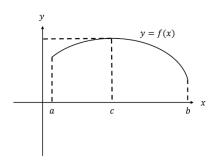
## 2020年清华大学强基计划笔试试题

B.  $\frac{\sqrt{5}}{2}$  C.  $\frac{\sqrt{10}}{3}$  D.  $\sqrt{2}$ 


1. 已知实数x,y满足 $x^2 + y^2 \le 1$ ,则 $x^2 + xy - y^2$ 的最大值为\_\_\_\_\_。

| 2.                                                      | 设 $a,b,c$ 均为正实数,若一元二次                                                                                                 | 方和                | $\mathbb{E}ax^2 + bx + c = 0$ 有实根,则                     |  |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------|--|--|--|--|--|
| Α.                                                      | $\max\{a,b,c\} \ge \frac{1}{2}(a+b+c)$                                                                                | В.                | $\max\{a,b,c\} \ge \frac{4}{9}(a+b+c)$                  |  |  |  |  |  |
| С.                                                      | $\min\{a, b, c\} \le \frac{1}{4}(a+b+c)$                                                                              | D.                | $\min\{a,b,c\} \le \frac{1}{3}(a+b+c)$                  |  |  |  |  |  |
|                                                         | 3. 已知平面向量 $a$ , $b$ 满足 $ a  \le 2$ , $ b  \le 1$ ,且 $c$ 满足 $ a-2b-c  \le  a+2b $ . 那么对所有可能的 $c$ 而言, $ c $ 的。          |                   |                                                         |  |  |  |  |  |
| Α.                                                      | 最大值为4√2                                                                                                               | В.                | 最大值为2√6                                                 |  |  |  |  |  |
| С.                                                      | 最小值为0                                                                                                                 | D.                | 最小值为√2                                                  |  |  |  |  |  |
| 4.                                                      | 在Δ $ABC$ 中, $AC = 1$ , $BC = \sqrt{3}$ ,                                                                              | AE                | $B=2$ . $M为AB$ 中点。将 $\Delta ABC$ 沿 $CM$ 折起,             |  |  |  |  |  |
| 使得 $B-ACM$ 的体积为 $\frac{\sqrt{2}}{2}$ ,则折起后 $AB$ 的长度可能为。 |                                                                                                                       |                   |                                                         |  |  |  |  |  |
| Α.                                                      | 1 B. $\sqrt{2}$                                                                                                       |                   | C. $\sqrt{3}$ D. 2                                      |  |  |  |  |  |
| 5.                                                      | 已知 $A(1,1)$ , $Q(1,0)$ , $P$ 为椭圆 $\frac{x^2}{4}$ +                                                                    | $\frac{y^2}{3}$ : | = 1上的动点,则  <i>PA</i>   +   <i>PQ</i>  的。                |  |  |  |  |  |
| Α.                                                      | 最大值为4 + √3                                                                                                            | В.                | 最大值为 $4 + \sqrt{5}$                                     |  |  |  |  |  |
| С.                                                      | 最小值为4 - √3                                                                                                            | D.                | 最小值为4 - √5                                              |  |  |  |  |  |
| 6.                                                      | 已知 $A,B$ 分别为双曲线 $\frac{x^2}{4}-y^2=$                                                                                  | 1的                | ]左、右顶点,P为该双曲线上不同于A,B                                    |  |  |  |  |  |
| 的                                                       | 任意一点。设 <b>∠PAB = α,∠PBA</b> =                                                                                         | β,                | <b>ΔPAB</b> 的面积为 <b>S</b> ,则。                           |  |  |  |  |  |
| Α.                                                      | an lpha 	an eta为定值                                                                                                    | В.                | $	anrac{lpha}{2}	anrac{eta}{2}$ 为定值                   |  |  |  |  |  |
|                                                         | $S \cdot \tan(\alpha + \beta)$ 为定值<br>设正四棱锥的侧棱与底面所成角                                                                  |                   | · · · · · · · · · · · · · · · · · · ·                   |  |  |  |  |  |
| Α.                                                      | $\cos \beta = \frac{\cos^2 \alpha}{\cos^2 \alpha - 2}$                                                                | В.                | $\cos\beta = \frac{\cos^2\alpha - 1}{\cos^2\alpha + 1}$ |  |  |  |  |  |
| С.                                                      | $\tan\frac{\beta}{2} = \sin\alpha$                                                                                    | D.                | $\cot\frac{\beta}{2} = \sin\alpha$                      |  |  |  |  |  |
|                                                         | 8. 已知复数 $z_1, z_2$ 在复平面内对应的点为 $Z_1, Z_2$ . $O$ 为坐标原点,若 $ z_1 =1$ , $5z_1^2-2z_1z_2+z_2^2=0$ ,则 $\Delta OZ_1Z_2$ 的面积为。 |                   |                                                         |  |  |  |  |  |
| Α.                                                      | 1 B. $\sqrt{3}$                                                                                                       |                   | C. 2 D. $2\sqrt{3}$                                     |  |  |  |  |  |
|                                                         |                                                                                                                       |                   |                                                         |  |  |  |  |  |
|                                                         |                                                                                                                       |                   |                                                         |  |  |  |  |  |

| 9. 在非等边 <i>∆ABC</i> 中, <i>AC = BC</i> . 点上,且 <i>OD</i> ⊥ <i>BP</i> ,则。                                                                                  | <b>0,</b> P分                     | ≻别为 <b>ΔABC</b> 的外心和                                                       | 和内心。点                                                                                                | (D在边BC                                             |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
|                                                                                                                                                         | В. О                             | P < DP                                                                     |                                                                                                      |                                                    |  |  |  |  |
| C. OP//AC                                                                                                                                               | D. <b>R</b>                      | P < DP<br>,O,P,D四点共圆                                                       |                                                                                                      |                                                    |  |  |  |  |
| 10. 使得 $n \sin 1 > 1 + 5 \cos 1$ 成立的                                                                                                                    |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
|                                                                                                                                                         |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
| A. 3 B. 4                                                                                                                                               |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
| 11. 已知实数 $x, y, z$ 满足 $\begin{cases} \frac{1}{9}x^3 - \frac{1}{3}y^2 \\ \frac{1}{9}y^3 - \frac{1}{3}z^2 \\ \frac{1}{9}z^3 - \frac{1}{3}x^2 \end{cases}$ | y = 0                            | = 1,                                                                       |                                                                                                      |                                                    |  |  |  |  |
| 11. 口知头                                                                                                                                                 | -z = $-x =$                      | = 1,则。<br>= 1.                                                             | )                                                                                                    |                                                    |  |  |  |  |
|                                                                                                                                                         |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
| A. (x,y,z)只有1组<br>C. x,y,z均为有理数                                                                                                                         | B. (x                            | x,y,z)有 4 组                                                                |                                                                                                      |                                                    |  |  |  |  |
| C. <i>x</i> , <i>y</i> , <i>z</i> 均为有理数                                                                                                                 | D. $x$ ,                         | ,y,z均为无理数                                                                  |                                                                                                      |                                                    |  |  |  |  |
| 12. 设实数 $x_1, x_2,, x_{21}$ 满足 $0 \le x_i$                                                                                                              | $\leq 1(i$                       | = 1,2,,21),则∑                                                              | $\sum_{i=1}^{21} \sum_{k=1}^{21}  $                                                                  | $x_i - x_k$  的                                     |  |  |  |  |
| 最大值为。                                                                                                                                                   | ,                                |                                                                            | ··-1 — ~-1 ·                                                                                         |                                                    |  |  |  |  |
| A. 110 B. 120                                                                                                                                           | C                                | 2. 220                                                                     | D. 240                                                                                               |                                                    |  |  |  |  |
| 13. 在平面直角坐标系中,横坐标与                                                                                                                                      |                                  |                                                                            |                                                                                                      | f有顶占都                                              |  |  |  |  |
| 是格点的多边形称为格点多边形。若                                                                                                                                        | •                                |                                                                            | • • • • • • • • • • • • • • • • • • • •                                                              |                                                    |  |  |  |  |
| 10 个格点,则这个格点多边形的面                                                                                                                                       |                                  |                                                                            | 9 1 作                                                                                                | 处外工门                                               |  |  |  |  |
| A. 10 B. 11                                                                                                                                             | 157.73 <u> </u>                  | ° 10                                                                       | D. 13                                                                                                |                                                    |  |  |  |  |
|                                                                                                                                                         |                                  |                                                                            |                                                                                                      | « m /l.L.→ l.                                      |  |  |  |  |
| 14. 甲、乙、丙三位同学讨论一道经                                                                                                                                      |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
| 了", 丙说: "我做错了"。老师看过                                                                                                                                     |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
| 们只有一个人做对了,只有一个人说                                                                                                                                        | 错了。                              | "则根据以上信息可                                                                  | 丁以推断出                                                                                                |                                                    |  |  |  |  |
| 和月月有一个人做对了,只有一个人说<br>A. 甲做对了<br>C. 丙做对了                                                                                                                 | B. Z                             | <b>上做对了</b>                                                                |                                                                                                      |                                                    |  |  |  |  |
| C. 丙做对了                                                                                                                                                 | D. 无                             | <b>E</b> 法确定谁做对了                                                           |                                                                                                      |                                                    |  |  |  |  |
| 15. 设复数 $z$ 满足 $ 3z - 7i  = 3$ ,令 $z$                                                                                                                   | $z_1 = \frac{z^2}{z}$            | <sup>2</sup> -2z+2<br><sub>z-1+i</sub> ,则 z <sub>1</sub>  的                | 0                                                                                                    |                                                    |  |  |  |  |
| A. 最大值为 <del>8</del> <sub>3</sub>                                                                                                                       | B. 最                             | 是大值为 <del>7</del><br>3                                                     |                                                                                                      |                                                    |  |  |  |  |
| C. 最小值为 <del>4</del> 3                                                                                                                                  | D. 最                             | 是小值为 <del>2</del>                                                          |                                                                                                      |                                                    |  |  |  |  |
| 16. 在 $\Delta ABC$ 中, $\angle A = 90^{\circ}$ , $AB = 1$                                                                                                | , AC =                           | $=\sqrt{3}$ . 点 $P$ 满足 $\frac{\overrightarrow{PA}}{ \overrightarrow{PA} }$ | $+\frac{\overrightarrow{PB}}{ \overrightarrow{PB} }+\frac{\overrightarrow{P}}{ \overrightarrow{P} }$ | $\frac{\vec{c}}{\vec{c}_{\parallel}} = \vec{0}$ ,则 |  |  |  |  |
| °<br>A. ∠ <i>APC</i> = 120°                                                                                                                             | D ,                              | $APB = 120^{\circ}$                                                        |                                                                                                      |                                                    |  |  |  |  |
|                                                                                                                                                         |                                  |                                                                            |                                                                                                      |                                                    |  |  |  |  |
| C.  PB  = 2 PA                                                                                                                                          | $\mathbf{p}$ . $ P $             | PC  = 2 PB                                                                 |                                                                                                      |                                                    |  |  |  |  |
| 17. 设 $\alpha$ , $\beta$ 为锐角,且 $\cos(\alpha + \beta) =$                                                                                                 | $\frac{\sin\alpha}{\sin\beta}$ , | 则tanα的最大值为                                                                 | J                                                                                                    | •                                                  |  |  |  |  |
| A. $\frac{\sqrt{2}}{4}$ B. $\frac{\sqrt{3}}{3}$                                                                                                         | C                                | 2. 1                                                                       | D. $\sqrt{2}$                                                                                        |                                                    |  |  |  |  |
| 18. 设袋中装有编号从 0 到 9 的 10<br>构成的数 (0 在首位时看成 4 位数)                                                                                                         |                                  |                                                                            | 球,然后排                                                                                                | ‡成一行,<br>_°                                        |  |  |  |  |
| A. $\frac{1}{240}$ B. $\frac{1}{280}$                                                                                                                   | C                                | $\frac{1}{315}$                                                            | D. $\frac{1}{360}$                                                                                   |                                                    |  |  |  |  |

| 19. 设函数 <i>f(x)</i> =<br>值为。                                                                                                                                                                                                                                                                                           | $= e^x + a(x-1) + b^{7}$                                                | 在区间[1,3]上存在零点                                | 点,则 $a^2 + b^2$ 的最小                                           |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| A. $\frac{e}{2}$                                                                                                                                                                                                                                                                                                       | В. е                                                                    | C. $\frac{e^2}{2}$                           | D. $e^2$                                                      |  |  |  |  |  |
| 20. 设数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$ . 若数列 $\{a_n\}$ 满足: 对任意 $n \in \mathbb{N}^*$ ,存在 $m \in \mathbb{N}^*$ ,使得 $S_n = a_m$ ,则称数列 $\{a_n\}$ 为 $T$ 数列。下列命题中,正确的有。  A. 若 $a_n = \begin{cases} 1, n = 1 \\ 2^{n-2}, n \geq 2 \end{cases}$ ,则 $\{a_n\}$ 为 $T$ 数列;                                                             |                                                                         |                                              |                                                               |  |  |  |  |  |
| B. 若 $a_n = na$ (其中 $a$ 为常数),则 $\{a_n\}$ 为 $T$ 数列;<br>C. 若 $\{b_n\}$ , $\{c_n\}$ 均为 $T$ 数列,则 $a_n = b_n + c_n$ 为等差数列;<br>D. 若 $\{a_n\}$ 为等差数列,则存在两个 $T$ 数列 $\{b_n\}$ , $\{c_n\}$ ,使得 $a_n = b_n + c_n$ .                                                                                                               |                                                                         |                                              |                                                               |  |  |  |  |  |
| 21. 设函数 $f(x) = \frac{2e^x}{e^x + e^{-x}} + \sin x$ ,在区间[-2,2]上的最大值为 $M$ ,最小值为 $m$ ,                                                                                                                                                                                                                                   |                                                                         |                                              |                                                               |  |  |  |  |  |
| 22. 设A,B分别是                                                                                                                                                                                                                                                                                                            |                                                                         |                                              | D. <i>M</i> - <i>m</i> = 1<br>C与直线2 <i>x</i> + <i>y</i> - 4 = |  |  |  |  |  |
| A. $\frac{\pi}{5}$                                                                                                                                                                                                                                                                                                     | B. $\frac{2\pi}{5}$                                                     | C. $\frac{4\pi}{5}$                          | D. π                                                          |  |  |  |  |  |
| 23. 已知实数 $a$ , $b$ 满足 $a^3 + b^3 + 3ab = 1$ , 设 $a + b$ 的所有可能取值构成的集合为 $M$ , 则。  A. $M$ 为单元素集  B. $M$ 为有限集,但不是单元素集  C. $M$ 为无限集,且有下界  D. $M$ 为无限集,且无下界  24. 设 $x$ , $y$ 为不同的正整数,给出以下三个结论: ① $y^2 + 2x = 5x^2 + 2y$ 不可能同时为完全平方数; ② $y^2 + 4x = 5x^2 + 4y$ 不可能同时为完全平方数; ③ $y^2 + 6x = 5x^2 + 6y$ 不可能同时为完全平方数。 其中正确结论的个数为。 |                                                                         |                                              |                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                        |                                                                         | C. 2                                         |                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                        | 的概率分布为 $\mathbb{E}(X = \mathbb{E})$ 的数学期望为 $\mathbb{E}(X = \mathbb{E})$ | 2                                            | ), Y表示X被 3 除的余                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                        |                                                                         | C. $\frac{9}{7}$                             | D. $\frac{3}{2}$                                              |  |  |  |  |  |
| 26. 设数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n = (-1)^n a_n + \frac{1}{2^n} + n - 3$ ,且实数 $t$ 满足 $(t - 1)^n a_n + \frac{1}{2^n} + n - 3$ ,且实数 $t$                                                                                                                                                                                   |                                                                         |                                              |                                                               |  |  |  |  |  |
| $a_{n+1}$ ) $(t-a_n) < 0$ ,则 $t$ 的取值范围是。                                                                                                                                                                                                                                                                               |                                                                         |                                              |                                                               |  |  |  |  |  |
| A. $\left(-\frac{3}{4}, \frac{11}{4}\right)$                                                                                                                                                                                                                                                                           | B. $\left(-\frac{3}{4}, \frac{11}{5}\right)$                            | C. $\left(-\frac{3}{5}, \frac{11}{4}\right)$ | D. $\left(-\frac{3}{5}, \frac{11}{5}\right)$                  |  |  |  |  |  |
| 27. 《红楼梦》、《三国演义》、《水浒传》和《西游记》四部书分列在四层架子的书柜的不同层上。小赵、小钱、小孙、小李分别借阅了四部书中的一部。现已知:小钱借阅了第一层的书籍,小赵借阅了第二层的书籍,小孙借阅的是《红楼梦》,《三国演义》在第四层。则。                                                                                                                                                                                           |                                                                         |                                              |                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                        |                                                                         | B. 西游记一定陈列                                   | 们在第一层                                                         |  |  |  |  |  |

C. 小孙借阅的一定是第三层的书籍 D. 小李借阅的一定是第四层的书籍 28. 已知函数f(x), 其图像y = f(x)的图像如图所示。设 $S(t)(a \le t \le b)$ 是由曲 线y = f(x)与直线x = a, x = t及x轴围成的平面图形的面积。则在区间[a, b]上



28 题图

- A. f'(x)的最大值是f'(a),最小值是f'(c)
- B. f'(x)的最大值是f'(c),最小值是f'(b)
- C. S'(t)的最大值是S'(a),最小值是S'(c)
- D. S'(t)的最大值是S'(c),最小值是S'(b)
- 29. 已知数列 $A: a_0, a_1, ..., a_{20}$ 满足 $a_0 = 0, |a_i| = |a_{i-1} + 1|(i = 1, 2, ..., 20),$ 则
- A. 存在这样的数列A, 使得 $|a_0 + a_1 + \dots + a_{20}| = 0$
- B. 存在这样的数列*A*,使得 $|a_0 + a_1 + \cdots + a_{20}| = 2$
- C. 存在这样的数列A, 使得 $|a_0 + a_1 + \cdots + a_{20}| = 10$
- D. 存在这样的数列A,使得 $|a_0 + a_1 + \cdots + a_{20}| = 12$
- 30. 求极限:

$$\lim_{n\to\infty}\sum_{k=1}^n\arctan\frac{2}{k^2}=\underline{\hspace{1cm}}.$$

- A.  $\frac{3\pi}{4}$
- B.  $\pi$  C.  $\frac{4\pi}{5}$
- 31. 设多项式f(x)的各项系数都是非负实数,且f(1) = f'(1) = f''(1) = f''(1) = f''(1)f'''(1) = 1. 则f(x)的常数项的最小值为\_\_\_\_\_。
- A.  $\frac{1}{2}$
- C.  $\frac{1}{4}$
- 32.  $\sin\left(\arctan 1 + \arcsin\frac{\sqrt{5}}{5} + \arccos\frac{3\sqrt{10}}{10}\right) = \underline{\qquad}$
- A. 1
- B.  $\frac{7\sqrt{2}}{10}$  C.  $\frac{3\sqrt{2}}{5}$
- 33. 设A, B, C是集合{1,2,...,2020}的子集,且满足 $A \subseteq C, B \subseteq C$ . 这样的有序组 (*A*, *B*, *C*)的总数为
- A.  $3^{2020}$
- B. 4<sup>2020</sup>°
- C.  $5^{2020}$ 
  - D.  $6^{2020}$
- 34. 设 $\triangle ABC$ 的边长为a,b,c,且均为整数。若 $\triangle ABC$ 的面积为有理数,那么a的值 可以为
- A. 1
- B. 2
- C. 3
- D. 4

35. 己知
$$f(z) = z^{10} + \frac{1}{z^{10}} + \frac{1}{2} \left( z^5 + \frac{1}{z^5} \right)$$
,则\_\_\_\_\_。

- A. f(z) = 0存在实数解
- B. f(z) = 0共有 20 个不同的复数解
- C. f(z) = 0复数解的模长均为 1
- D. f(z) = 0存在模长大于 1 的复数解