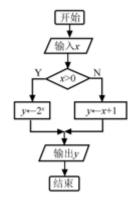
2020年普通高等学校招生全国统一考试(江苏卷)

数学 I

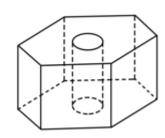

注意事项

考生在答题前请认真阅读本注意事项及各题答题要求

- 1. 本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间为 120 分钟。考试结束后,请将本试卷和答题卡一并交回.
- 2. 答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
- 3. 请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
- 4. 作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
- 5. 如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:

柱体的体积V = Sh, 其中S 是柱体的底面积, h 是柱体的高.

- 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
- 1.己知集合 $A = \{-1,0,1,2\}, B = \{0,2,3\}, 则 A \cap B = ______$
- 2.已知i 是虚数单位,则复数z = (1+i)(2-i)的实部是_____.
- 3.已知一组数据 4, 2a, 3-a, 5, 6 的平均数为 4, 则 a 的值是 .
- 4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是....
- 5.如图是一个算法流程图,若输出y的值为-2,则输入x的值是 .

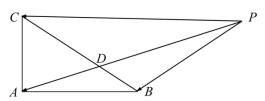

6.在平面直角坐标系 xOy 中,若双曲线 $\frac{x^2}{a^2} - \frac{y^2}{5} = 1$ (a > 0)的一条渐近线方程为 $y = \frac{\sqrt{5}}{2}x$,则该双曲线的离心

率是 .

7.已知 y=f(x)是奇函数,当 x≥0 时, $f(x)=x^{\frac{2}{3}}$,则 f(-8)的值是_____.

8.已知
$$\sin^2(\frac{\pi}{4} + \alpha) = \frac{2}{3}$$
,则 $\sin 2\alpha$ 的值是____.

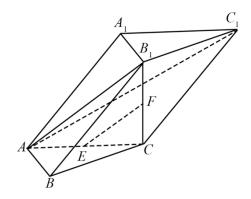
9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的. 已知螺帽的底面正六边形边长为 2 cm, 高为 2 cm, 内孔半轻为 0.5 cm, 则此六角螺帽毛坯的体积是 cm.



10.将函数 $y=3\sin(2x+\frac{\pi}{4})$ 的图象向右平移 $\frac{\pi}{6}$ 个单位长度,则平移后的图象中与 y 轴最近的对称轴的方程是

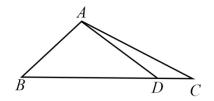
11.设 $\{a_n\}$ 是公差为 d 的等差数列, $\{b_n\}$ 是公比为 q 的等比数列.已知数列 $\{a_n+b_n\}$ 的前 n 项和 $S_n=n^2-n+2^n-1(n\in \mathbb{N}^+)$,则 d+q 的值是______.

12.已知 $5x^2y^2 + y^4 = 1(x, y \in R)$,则 $x^2 + y^2$ 的最小值是_____.


13.在 $\triangle ABC$ 中,AB=4,AC=3, $\angle BAC=90^\circ$,D 在边 BC 上,延长 AD 到 P,使得 AP=9,若 $\overrightarrow{PA}=m\overrightarrow{PB}+(\frac{3}{2}-m)\overrightarrow{PC}$ (m 为常数),则 CD 的长度是______.

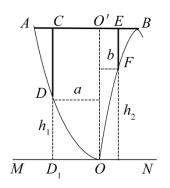
14.在平面直角坐标系 xOy 中,已知 $P(\frac{\sqrt{3}}{2},0)$,A ,B 是圆 C : $x^2 + (y - \frac{1}{2})^2 = 36$ 上的两个动点,满足 PA = PB ,则 $\triangle PAB$ 面积的最大值是 .

二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.


15.在三棱柱 ABC- $A_1B_1C_1$ 中, $AB\perp AC$, $B_1C\perp$ 平面 ABC,E,F 分别是 AC, B_1C 的中点.

(1) 求证: *EF* // 平面 *AB*₁*C*₁;

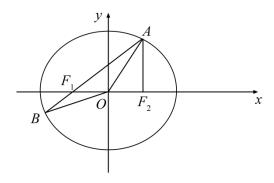
(2) 求证: 平面 *AB*₁*C* 上平面 *ABB*₁.


16.在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c, 已知 $a=3,c=\sqrt{2},B=45^{\circ}$.

(1) 求 $\sin C$ 的值;

(2) 在边 BC 上取一点 D,使得 $\cos \angle ADC = -\frac{4}{5}$,求 $\tan \angle DAC$ 的值.

17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示。谷底 O 在水平线 MN 上、桥 AB 与 MN 平行, OO' 为铅垂线(O' 在 AB 上).经测量,左侧曲线 AO 上任一点 D 到 MN 的距离 h_1 (米)与 D 到 OO' 的距离 $a(\mathbb{R})$ 之间满足关系式 $h_1 = \frac{1}{40}a^2$; 右侧曲线 BO 上任一点 F 到 MN 的距离 h_2 (米)与 F 到 OO' 的距离 b(米)之间满足关系式 $h_2 = -\frac{1}{800}b^3 + 6b$.已知点 B 到 OO' 的距离为 40 米.


(1) 求桥 AB 的长度;

(2) 计划在谷底两侧建造平行于 OO'的桥墩 CD 和 EF, 且 CE 为 80 米, 其中 C, E 在 AB 上(不包括端点).

关注公众号: 数学货

桥墩 EF 每米造价 k(万元)、桥墩 CD 每米造价 $\frac{3}{2}k$ (万元)(k>0).问 O'E 为多少米时,桥墩 CD 与 EF 的总造价 最低?

18.在平面直角坐标系 xOy 中,已知椭圆 $E: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点分别为 F_1 , F_2 ,点 A 在椭圆 E 上且在第一象限内, $AF_2 \perp F_1F_2$,直线 AF_1 与椭圆 E 相交于另一点 B.

- (1) 求Δ*AF*₁*F*₂的周长;
- (2) 在x 轴上任取一点P, 直线AP 与椭圆E 的右准线相交于点Q, 求 $\overrightarrow{OP} \cdot \overrightarrow{OP}$ 的最小值;
- (3) 设点 M 在椭圆 E 上,记 ΔOAB 与 ΔMAB 的面积分别为 S_1 , S_2 ,若 S_2 =3 S_1 ,求点 M 的坐标.
- 19.已知关于 x 的函数 y = f(x), y = g(x) 与 $h(x) = kx + b(k, b \in \mathbf{R})$ 在区间 D 上恒有 $f(x) \ge h(x) \ge g(x)$.
- (1) 若 $f(x) = x^2 + 2x$, $g(x) = -x^2 + 2x$, $D = (-\infty, +\infty)$, 求 h(x)的表达式;
- (2) 若 $f(x) = x^2 x + 1$, $g(x) = k \ln x$, h(x) = kx k, $D = (0, +\infty)$, 求 k 的取值范围;
- (3) 若 $f(x) = x^4 2x^2$, $g(x) = 4x^2 8$, $h(x) = 4(t^2 t)x 3t^4 + 2t^2(0 < |t| \le \sqrt{2})$, $D = [m, n] \subseteq [-\sqrt{2}, \sqrt{2}]$, 求证: $n m \le \sqrt{7}$.
- 20.已知数列 $\{a_n\}$ $(n \in N^*)$ 的首项 a_1 =1,前 n 项和为 S_n . 设 λ 与 k 是常数,若对一切正整数 n,均有 $S_{n+1}^{-1} S_n^{-\frac{1}{k}} = \lambda a_{n+1}^{-\frac{1}{k}}$ 成立,则称此数列为" λ -k"数列.
- (1) 若等差数列 $\{a_n\}$ 是" λ -1"数列,求 λ 的值;
- (2) 若数列 $\{a_n\}$ 是" $\frac{\sqrt{3}}{3}$ -2"数列,且 $a_n>0$,求数列 $\{a_n\}$ 的通项公式;
- (3)对于给定的 λ,是否存在三个不同的数列 $\{a_n\}$ 为"λ–3"数列,且 a_n ≥0?若存在,求 λ 的取值范围;若不存在,说明理由,

数学Ⅱ(附加题)

【选做题】本题包括 A、B、C 三小题,请选定其中两小题,并在相应的答题区域内作答. 若

关注公众号: 数学货

多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.

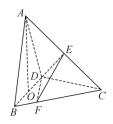
A. [选修 4-2: 矩阵与变换]

21.平面上点 A(2,-1) 在矩阵 $\mathbf{M} = \begin{bmatrix} a & 1 \\ -1 & b \end{bmatrix}$ 对应的变换作用下得到点 B(3,-4).

- (1) 求实数a, b的值;
- (2) 求矩阵 M 的逆矩阵 M^{-1} .

B. [选修 4-4: 坐标系与参数方程]

22.在极坐标系中,已知点 $A(\rho_1,\frac{\pi}{3})$ 在直线 $l:\rho\cos\theta=2$ 上,点 $B(\rho_2,\frac{\pi}{6})$ 在圆 $C:\rho=4\sin\theta$ 上(其中 $\rho\geq0$, $0\leq\theta<2\pi$).


- (1) 求 ρ_1 , ρ_2 的值
- (2) 求出直线l与圆C的公共点的极坐标.

C. [选修 4-5: 不等式选讲]

23.设 $x \in \mathbb{R}$,解不等式 $2|x+1|+|x| \le 4$.

【必做题】第 24 题、第 25 题,每题 10 分,共计 20 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.

24.在三棱锥 A—BCD 中,已知 CB=CD= $\sqrt{5}$,BD=2,O 为 BD 的中点,AO \bot 平面 BCD,AO=2,E 为 AC 的中点.

- (1) 求直线 AB 与 DE 所成角的余弦值;
- (2) 若点 F 在 BC 上,满足 $BF = \frac{1}{4}BC$,设二面角 F—DE—C 的大小为 θ ,求 $\sin\theta$ 的值.

25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球. 现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 X_n ,恰有 2 个黑球的概率为 p_n ,恰有 1 个黑球的概率为 q_n .

(1) 求 $p_1 \cdot q_1$ 和 $p_2 \cdot q_2$;

关注公众号: 数学货

(2)	求 $2p_n+q_n$ 与 $2p_{n-1}+q_{n-1}$	1的递推关系式和	X_n 的数学期望	$E(X_n)$ (用 n 表示).