绝密★本科目考试启用前

2020年普通高等学校招生全国统一考试(北京卷)

数学

本试卷共 5 页, 150 分, 考试时长 120 分钟. 考试务必将答案答在答题卡上, 在试卷上作答无 效. 考试结束后,将本试卷和答题卡一并交回.

第一部分(选择题 共40分)

一、选择题 10 小题,每小题 4 分,共 40 分. 在每小题列出的四个选项中,选出符合题目要 求的一项.

1.已知集合 $A = \{-1,0,1,2\}$, $B = \{x \mid 0 < x < 3\}$, 则 $A \cap B = ($).

- A. $\{-1,0,1\}$ B. $\{0,1\}$
- C. $\{-1,1,2\}$ D. $\{1,2\}$

2.在复平面内,复数 z 对应的点的坐标是(1,2) ,则 $i \cdot z = ($).

- A. 1 + 2i

- B. -2+i C. 1-2i D. -2-i

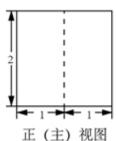
3.在 $(\sqrt{x}-2)^5$ 的展开式中, x^2 的系数为().

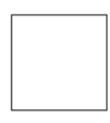
A. -5

B. 5

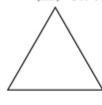
- C. -10
- D. 10

4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().



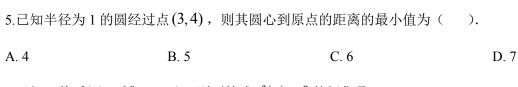


侧 (左) 视图



俯视图

- A. $6+\sqrt{3}$ B. $6+2\sqrt{3}$ C. $12+\sqrt{3}$ D. $12+2\sqrt{3}$



6.已知函数 $f(x) = 2^x - x - 1$,则不等式 f(x) > 0 的解集是 ().

A
$$(-1,1)$$
 B. $(-\infty,-1) \cup (1,+\infty)$ C $(0,1)$ D. $(-\infty,0) \cup (1,+\infty)$

7.设抛物线的顶点为O,焦点为F,准线为l. P是抛物线上异于O的一点,过P作PQ \bot l \top Q ,则线段 FQ 的垂直平分线 ().

A. 经过点 O

B. 经过点P

C. 平行于直线 OP

D. 垂直于直线 OP

8.在等差数列 $\left\{a_{n}\right\}$ 中, $a_{1}=-9$, $a_{3}=-1$. 记 $T_{n}=a_{1}a_{2}$... $a_{n}(n=1,2,...)$,则数列 $\left\{T_{n}\right\}$ ().

A. 有最大项,有最小项

B. 有最大项, 无最小项

C. 无最大项,有最小项

D. 无最大项, 无最小项

9.已知 $\alpha, \beta \in R$,则"存在 $k \in Z$ 使得 $\alpha = k\pi + (-1)^k \beta$ "是" $\sin \alpha = \sin \beta$ "的().

A. 充分而不必要条件

B. 必要而不充分条件

C. 充分必要条件

D. 既不充分也不必要条件

10.2020 年 3 月 14 日是全球首个国际圆周率日(π Day). 历史上,求圆周率 π 的方法有多种,与中国传统数学中的"割圆术"相似. 数学家阿尔·卡西的方法是: 当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为 2π 的近似值. 按照阿尔·卡西的方法, π 的近似值的表达式是(

A.
$$3n\left(\sin\frac{30^{\circ}}{n} + \tan\frac{30^{\circ}}{n}\right)$$

B.
$$6n\left(\sin\frac{30^{\circ}}{n} + \tan\frac{30^{\circ}}{n}\right)$$

$$C. 3n \left(\sin \frac{60^{\circ}}{n} + \tan \frac{60^{\circ}}{n} \right)$$

D.
$$6n\left(\sin\frac{60^{\circ}}{n} + \tan\frac{60^{\circ}}{n}\right)$$

第二部分(非选择题 共110分)

二、填空题共5小题,每小题5分,共25分.

11.函数
$$f(x) = \frac{1}{x+1} + \ln x$$
 的定义域是______.

12.已知双曲线 $C: \frac{x^2}{6} - \frac{y^2}{3} = 1$,则C的右焦点的坐标为________;C的焦点到其渐近线的距离是

关注公众号: 数学货

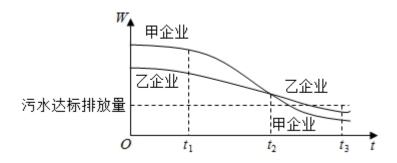
_____•

13.已知正方形 ABCD 的边长为 2,点 P 满足 $\overrightarrow{AP} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$,则 $|\overrightarrow{PD}| =$ ______;

 $\overrightarrow{PB} \cdot \overrightarrow{PD} = \underline{\qquad}$

14.若函数 $f(x) = \sin(x + \varphi) + \cos x$ 的最大值为 2,则常数 φ 的一个取值为_____.

15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量 W与时间 t 的关系为 W = f(t),用 $-\frac{f(b) - f(a)}{b - a}$ 的大小评价在 [a,b] 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.



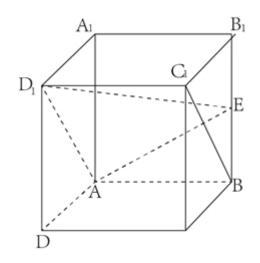
给出下列四个结论:

- ①在 $[t_1,t_2]$ 这段时间内,甲企业的污水治理能力比乙企业强;
- ②在 t2 时刻, 甲企业的污水治理能力比乙企业强;
- ③在4,时刻,甲、乙两企业的污水排放都已达标;
- ④甲企业在 $[0,t_1]$, $[t_1,t_2]$, $[t_2,t_3]$ 这三段时间中,在 $[0,t_1]$ 的污水治理能力最强.

其中所有正确结论的序号是_____

三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.

16.如图,在正方体 $ABCD - A_1B_1C_1D_1$ 中, $E 为 BB_1$ 的中点.



(I) 求证: $BC_1//$ 平面 AD_1E_1 ;

(II) 求直线 AA_1 与平面 AD_1E 所成角的正弦值.

17.在 $\triangle ABC$ 中,a+b=11,再从条件①、条件②这两个条件中选择一个作为己知,求:

(I) a 的值:

(II) $\sin C$ 和 $\triangle ABC$ 的面积.

条件①:
$$c = 7, \cos A = -\frac{1}{7}$$
;

条件②:
$$\cos A = \frac{1}{8}, \cos B = \frac{9}{16}$$
.

注: 如果选择条件①和条件②分别解答,按第一个解答计分.

18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:

	男生		女生	
	支持	不支持	支持	不支持
方案一	200 人	400 人	300 人	100 人
方案二	350 人	250 人	150 人	250 人

假设所有学生对活动方案是否支持相互独立.

- (I)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
- (Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的

关注公众号: 数学货

概率;

- (III) 将该校学生支持方案的概率估计值记为 p_0 ,假设该校年级有 500 名男生和 300 名女生,除一年级外其他年级学生支持方案二的概率估计值记为 p_1 ,试比较 p_0 与 p_1 的大小.(结论不要求证明)
- 19.已知函数 $f(x) = 12 x^2$.
- (I) 求曲线 y = f(x) 的斜率等于 -2 的切线方程;
- (II) 设曲线 y = f(x) 在点 (t, f(t)) 处的切线与坐标轴围成的三角形的面积为 S(t), 求 S(t) 的最小值.
- 20.已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 过点A(-2, -1),且a = 2b.
- (I) 求椭圆 C的方程:
- (II) 过点 B(-4,0) 的直线 l 交椭圆 C 于点 M , N , 直线 MA , NA 分别交直线 x=-4 于点 P , Q . 求 $\frac{|PB|}{|BQ|}$ 的 值.
- 21.已知 $\{a_n\}$ 是无穷数列. 给出两个性质:
- ①对于 $\{a_n\}$ 中任意两项 $a_i, a_j (i > j)$,在 $\{a_n\}$ 中都存在一项 a_m ,使 $\frac{a_i^2}{a_j} = a_m$;
- ②对于 $\{a_n\}$ 中任意项 $a_n(n...3)$,在 $\{a_n\}$ 中都存在两项 $a_k,a_l(k>l)$. 使得 $a_n=\frac{a_k^2}{a_l}$.
- (I)若 $a_n = n(n = 1, 2, \cdots)$, 判断数列 $\{a_n\}$ 是否满足性质①,说明理由;
- (II)若 $a_n=2^{n-1}(n=1,2,\cdots)$, 判断数列 $\left\{a_n\right\}$ 是否同时满足性质①和性质②,说明理由;
- (III)若 $\{a_n\}$ 是递增数列,且同时满足性质①和性质②,证明: $\{a_n\}$ 为等比数列.