5}}{3},$$

当且仅当 $CE = ED = \frac{\sqrt{10}}{2}$ 时等号成立,

所以四棱锥 E-ABCD 的体积的最大值为 $\frac{5\sqrt{5}}{3}$.



(2) 由条件①得: $4|\overrightarrow{DE}||\overrightarrow{DC}|\cos\angle CDE = |\overrightarrow{CE}||\overrightarrow{DC}|\cos\angle DCE$,即 $4DE^2 = CE^2$,所以2DE = CE,又因为 $DE^2 + CE^2 = 5$,所以DE = 1,CE = 2,

由条件②得:因为AD//BC,BC \bot 平面DCE,所以 $\angle CBE$ 为直线AD 与BE 所成

角,且
$$\sin \angle CBE = \frac{2}{3} = \frac{CE}{BE}$$
, $\frac{CE}{BC} = \tan \angle CBE = \frac{2}{\sqrt{5}}$,

由条件③得:
$$\frac{\sin \angle EAB}{\sin \angle EBA} = \frac{EB}{EA} = \frac{\sqrt{6}}{2}$$
, 设 $AD = x$, 则 $\frac{x^2 + CE^2}{x^2 + DE^2} = \frac{3}{2}$,

若选条件①②,则
$$DE=1$$
, $CE=2$,且 $\frac{CE}{BC}=\tan \angle CBE=\frac{2}{\sqrt{5}}$,所以 $AD=BC=\sqrt{5}$,

若选条件①③,则
$$DE = 1$$
, $CE = 2$,且 $\frac{x^2 + CE^2}{x^2 + DE^2} = \frac{3}{2}$,所以 $AD = BC = x = \sqrt{5}$,

若选条件②③,则
$$\frac{CE}{x} = \tan \angle CBE = \frac{2}{\sqrt{5}}$$
,且 $\frac{x^2 + CE^2}{x^2 + DE^2} = \frac{3}{2}$, $DE^2 + CE^2 = 5$, 所以 $AD = BC = x = \sqrt{5}$,

方法一: 设点 D 到平面 EAB 的距离为h , AD 与平面 EAB 所成角为 θ , 则由

$$V_{D-EAB} = V_{E-DAB}$$
 得: $h \cdot S_{\Delta EAB} = EF \cdot S_{\Delta DAB} = \frac{2}{\sqrt{5}} \times \frac{1}{2} \times \sqrt{5} \times \sqrt{5}$,所以 $h = \frac{\sqrt{5}}{S_{\Delta EAB}}$,

作 $FG \perp AB$ 于点 G ,连接 EG ,则由 $EF \perp$ 平面 ABCD 知 FG 是 EG 在平面 ABCD 内的射影,所以 $EG \perp AB$,

$$\therefore S_{\Delta EAB} = \frac{1}{2} \cdot AB \cdot EG = \frac{1}{2} \cdot \sqrt{5} \cdot \sqrt{EF^2 + FG^2} = \frac{1}{2} \cdot \sqrt{5} \cdot \sqrt{(\frac{2}{\sqrt{5}})^2 + (\sqrt{5})^2} = \frac{\sqrt{29}}{2} ,$$

$$\therefore h = \frac{\sqrt{5}}{S_{\Delta EAB}} = \frac{2\sqrt{5}}{\sqrt{29}}, \quad \therefore \sin \theta = \frac{h}{AD} = \frac{2}{\sqrt{29}},$$

所以AD与平面EAB所成角的余弦值为 $\frac{5\sqrt{29}}{29}$.

----12 分

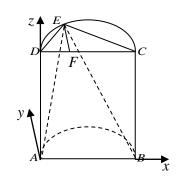
方法二: 以 A 为原点,建立如图所示的空间直角坐标系,

$$\mathbb{M}\,B(\sqrt{5},0,0)\,,\ D(0,0,\sqrt{5})\,,\ E(\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5},\sqrt{5})\,,$$

$$\overrightarrow{AB} = (\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}, \sqrt{5}), \quad \overrightarrow{AB} = (\sqrt{5}, 0, 0),$$

设平面 EAB 的法向量为 $\overrightarrow{m} = (x, y, z)$,

则
$$\left\{ \frac{\sqrt{5}}{5} x + \frac{2\sqrt{5}}{5} y + \sqrt{5}z = 0, \\ \sqrt{5} x = 0 \right.$$



$$\Leftrightarrow z = 1$$
, $\forall \vec{m} = (0, -\frac{5}{2}, 1)$, ∴ $\cos < \vec{AD}, \vec{m} > = \frac{\sqrt{5}}{\sqrt{5} \times \sqrt{1 + \frac{25}{4}}} = \frac{2}{\sqrt{29}}$,

$$\therefore AD$$
 与平面 EAB 所成角 = $\frac{\pi}{2} - \langle \overrightarrow{AD}, \overrightarrow{m} \rangle$,

所以
$$AD$$
与平面 EAB 所成角的余弦值为 $\frac{5\sqrt{29}}{29}$.

20. 解: (1) 由频数分布表得:

$$\overline{x} = \frac{14 \times 5 + 17 \times 6 + 20 \times 9 + 23 \times 12 + 26 \times 8 + 29 \times 6 + 32 \times 4}{50} = 22.76 \approx 22.8$$

所以这50个社区这一天垃圾量的平均值为22.8吨。

……3分

(2) 由 (1) 知 $\mu = 22.8$, : s = 5.2, $: \sigma = s = 5.2$,

$$\therefore P(X > 28) = P(X > \mu + \sigma) = \frac{1 - 0.6827}{2} = 0.15865, \qquad \dots 5 \%$$

 $320 \times 0.15865 = 50.768 \approx 51$

所以这 320 个社区中 "超标"社区的个数为 51.

.....7 分

(3) 由频数分布表知: 8个"超标"社区中这一天的垃圾量至少为30.5吨的社区有4个,

所以
$$Y$$
的可能取值为 $1,2,3,4$,且 $P(Y=1) = \frac{C_4^1 C_4^4}{C_8^5} = \frac{1}{14}$, $P(Y=2) = \frac{C_4^2 C_4^3}{C_8^5} = \frac{3}{7}$,

$$P(Y=3) = \frac{C_4^3 C_4^2}{C_8^5} = \frac{3}{7}, \quad P(Y=4) = \frac{C_4^4 C_4^1}{C_8^5} = \frac{1}{14},$$
10 \(\frac{1}{2}\)

所以Y的分布列为:

Y	1	2	3	4
P	$\frac{1}{14}$	$\frac{3}{7}$	$\frac{3}{7}$	$\frac{1}{14}$

∴
$$E(Y) = 1 \times \frac{1}{14} + 2 \times \frac{3}{7} + 3 \times \frac{3}{7} + 4 \times \frac{1}{14} = \frac{5}{2}$$
.12 分

又:她物线的准线被椭圆截得的弦长为 3, $\therefore \frac{2b^2}{a} = 3$ ②,

解①②得
$$a=2$$
, $b=\sqrt{3}$,所以曲线 C 的方程为 $\frac{x^2}{4}+\frac{y^2}{3}=1$4 分

(2) 设直线 AB: y = k(x-1), $A(x_1, y_1)$, $B(x_2, y_2)$,

联立直线与椭圆方程
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{3} = 1\\ y = k(x-1) \end{cases}$$
, 消去 y 得: $(3+4k^2)x - 8k^2x + 4k^2 - 12 = 0$,

则
$$x_1 + x_2 = \frac{8k^2}{3+4k^2}$$
 , $x_1 x_2 = \frac{4k^2 - 12}{3+4k^2}$,6 分

$$\therefore \frac{x_1 + x_2}{2} = \frac{4k^2}{3 + 4k^2}, \quad \therefore \frac{y_1 + y_2}{2} = k(\frac{x_1 + x_2}{2} - 1) = \frac{-3k}{3 + 4k^2},$$

$$\therefore P$$
的坐标为 $(\frac{4k^2}{3+4k^2}, \frac{-3k}{3+4k^2})$,直线 $OP: y = -\frac{3}{4k}x$ ③, ······7 分

直线 AB 方程 y = k(x-1) 中令 x = 0 得 y = -k , $\therefore E$ 的坐标为 (0, -k) ,

因为直线 $EQ \perp OP$, $\therefore EQ$ 的直线方程为 $y = \frac{4k}{3}x - k$ ④, ……8 分 将③④联立相乘得到 $y^2 = -x^2 + \frac{3}{4}x$,即 $(x - \frac{3}{8})^2 + y^2 = \frac{9}{64}$, 所以点 Q 的轨迹为以 $(\frac{3}{8},0)$ 为圆心, $\frac{3}{8}$ 为半径的圆, ……10 分 所以存在定点 $H(\frac{3}{8},0)$,使得 QH 的长为定值 $\frac{3}{8}$ ……12 分

(2) 由
$$f(x) = m - \ln x$$
 得 $\ln x - \frac{m(x^2 - 1)}{x^2 + 1} = 0$,令 $g(x) = \ln x - \frac{m(x^2 - 1)}{x^2 + 1}$,
所以方程 $f(x) = m - \ln x$ 的实根的个数即为函数 $g(x)$ 在 $(0, +\infty)$ 上的零点的个数,

$$\mathbb{X} : g(\frac{1}{x}) = \ln \frac{1}{x} - \frac{m(\frac{1}{x^2} - 1)}{\frac{1}{x^2} + 1} = -\ln x + \frac{m(x^2 - 1)}{x^2 + 1} = -g(x) , : g(x) \not\equiv (0, 1) \cup (1, +\infty) \perp$$

的零点互为倒数,下面先研究 g(x) 在 $(1,+\infty)$ 上的零点的个数:

$$\therefore g'(x) = \frac{1}{x} - \frac{4mx}{(x^2 + 1)^2} = \frac{(x^2 + 1)^2 - 4mx^2}{x(x^2 + 1)^2} (x > 1),$$

(i) 若 $m \le 0$,则x > 1时, $g(x) = \ln x - \frac{m(x^2 - 1)}{x^2 + 1} > 0$, $\therefore g(x)$ 在 $(1, +\infty)$ 上的没有零点;

 $\Leftrightarrow h(x) = x^2 - 2\sqrt{m}x + 1(x > 1) ,$

① $\Delta = 4m - 4 \le 0$,即 $0 < m \le 1$ 时, $h(x) \ge 0$, $\therefore g'(x) \ge 0$, g(x) 在 $(1, +\infty)$ 上递增,

② $\Delta = 4m-4>0$,即 m>1时, h(x)=0有两个不等实根 x_1,x_2 ,且 $x_1x_2=1$,

∴ 大根 $x_2 = \sqrt{m} + \sqrt{m-1} > 1$, 小根 $0 < x_1 < 1$,

 $\therefore x \in (1, x_2)$ 时, h(x) < 0 , g'(x) < 0 , g(x) 单调递减, $x \in (x_2, +\infty)$ 时, h(x) > 0 , g'(x) > 0 , g(x) 单调递增, $\therefore g(x_2) < g(1) = 0$,

又: $g(e^m) = m - \frac{m(e^{2m} - 1)}{e^{2m} + 1} = \frac{2m}{e^{2m} + 1} > 0$, ∴ g(x) 在 $(1, x_2)$ 上恒小于 $(1, x_2)$ 上

存在唯一 $x_0 \in (x_2, e^m)$ 使得 $g(x_0) = 0$, $\therefore g(x)$ 在 $(1, +\infty)$ 上仅有一个零点 x_0 , ……11 分 因为 g(x) 在 (0,1) $\bigcup (1, +\infty)$ 上的零点互为倒数,且 g(1) = 0,所以 $m \le 1$ 时, g(x) 仅有一个零点; m > 1 时, g(x) 有三个零点.

综上: $m \le 1$ 时, 方程 $f(x) = m - \ln x$ 仅有一个实根;

$$m>1$$
时,方程 $f(x)=m-\ln x$ 有三个实根.

-----12 分

参考解法二: 由 $f(x) = m - \ln x$ 得 $\ln x - \frac{m(x^2 - 1)}{x^2 + 1} = 0$, x = 1 显然是该方程的一个根;

-----5分

 $x \neq 1$ 时,方程等价于 $m = \frac{(x^2 + 1) \ln x}{x^2 - 1}$,令 $h(x) = \frac{(x^2 + 1) \ln x}{x^2 - 1} (x > 0, x \neq 1)$,

 $\iiint h'(x) = \frac{x^4 - 1 - 4x^2 \ln x}{x(x^2 - 1)^2} = -\frac{x}{(x^2 - 1)^2} (4 \ln x - x^2 + \frac{1}{x^2}), \qquad \cdots \qquad 6$

 $\Rightarrow \varphi(x) = 4 \ln x - x^2 + \frac{1}{x^2}, \quad \emptyset \varphi'(x) = \frac{4}{x} - 2x - \frac{2}{x^3} = -\frac{2(x^2 - 1)^2}{x^3} < 0,$

 $\therefore x > 0$ 时, $\varphi(x)$ 单调递减,

-----7 分

 $\therefore 0 < x < 1$ 时, $\varphi(x) > \varphi(1) = 0$,h'(x) < 0 ,h(x) 单调递减,x > 1 时, $\varphi(x) < \varphi(1) = 0$,

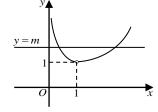
h'(x) > 0, h(x) 单调递增,

由 $x \to +\infty$ 时, $h(x) \to +\infty$,

 $x \to 0$ 时, $h(x) \to +\infty$

 $x \rightarrow 1$ 时, $h(x) \rightarrow 1$,

可画出h(x)的大致图像如图所示:



(注:此处用到了高中教材中没有涉及到的函数极限知识,可酌情扣 2-3分)

结合图像得: m>1时,方程m=h(x)有两个实根; $m\leq 1$ 时,方程m=h(x)没有实根; 综合得: $m\leq 1$ 时,方程 $f(x)=m-\ln x$ 仅有一个实根;