47 中

闘

巡

要

1

 \mathbb{K}

H 允

本

出

緻

X

高考总复习单元同步滚动测试卷

文科数学(一)

(集合、常用逻辑用语、算法初步)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.
- 1. 已知集合 $A = \{x \mid x > 1\}$,则下列关系中正确的是

A. $0 \subseteq A$

- B**.** {0}⊆A
- C. $\varnothing \subseteq A$
- D. $\{0\} \in A$

2. 如果一个算法的程序框图中有 <

i <

>,则表示该算法中一定有哪种逻辑

结构

A. 循环结构和条件结构

B. 条件结构

C. 循环结构

- D. 顺序结构和循环结构
- 3. 命题 $p: "\forall x > 1, x^2 1 > 0", 则 \neg p 为$

A. $\forall x > 1, x^2 - 1 \le 0$

B. $\forall x \leq 1, x^2 - 1 \leq 0$

C. $\exists x_0 > 1, x_0^2 - 1 \leq 0$

- D. $\exists x_0 \leq 1, x_0^2 = 1 \leq 0$
- 4. (2019 全国卷 I)已知集合 $U = \{1,2,3,4,5,6,7\}$, $A = \{2,3,4,5\}$, $B = \{2,3,6,7\}$, 则 $B \cap (\mathcal{L}_U A) =$

A. {1.6}

- B. {1,7}
- $C_{4}\{6.7\}$
- D. $\{1,6,7\}$
- 5. 命题" $x,y \in \mathbb{R}$,若 $x^2 + y^2 = 0$,则 x = y = 0"的逆否命题是

A. $x, y \in \mathbb{R}$,若 $x \neq y \neq 0$,则 $x^2 + y^2 = 0$

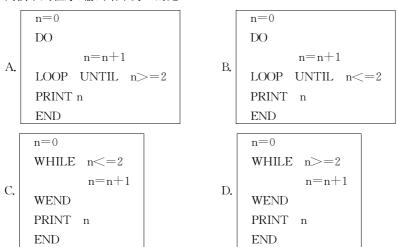
B. $x, y \in \mathbb{R}$, 若 $x = y \neq 0$, 则 $x^2 + y^2 \neq 0$

 $C. x, y \in \mathbb{R}$,若 $x \neq 0$ 目 $y \neq 0$,则 $x^2 + y^2 \neq 0$

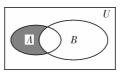
D. $x, y \in \mathbb{R}$,若 $x \neq 0$ 或 $y \neq 0$,则 $x^2 + y^2 \neq 0$

- 6. 下列说法正确的是
 - ①原命题为真,它的否命题为假;
 - ②原命题为真,它的逆命题不一定为真;
 - ③一个命题的逆命题为真,它的否命题一定为真;
 - ④一个命题的逆否命题为真,它的否命题一定为真.

A. (1)(2)


- B. 23
- C. (3)(4)
- D. (2)(3)(4)

 $7. x^2$ ≤1的一个充分不必要条件是


A. *x*≤1

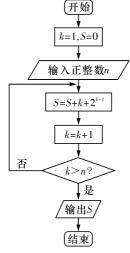
- B. *x*≥1
- C. 0<*x*≤1
- D. −1≤*x*≤1
- 8. 已知集合 $M = \left\{ x \mid \frac{4}{x} > 1, x \in \mathbb{N} \right\}$,则 M 的非空子集的个数是
 - A. 15
- B. 16
- C. 7
- D. 8

9. 阅读下列程序,输出结果为3的是

10. 已知全集 $U=\mathbf{R}$,集合 $A=\{-2,-1,0,1,2\},B=\{x|x^2\geq 4\}$,则图中阴影部分所 表示的集合为

A, $\{-2, -1, 0, 1\}$ B, $\{0\}$

C. $\{-1,0\}$ D. $\{-1,0,1\}$


A. 充分不必要条件

B. 必要不充分条件

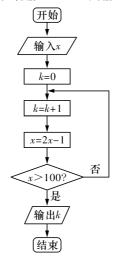
C. 充要条件

D. 既不充分也不必要条件

12. 如图所示的程序框图,该算法的功能是

A. 计算 $(1+2^0)+(2+2^1)+(3+2^2)+\cdots+(n+1+2^n)$ 的值

B. 计算 $(1+2^1)+(2+2^2)+(3+2^3)+\cdots+(n+2^n)$ 的值

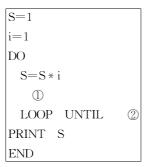

C. 计算 $(1+2+3+\cdots+n)+(2^0+2^1+2^2+\cdots+2^{n-1})$ 的值

D. 计算 $[1+2+3+\cdots+(n-1)]+(2^0+2^1+2^2+\cdots+2^n)$ 的值

选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

- 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
- 13. 将二进制数 101 101(2) 化为十进制数,其结果为 . . .
- 14. 按如图所示的程序框图运算,若输入 x=20,则输出的 k=



- 15. 设集合 $A = \{3, m^2\}, B = \{1, 3, 2m-1\}, 若 A \subseteq B, 则实数 m =$
- 16. 已知命题 p: "至少存在一个实数 $x_0 \in [1,2]$,使不等式 $x^2 + 2ax + 2 a > 0$ 成立" 为真,则参数 a 的取值范围是
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分 10 分)

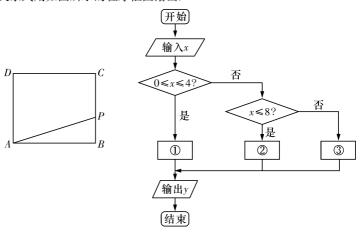
已知全集为 R,集合 $A = \{x | 2 \le x \le 4\}$, $B = \{x | 2x - 7 \ge 8 - 3x\}$, $C = \{x | x \le a\}$.

- (1)求 $A \cap B$, $A \cup ([RB)$;
- (2)若 $A \cap C = A$,求a的取值范围.

下面是利用 UNTIL 循环设计的计算 $1 \times 3 \times 5 \times \cdots \times 99$ 的一个算法程序.

- (1)请将其补充完整;
- (2)绘制出该算法的流程图.

设命题 p:实数 a 满足不等式 $3^a \le 9$;命题 $q: x^2 + 3(3-a)x + 9 \ge 0$ 的解集为 \mathbf{R} . 已 知" $p \land q$ "为真命题,并记为条件 r,且条件 t:实数 a 满足 $m \le a \le m + \frac{1}{2}$. 若 $r \not\in t$ 的必要不充分条件,求正整数 m 的值.


已知集合 $A = \{x \mid x^2 - px + q = 0\}, B = \{x \mid x^2 - x - 6 = 0\}.$

- (1) 若 $A \cup B = \{-2,1,3\}, A \cap B = \{3\},$ 用列举法表示集合 A;
- (2)若 $\varnothing \subseteq A \subseteq B$,且 p+q>0,求 p,q 的值.

已知命题 p:关于 x 的不等式 $x^2+(a-1)x+a^2 \le 0$ 的解集为 \varnothing ;命题 q:函数 $y=(2a^2-a)^x$ 为增函数. 分别求出满足下列条件的实数 a 的取值范围.

- (1)p,q中至少有一个是真命题;
- (2)"p∨g"是真命题,且"p∧g"是假命题.

在边长为 4 的正方形 ABCD 的边上有一点 P 沿着折线 BCDA 由点 B(起点) 向点 A(终点)运动. 设点 P 运动的路程为 x, $\triangle APB$ 的面积为 y,且 y 与 x 之间的函数关系式用如图所示的程序框图给出.

- (1)写出框图中①、②、③处应填充的式子;
- (2) 若輸出的面积 y 的值为 6 ,则路程 x 的值为多少? 并指出此时点 P 在正方形的什么位置上?

写

闘

巡

114

K

拉

出

高考总复习单元同步滚动测试卷 文科数学(二)

(函数及其性质、二次函数、幂函数、指数函数、对数函数) 时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 设集合 $A = \{x \mid (x+2)(x-4) < 0\}$,集合 $B = \{x \mid y = \ln(x+1)\}$,则 $A \cap B = \{x \mid y = \ln(x+1)\}$,

A.
$$\{x \mid -1 < x < 2\}$$

B.
$$\{x \mid -2 < x < -1\}$$

$$C. \{x | x > -2\}$$

D.
$$\{x \mid -1 < x < 4\}$$

2. 已知函数 $f(x) = \frac{1}{x^2 + 2}$,则 f(x)的值域是

A.
$$\left(-\infty, \frac{1}{2}\right]$$
 B. $\left[\frac{1}{2}, +\infty\right)$ C. $\left(0, \frac{1}{2}\right]$ D. $(0, +\infty)$

B.
$$\left\lceil \frac{1}{2}, +\infty \right)$$

C.
$$(0, \frac{1}{2})$$

D.
$$(0, +\infty)$$

3. 若 $p:(x^2+x+1)\sqrt{x+3} \ge 0, q:x \ge -2, 则 p 是 q$ 的

A. 充分而不必要条件

B. 必要而不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 4. 已知幂函数 f(x)的图象经过点 A(4,2), B(8,m), 则 m=

B. $2\sqrt{2}$

 $D.\sqrt{2}$

5. 已知 $f(x) = \left(\frac{1}{2}\right)^x$,命题 $p: \forall x \in [0, +\infty)$, $f(x) \leq 1$,则

A. p 是假命颢, $\neg p: \exists x_0 \in [0, +\infty), f(x_0) > 1$

B. p 是假命题, $\neg p: \forall x \in [0, +\infty), f(x) \ge 1$

C. p 是真命题, $\neg p: \exists x_0 \in [0, +\infty), f(x_0) > 1$

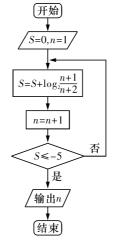
D. p 是真命题, $\neg p: \forall x \in [0, +\infty), f(x) > 1$

6. (2019 全国卷 I)已知 $a=\log_2 0$. $2,b=2^{0.2},c=0$. $2^{0.3}$,则

A. a < b < c B. a < c < b C. c < a < b D. b < c < a

7. 若二次函数 $y=-x^2-2ax(0 \le x \le 1)$ 的最大值是 a^2 ,则实数 a 的取值范围是

 $A. \lceil 0, 1 \rceil$


C. [-2,0] D. [-1,0]

8. 已知函数 $f(x) = \begin{cases} a^{x+5}, x \leq -1, \\ (2-a)x - a + 6, x > -1 \end{cases}$ 是增函数,则实数 a 的取值范围是

A. a > 1

B. $1 < a \le 2$ C. 1 < a < 2 D. $1 < a \le \sqrt{2}$

9. 如图,该程序框图所输出的结果是

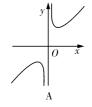
A. 32

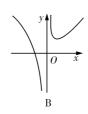
B. 62

C. 63

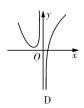
D. 64

10. 若函数 $y = \log_2(kx^2 + 4kx + 5)$ 的定义域为 **R**,则 k 的取值范围是


A.
$$(0, \frac{5}{4})$$


B.
$$\left[0, \frac{5}{4}\right)$$

C.
$$\left[0, \frac{5}{4}\right]$$


D.
$$(-\infty,0) \cup \left(\frac{5}{4},+\infty\right)$$

11. 已知函数 $f(x) = |x| + \frac{1}{x}$,则函数 y = f(x)的大致图象为

12. 已知 f(x)是定义在 **R** 上的以 3 为周期的偶函数. 若 f(1) < 1, $f(5) = \frac{2a-3}{a+1}$,则实

数 a 的取值范围是

A.
$$(-1,4)$$
 B. $(-2,0)$ C. $(-1,0)$ D. $(-1,2)$

$$B(-2.0)$$

$$C(-1.0)$$

$$D(-1.2)$$

选择题答题卡

题 号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													

- 二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在题中横线上.
- 13. 若函数 $f(x)=a^{x-2}+3(a>0$,且 $a\neq 1$)的图象过定点 P,则点 P 的坐标为
- 14. 已知 $x = \log_6 12 \log_6 3$,则 6^x 的值为_____.

15. 已知幂函数 $f(x) = (m^2 - m - 1)x^{m^2 + m - 3}$ 在 $x \in (0, +\infty)$ 上是增函数,则 $m = -\infty$

三、解答题: 共70分, 解答应写出文字说明、证明过程或演算步骤.

17.(本小题满分 10 分)

计算下列各式的值:

$$(1)4^{-\frac{1}{2}} - (\pi+1)^0 + \left(\frac{64}{27}\right)^{\frac{2}{3}};$$

$$(2) \lg \frac{1}{2} - \lg \frac{5}{8} + \lg \frac{25}{2} - (\log_8 9) \cdot (\log_{27} 8).$$

已知函数
$$f(x) = \frac{1}{a} - \frac{1}{x}(a > 0, x > 0)$$
.

- (1)判断函数 f(x)在(0,+ ∞)上的单调性;
- (2)若 f(x)在 $\left[\frac{1}{2},2\right]$ 上的值域是 $\left[\frac{1}{2},2\right]$,求 a 的值.

设命题 p:函数 $f(x) = \lg \left(ax^2 - x + \frac{1}{16} a \right)$ 的定义域为 \mathbf{R} ; 命题 q:不等式 $3^x - 9^x < a$ 对一切正实数 x 均成立.

- (1)如果 p 是真命题,求实数 a 的取值范围;
- (2)如果命题"p或q"为真命题,且"p且q"为假命题,求实数a的取值范围.

已知函数 f(x)是定义在 R 上的偶函数,当 $x \le 0$ 时, $f(x) = \log_2(1-x)$.

- (1)当x>0时,求函数f(x)的表达式;
- (2)记集合 $M = \{x | f(x) = \log_2(|x-1|+1)\}$,求集合 M.

已知 $f(x) = ax^2 + x - a, a \in \mathbf{R}$.

- (1) 若 a=1,解不等式 $f(x) \ge 1$;
- (2)若不等式 $f(x)>-2x^2-3x+1-2a$ 对一切实数 x 恒成立,求实数 a 的取值 范围;
- (3)若 a < 0,解不等式 f(x) > 1.

已知函数 $f(x) = (\log_2 x - 2) \left(\log_4 x - \frac{1}{2} \right)$.

- (1)当 $x \in [2,4]$ 时,求函数f(x)的值域;
- (2)若 $f(x) \ge m \log_4 x$ 对于任意 $x \in [4,16]$ 恒成立,求 m 的取值范围.

闘

巡

要

+

 \mathbb{K}

斑

高考总复习单元同步滚动测试卷 文科数学(三)

(函数的综合运用)

时量:120 分钟 总分:150 分

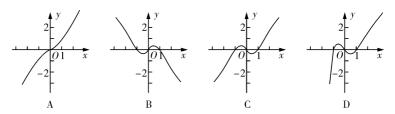
- 一、选择题: 本大题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中只 有一项是符合题目要求的.
- - $A. \{-1,3\}$
- B. {3}
- C. $\{1,2,3,4\}$ D. $\{-1,1,2,3,4\}$
- 2. 函数 $f(x) = e^x + x 4$ 的零点所在的区间是
 - A.(0,1)
- B. (1,2)
- $C_{*}(2.3)$
- D.(3.4)
- 3. 某厂印刷某图书总成本 y(元) 与图书日印量 x(本) 的函数解析式为 y=5x+3 000, 而图书出厂价格为每本 10 元,则该厂为了不亏本,目印图书至少为
 - A. 200 本
- B. 400 本
- C. 600 本
- D. 800 本
- 4. 若函数 $f(x) = x^2 + ax + b$ 的图象与 x 轴的交点为(1,0)和(3,0),则函数 f(x)
 - A. $\alpha(-\infty,2]$ 上是单调减少的, $\alpha(2,+\infty)$ 上是单调增加的
 - B. $\pm (-\infty, 3)$ 上是单调增加的
 - C. 在[1,3]上是单调增加的
 - D. 单调性不能确定

- C. 1
- D. 0
- 6. 若 a > b > 1,0 < c < 1,则下列式子中不正确的是
 - A, $\log_a c > \log_b c$

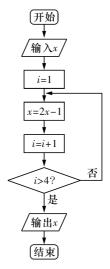
B. $c^a < c^b$

C. $a^c > b^c$

- D. $\log_{c} a > \log_{c} b$
- 7. 已知 $y = \log_a(2-ax)$ 在[0,1]上为 x 的减函数,则 a 的取值范围是
 - A. (0.1)


B. (0.2)

C.(1.2)


D. $\lceil 2, +\infty \rangle$

- 8. 下列结论错误的是
 - A. 命题"若 $x^2 3x 4 = 0$,则 x = 4"的逆否命题是"若 $x \neq 4$,则 $x^2 3x 4 \neq 0$ "
 - B. 命题"若 m>0,则方程 $x^2+x-m=0$ 有实根"的逆命题为真命题
 - C. "x=4"是" $x^2-3x-4=0$ "的充分条件
 - D. 命题"若 $m^2 + n^2 = 0$,则 m = 0 目 n = 0"的否命题是"若 $m^2 + n^2 \neq 0$,则 $m \neq 0$ 或 n**≠**0"

9. 函数 $y = \frac{x^3 - x}{2^{|x|}}$ 的图象大致是

10. 元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:"我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?"用程序框图表达如图所示,即最终输出的 *x*=0,则一开始输入 *x* 的值为

A.
$$\frac{7}{8}$$

B.
$$\frac{3}{4}$$

C.
$$\frac{15}{16}$$

D.
$$\frac{31}{32}$$

11 已知 f(x)是定义在 **R**上的偶函数,g(x)是定义在 **R**上的奇函数,且 g(x) = f(x —1),则 $f(2\ 018) + f(2\ 020) =$

A. -1

B 1

C. 0

D 2

12. 已知函数 $f(x) = \sqrt{x} + \frac{a}{x}$,则"a < 0"是"函数 f(x) 在区间 $(0, +\infty)$ 上存在零点"的

A. 充分而不必要条件

B. 必要而不充分条件

C. 充分必要条件

D. 既不充分也不必要条件

选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													

二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在题中横线上.

13. 函数
$$y = \frac{\lg(x+1)}{x-1}$$
的定义域是______.

14. 已知函数 $f(x)$ =	$\begin{cases} \log_2 x, x > 0, \\ 2^x, x \le 0, \end{cases}$ 且关于 x 的方程 $f(x) - a = 0$ 有两个实根,则实
-------------------	---

数 a 的取值范围是 .

- 15. 已知函数 $f(x) = -x^2 + 6x 5$, $g(x) = e^x 2$. 若总是存在实数 a, b, 使得 f(a) = g(b), 则 b 的取值范围为_______.
- 16. 若函数 f(x) 在定义域 D 内某区间 I 上是增函数,且 $\frac{f(x)}{x}$ 在 I 上是减函数,则称 y=f(x) 在 I 上是"弱增函数". 已知函数 $g(x)=x^2+(4-m)x+m$ 是 (0,2]上的"弱增函数",则实数 m 的值为______.
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分 10 分)

计算下列各式的值:

$$(1)\left(2\frac{1}{4}\right)^{\frac{1}{2}} - \left(3\frac{3}{8}\right)^{-\frac{2}{3}} + (1.5)^{-2};$$

$$(2)2x^{\frac{1}{3}}y^{\frac{1}{2}} \div (x^{-\frac{2}{3}} \cdot \sqrt[3]{y}).$$

已知函数 f(x)是实数集 **R**上的奇函数,当 x>0 时, $f(x)=\log_2 x+x-3$.

- (1)求 f(-1)的值和函数 f(x)的表达式;
- (2)求证:方程 f(x) = 0 在区间(0,+ ∞)上有唯一解.

某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x人,此次培训的总费用为y元.

- (1)求出 y与 x 之间的函数关系式;
- (2)请你预算:公司此次培训的总费用最多需要多少元?

设函数
$$f(x) = \left(\frac{1}{2}\right)^x + m$$
 的图象经过点 $\left(2, -\frac{1}{4}\right), h(x) = ax^2 - 2x\left(\frac{1}{a} < 1\right).$

- (1)若 f(x)与 h(x)有相同的零点,求 a 的值;
- (2)若函数 f(x)在[-2,0]上的最大值等于 h(x)在[1,2]上的最小值,求 a 的值.

设命题 p: 关于 x 的不等式 $2^x + 1 < a$ 的解集为 \emptyset ; 命题 q: 函数 $y = \lg(ax^2 - x + a)$ 的定义域是 **R**.

- (1) 若命题"p∧q"是真命题,求实数 a 的取值范围;
- (2)设命题 m:函数 $y=x^2+bx+a$ 的图象与 x 轴有公共点,若 $\neg p$ 是 $\neg m$ 的充分 不必要条件,求实数 b 的取值范围.

已知函数 $f(x) = ax^2 + mx + m - 1 (a \neq 0)$.

- (1)若 f(-1)=0,判断函数 f(x)的零点个数;
- (2)若对任意实数 m,函数 f(x)恒有两个相异的零点,求实数 a 的取值范围;
- (3)已知 $x_1, x_2 \in \mathbf{R}$ 且 $f(x_1) \neq f(x_2)$,求证:方程 $f(x) = \frac{1}{2} [f(x_1) + f(x_2)]$ 在区间 (x_1, x_2) 上有实数根.

闘

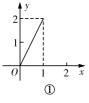
巡

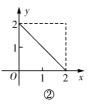
更

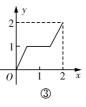
4

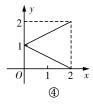
 \mathbb{K}

斑


沚


高考总复习单元同步滚动测试卷 文科数学(四)


(单元滚动卷)

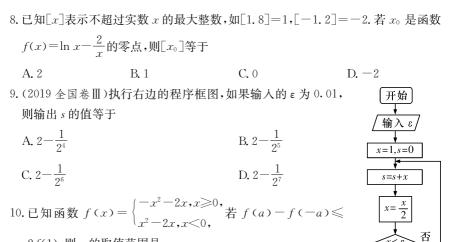

时量:120 分钟 总分:150 分

- 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中只有一项是符合题目要求的.
- 1. 设集合 $M=\{x\mid 0 \leqslant x \leqslant 2\}$, $N=\{y\mid 0 \leqslant y \leqslant 2\}$, 那么下面的 4 个图形中, 能表示集合 M 到集合 N 的函数关系的有

- A. (1)(2)(3)(4)
- B. ①②③
- C. 23
- D. ②
- 2. 设 $U=\mathbf{R}$, $A=\{x\mid y=x\sqrt{x}\}$, $B=\{y\mid y=-x^2\}$, 则 $A\cap (\int_U B)=$
 - $A. \varnothing$
- B. R

- C. $\{x | x > 0\}$
- D. {0}
- 3. 若函数 $f(x) = \begin{cases} \log_2 x, x > 0, \\ 3^x, x \leq 0, \end{cases}$ 则 $f\left(f\left(\frac{1}{2}\right)\right) =$
 - A. $\frac{1}{2}$
- B. $\frac{1}{3}$
- C. 2

D**.** 3


- 4. 若 $f(\ln x) = 3x + 4$,则 f(x)的表达式为
 - A. $3e^{x} + 4$
- B. 3e^x
- C. $3\ln x \pm 4$
- D. $3 \ln x$
- 5. 已知 $a = \log_9 72$, $b = \log_2 2^{\pi}$, $c = 2^{\log_2 e}$,则实数 a, b, c 的大小关系为
 - A. c>b>a

B. c>a>b

C. b>c>a

D. b>a>c

- 6. 下列命题中的真命题是
 - A. $\forall x \in (0, +\infty), x^2 > 1$
 - B. $\exists x_0 \in (1, +\infty)$, $\lg x_0 = -x_0$
 - C. $\forall a \in (0, +\infty), a^2 > a$
 - D. $\exists a_0 \in (0, +\infty), x^2 + a_0 > 1$ 对任意 $x \in \mathbb{R}$ 恒成立
- 7. 某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 当销售单价为6元时,日均销售量为480桶. 根据数据分析,销售单价在进价基础上每增加1元,日均销售量就减少40桶. 为了使日均销售利润最大,销售单价应定为
 - A. 6.5元
- B. 8.5元
- C. 10.5元
- D. 11. 5 元

2f(1),则 a 的取值范围是

A.
$$[1,+\infty)$$

B.
$$(-\infty,1]$$

$$C. [-1,1]$$

D.
$$\lceil -2,2 \rceil$$

11. 已知 f(x)是定义域为 $(-\infty, +\infty)$ 的奇函数,满足 f(2+x)=

$$f(-x)$$
. 若 $f(1)=4$,则 $f(1)+f(2)+f(3)+\cdots+f(2 020)=$

$$A. -50$$

输出s

结束

12. 设函数 $f(x) = 1 - \sqrt{x+1}$, $g(x) = \ln(ax^2 - 3x+1)$, 若对任意的 $x_1 \in [0, +\infty)$, 都存在 $x_2 \in \mathbf{R}$, 使得 $f(x_1) = g(x_2)$, 则实数 a 的最大值为

A.
$$\frac{9}{4}$$

C.
$$\frac{9}{2}$$

选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

- 二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分. 把答案填在题中横线上.
- 13. 函数 $y = \sqrt{8-16^x}$ 的定义域是_____.

14. 设函数
$$f(x) = \begin{cases} 2^{1-x}, x \leq 1, \\ 1 - \log_2 x, x > 1, \end{cases}$$
 则满足 $f(x) \leq 2$ 的 x 的取值范围是______

15. 某食品的保鲜时间 y(单位:小时)与储存温度 x(单位: $^{\circ}$ C)满足函数关系 $y = e^{kx+b}$ (e = 2. 718····为自然对数的底数, k,b 为常数). 若该食品在 0 $^{\circ}$ C的保鲜时间为 192 小时,在 22 $^{\circ}$ C的保鲜时间是 48 小时,则该食品在 33 $^{\circ}$ C的保鲜时间为 小时.

- 16. 某同学在研究函数 $f(x) = \frac{x}{1+|x|} (x \in \mathbf{R})$ 时,给出了下面几个结论:
 - ①等式 f(-x)+f(x)=0 对任意的 $x \in \mathbf{R}$ 恒成立;
 - ②函数 f(x)的值域为(-1,1);
 - ③若 $x_1 \neq x_2$,则一定有 $f(x_1) \neq f(x_2)$;
 - ④函数 g(x) = f(x) x 在 R 上有三个零点.

其中正确结论的序号是_____.(写出所有正确结论的序号)

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

- 17.(本小题满分10分)
 - (1)求值: lg 2lg 50+lg 5lg 20-lg 100lg 5lg 2;
 - (2)已知 $\log_5 3 = a$, $\log_5 4 = b$, 用 a, b 表示 $\log_{25} 12$.

已知函数 $f(x) = \frac{1}{x^2} + ax$ 是偶函数.

- (1)求 a 的值;
- (2)判断函数 f(x)在区间 $(0,+\infty)$ 上的单调性,并用函数单调性的定义证明你的 结论.

设命题 p:函数 $f(x)=x^2-2ax+1$ 有零点;命题 q: $\forall x\in [1,+\infty), \frac{1}{x}-x\leqslant 4a^2-1$.

- (1)若命题 q 为真命题,求实数 a 的取值范围;
- (2)若命题 $p \lor q$ 为真命题,且命题 $p \land q$ 为假命题,求实数 a 的取值范围.

据行业协会预测:某公司以每吨 10 万元的价格销售某种化工产品,可售出该产品 1 000 吨,若将该产品每吨的价格上涨 x%,则销售量将减少 mx%,且该化工产品每吨的价格上涨幅度不超过 80%(其中 m 为正常数).

- (1) 当 $m = \frac{1}{2}$ 时,该产品每吨的价格上涨百分之几,可使销售的总金额最大?
- (2)如果涨价能使销售总金额比原销售总金额多,求 m 的取值范围.

设二次函数 $f(x) = -x^2 + 2x$.

- (1)求函数 $y = \left(\frac{1}{2}\right)^{f(x)}$ 的最小值;
- (2)问是否存在这样的正数 m,n,当 $x\in[m,n]$ 时,g(x)=f(x),且 g(x)的值域为 $\left[\frac{1}{n},\frac{1}{m}\right]$? 若存在,求出所有的 m,n 的值;若不存在,请说明理由.

已知定义在(-1,1)上的函数 f(x)满足:

①对任意
$$x,y \in (-1,1)$$
都有 $f(x)+f(y)=f\left(\frac{x+y}{1+xy}\right)$;

- ②当x < 0, f(x) > 0.
- (1)判断函数 f(x)的奇偶性,并说明理由;
- (2)判断函数 f(x)在(0,1)上的单调性,并说明理由;

(3)若
$$f\left(\frac{1}{5}\right) = \frac{1}{2}$$
,试求 $f\left(\frac{1}{2}\right) - f\left(\frac{1}{11}\right) - f\left(\frac{1}{19}\right)$ 的值.

闘

巡

更

+

 \mathbb{K}

蜇

郑

高考总复习单元同步滚动测试卷 文科数学(五)

(导数及其应用)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.
- 1. 下列集合中,是集合 $A = \{x \mid x^2 < 5x\}$ 的真子集的是
 - A. $\{2,5\}$
- B. $(6, +\infty)$
- $C_{\bullet}(0.5)$
- D. (1.5)
- 2. 已知物体的运动方程为 $s=t^2+\frac{1}{t}(t$ 是时间,s 是位移),则物体在时刻 t=1 时的速度大小为
 - A. 1
- B. $\frac{1}{2}$
- C. 2
- D. 3
- 3. 函数 $f(x) = xe^x$ 在点A(0, f(0))处的切线的斜率为
 - Α 0
- $B_{1} 1$
- C. 1

- D. e
- 4. 已知 $a \ b$ 都是正实数,则 x+y>a+b 且 xy>ab 是 x>a 且 y>b 的
 - A. 充分不必要条件

B. 必要不充分条件

C. 充分且必要条件

- D. 既不充分也不必要条件
- 5. 设 $f(x) = x \ln x$, $f'(x_0) = 2$,则 $x_0 =$
 - $A. e^2$
- В. е

- C. $\frac{\ln 2}{2}$
- D. ln 2
- 6. 若函数 y=f(x) 的图象如图所示,则 y=f'(x) 的图象可能是

B B

- 7. 函数 $f(x) = x^3 12x$ 在区间[-3,3]上的最小值是
 - A. -9
- B. -16
- C. -12
- D 9
- 8. 曲线 $y=e^x+1$ 在 x=1 处的切线与坐标轴所围成的三角形的面积为
 - A. $\frac{1}{2e}$
- $B_{\bullet} e^2$
- $C. 2e^2$
- D. $\frac{9}{4}e^2$

9. 一个底面半衫 大体积为	圣为 1,高为 2 的圆 ⁴	锥形工件切割成一个圆]柱体,能切割出的圆	柱的最
A. $\frac{\pi}{27}$	B. $\frac{8\pi}{27}$	C. $\frac{\pi}{3}$	D. $\frac{2\pi}{9}$	
10. 已知函数 f	$(x) = (x^2 - m)e^x, \frac{1}{4}$	告函数 f(x)的图象在 a	x=1 处切线的斜率为	j 3e,则
f(x)的极大	值是			
A. $4e^{-2}$	$B. 4e^2$	$C_{*} e^{-2}$	D. e^2	

11. 已知函数 $f(x) = \sin x + 2x f'(\frac{\pi}{3}), f'(x)$ 为 f(x) 的导函数,令 $a = \frac{1}{2}, b = \log_3 2$,

则下列关系正确的是

A.
$$f(a) < f(b)$$

B.
$$f(a) > f(b)$$

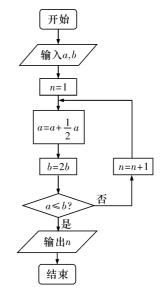
C.
$$f(a) = f(b)$$

D.
$$f(a) \geqslant f(b)$$

12. 已知函数 $f(x) = (2x-1)e^x + ax^2 - 3a(x>0)$ 为增函数,则 a 的取值范围是

A.
$$[-2\sqrt{e}, +\infty)$$

B.
$$\left[-\frac{3}{2}e, +\infty\right)$$


C.
$$(-\infty, -2\sqrt{e}]$$

D.
$$\left(-\infty, -\frac{3}{2}e\right]$$

选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													

- 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
- 13. 若抛物线 $y=x^2-x+c$ 上的一点 P 的横坐标是一2, 抛物线过点 P 的切线恰好过 坐标原点,则实数 c 的值为
- 14. 如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的"松竹并生"问题. 若输入的 *a*,*b* 的值分别为 7,3,则输出的 *n* 的值为

- 15. 已知函数 $f(x)=x^3-x^2+a$ 在[0,1]上恰好有两个零点,则实数 a 的取值范围是
- 16. 已知不等式 $e^x-1 \ge kx+\ln x$ 对于任意的 $x \in (0,+\infty)$ 恒成立,则 k 的最大值是
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分10分)

计算下列各式的值:

$$(1)\log_3\sqrt{3}+\lg 25+\lg 4-\log_2(\log_2 16);$$

$$(2)\left(\frac{9}{4}\right)^{\frac{1}{2}} - (-6.9)^{0} - \left(\frac{27}{8}\right)^{-\frac{2}{3}} + \left(\frac{3}{2}\right)^{-2}.$$

已知函数 $f(x) = \log_a(2-x) + \log_a(4+x)(a > 0$ 且 $a \neq 1$).

- (1)求函数 f(x)的定义域;
- (2)若函数 f(x)的最小值为-2,求实数 a 的值.

已知函数 $f(x) = \frac{1}{3}x^3 - ax^2 + 4x$.

- (1)若曲线 y=f(x)在点(1,f(1))处的切线的倾斜角为 $\frac{\pi}{4}$,求实数 a 的值;
- (2)若函数 y=f(x)在区间 $\left(0,\frac{1}{2}\right)$ 上单调递增,求实数 a 的取值范围.

20.(本小题满分12分)

已知函数 $f(x) = \ln x - a^2 x^2 + ax(a \ge 1)$.

- (1)证明:函数 f(x)在区间(1, $+\infty$)上是减函数;
- (2)当a=1时,证明:函数f(x)只有一个零点.

已知函数 $f(x) = 2\ln x - ax, a \in \mathbf{R}$.

- (1)求 f(x)的极值;
- (2)当x 时, f(x) 《 $-\frac{a}{x}$,求a的取值范围.

22.(本小题满分12分)

已知函数 $f(x) = ax^2 + bx + c$,且 $f(1) = -\frac{a}{2}$, 3a > 2c > 2b.

(1)求证:
$$a>0$$
 且 $-3<\frac{b}{a}<-\frac{3}{4}$;

- (2)求证:函数 f(x)在区间(0,2)内至少有一个零点;
- (3)设 x_1, x_2 是函数f(x)的两个零点,求 $|x_1-x_2|$ 的取值范围.

闘

対

翢

本

緻

高考总复习单元同步滚动测试卷 文科数学(六)

(三角函数、三角恒等变换) 时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 设集合 $M = \{x \mid x = 4n+1, n \in \mathbb{Z}\}, N = \{x \mid x = 2n+1, n \in \mathbb{Z}\}, 则$
 - $A. M \subseteq N$
- B, $N \subseteq M$
- $C, M \in N$
- D. $N \in M$

2. 终边落在第二象限的角组成的集合为

A.
$$\left\{\alpha \mid 2k\pi < \alpha < \frac{\pi}{2} + 2k\pi, k \in \mathbf{Z}\right\}$$
 B. $\left\{\alpha \mid k\pi < \alpha < \frac{\pi}{2} + k\pi, k \in \mathbf{Z}\right\}$

B.
$$\left\{\alpha \mid k\pi < \alpha < \frac{\pi}{2} + k\pi, k \in \mathbf{Z}\right\}$$

C.
$$\left\{\alpha \mid \frac{\pi}{2} + 2k\pi < \alpha < \pi + 2k\pi, k \in \mathbf{Z}\right\}$$
 D. $\left\{\alpha \mid \frac{\pi}{2} + k\pi < \alpha < \pi + k\pi, k \in \mathbf{Z}\right\}$

D.
$$\left\{\alpha \mid \frac{\pi}{2} + k\pi < \alpha < \pi + k\pi, k \in \mathbf{Z}\right\}$$

3. 若 $\cos(2\pi - \alpha) = \frac{\sqrt{5}}{2}$,则 $\sin(\frac{3\pi}{2} - \alpha)$ 等于

A.
$$-\frac{\sqrt{5}}{3}$$

A.
$$-\frac{\sqrt{5}}{3}$$
 B. $-\frac{2}{3}$ C. $\frac{\sqrt{5}}{3}$

C.
$$\frac{\sqrt{5}}{3}$$

D.
$$\pm \frac{\sqrt{5}}{3}$$

4. 下列函数中,既是偶函数,又在区间(0,1)上单调递增的是

A.
$$y=x \cdot |x|$$

B.
$$y = \sin x$$

C.
$$y = \left(\frac{1}{2}\right)^{|x|}$$

D.
$$y = -\cos(\pi \cdot x)$$

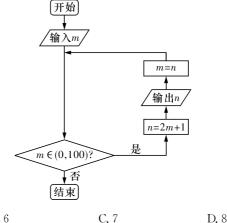
- 5. 已知扇形的周长是 12, 面积是 8, 则扇形的中心角的弧度数是
 - A. 1
- B. 4

- C. 1 或 4 D. 2 或 4
- 6. 若幂函数 f(x)的图象过点 $(3,\sqrt{3})$,则函数 y=f(x)+2-x 的零点为
- B. 2

C. 3

- 7. 已知函数 $f(x) = \sin\left(2\omega x \frac{\pi}{3}\right)(\omega > 0)$ 的最小正周期为 π ,则函数 f(x)的图象的
 - 一条对称轴方程是

A.
$$x = \frac{\pi}{12}$$
 B. $x = \frac{\pi}{6}$ C. $x = \frac{5\pi}{12}$ D. $x = \frac{\pi}{3}$


B.
$$x = \frac{\pi}{6}$$

C.
$$x = \frac{5\pi}{12}$$

D.
$$x = \frac{\pi}{3}$$

- 8. 已知 $a = \log_4 5, b = \log_2 3, c = \sin 2, \text{则 } a, b, c$ 的大小关系为
 - A. a < b < c B. c < a < b
- C. b < c < a D. c < b < a

9. 执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为

A. 5

B. 6

10. 对于函数 $f(x) = \sin x + \sqrt{3}\cos x$,给出下列选项,其中正确的是

A. 函数 f(x) 的图象关于点 $\left(\frac{\pi}{6},0\right)$ 对称

B. 存在
$$\alpha \in (0, \frac{\pi}{3})$$
,使 $f(\alpha) = 1$

- C. 存在 $\alpha \in (0, \frac{\pi}{3})$, 使函数 $f(x+\alpha)$ 的图象关于 y 轴对称
- D. 存在 $\alpha \in (0, \frac{\pi}{3})$,使 $f(x+\alpha) = f(x+3\alpha)$ 恒成立
- 11. 已知函数 $f(x) = \sin(\omega x + \varphi) \left(\omega > 0, |\varphi| < \frac{\pi}{2}\right)$ 图象相邻两条对称轴之间的距离

为 $\frac{\pi}{2}$,将函数 y=f(x)的图象向左平移 $\frac{\pi}{3}$ 个单位后,得到的图象关于 y 轴对称,

那么函数 y=f(x)的图象

A. 关于点
$$\left(-\frac{\pi}{12},0\right)$$
对称 B. 关于点 $\left(\frac{\pi}{12},0\right)$ 对称

C. 关于直线
$$x=-\frac{\pi}{12}$$
对称 D. 关于直线 $x=\frac{\pi}{12}$ 对称

12. 已知定义在 $[e,+\infty)$ 上的函数 f(x)满足 $f(x)+x\ln x f'(x)<0$ 且 $f(2\ 020)=0$, 其中 f'(x) 是函数 f(x) 的导函数, e 是自然对数的底数,则不等式 f(x) > 0 的解 集为

A.
$$\lceil e, 2 \ 020 \rangle$$
 B. $\lceil 2 \ 020, +\infty \rangle$ C. $(e, +\infty)$

$$C(e, +\infty)$$

 $D. \lceil e.e+1 \rangle$

选择题答题卡

题 号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

二、填空题:本大题共4小题	每小野 5 公 H 20 公	坦 安
一、快工巡: 个八巡六 * 小巡	,丏小巡っ刀,六~0刀,	,几百米块在这个便以上,

13. 计算: sin 32°cos 182°+cos 32°cos 88°= .

14. 已知函数
$$f(x) = \begin{cases} x^2, x > 0, \\ x+1, x \leq 0, \end{cases}$$
 $g(x) = \log_2 x,$ 若 $f(a) + f(g(2)) = 0,$ 则实数 a 的

值为_____.

15. 已知
$$\sin \theta + \cos \theta = \frac{1}{5}$$
, $\theta \in \left(\frac{\pi}{2}, \pi\right)$,则 $\tan \theta =$ _____.

16. 已知函数
$$f(x)=\sin^2x+2\cos x$$
 在区间 $\left[-\frac{2\pi}{3},a\right]$ 上的值域为 $\left[-\frac{1}{4},2\right]$,则 a 的取值范围是

三、解答题: 共70分, 解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分 10 分)

已知
$$f(\alpha) = \frac{\sin(\pi + \alpha)\cos(\pi - \alpha)}{\cos(-\alpha)\sin(\frac{\pi}{2} + \alpha)}$$
.

- (1)化简 $f(\alpha)$;
- (2)若 $f(\alpha) = 2$,求 $2\sin^2 \alpha 3\sin \alpha \cos \alpha$ 的值.

已知函数 $f(x) = 3\tan\left(\frac{\pi}{6} - \frac{x}{4}\right)$.

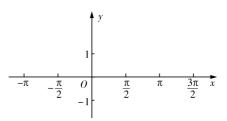
- (1)求 f(x)的最小正周期和单调递减区间;
- (2)试比较 $f(\pi)$ 与 $f(\frac{3\pi}{2})$ 的大小.

已知函数 $f(x) = x^3 + ax^2 + bx + c$.

- (1)设 b=c=1,求曲线 y=f(x)在点(0,f(0))处的切线方程;
- (2)设a=b=4,若函数y=f(x)有三个不同零点,求实数c的取值范围.

已知角 α 的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=2x上.

(1)求
$$\cos\left(2\alpha + \frac{\pi}{4}\right)$$
的值;


(2)已知
$$\alpha \in (0, \frac{\pi}{2})$$
, $\sin(\beta + \frac{\pi}{4}) = \frac{\sqrt{10}}{10}$, $-\frac{\pi}{2} < \beta < 0$, 求 $\alpha - \beta$ 的值.

已知函数
$$f(x) = \frac{m \cdot 5^x - 1 + m}{5^x + 1}$$
.

- (1)若 f(x)是实数集 **R**上的奇函数,求 m 的值;
- (2)用定义证明 f(x)在实数集 R上单调递增;
- (3)若 f(x)的值域为 D,且 $\left[\frac{1}{3}, \frac{1}{2}\right]$ \subseteq D,求 m 的取值范围.

已知定义在区间 $\left[-\pi, \frac{3\pi}{2}\right]$ 上的函数 y=f(x)的图象关于直线 $x=\frac{\pi}{4}$ 对称,当 x

$$\geqslant \frac{\pi}{4}$$
 $\exists f(x) = -\sin x$.

- (1)作出 y=f(x)的图象;
- (2)求 y=f(x)的解析式;
- (3) 若关于x的方程f(x) = a有解,将方程中的a取一确定的值所得的所有解的和记为 M_a ,求 M_a 的所有可能的值及相应的a的取值范围.

 \forall

内

高考总复习单元同步滚动测试卷 文科数学(七)

(解三角形)

时量:120 分钟 总分:150 分

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.

 $1. \sin 510^{\circ} =$

A. $\frac{1}{2}$ B. $\frac{\sqrt{3}}{2}$ C. $-\frac{1}{2}$

D. $-\frac{\sqrt{3}}{2}$

2. 在 $\triangle ABC$ 中, $A=60^{\circ}$, $B=45^{\circ}$,b=2,则 a 等于

 $A, \sqrt{2}$

 $B_{\star}\sqrt{3}$

C. 3

 $D_{x}\sqrt{6}$

3. 已知命题 $p_1: \exists x_0 \in \mathbb{R}, x_0^2 - 2x_0 + 1 \leq 0; p_2: \forall x \in [1,2], x^2 - 1 \geq 0,$ 则下列命题中 为假命题的是

A. $(\neg p_1) \land (\neg p_2)$

B. $p_1 \lor (\neg p_2)$

C. $(\neg p_1) \lor p_2$

D. $p_1 \wedge p_2$

4. 三角形 ABC 中, 角 A, B, C 的对边分别为 a, b, c. 已知 a = 2, b = 3, c = 4,则三角形 ABC 一定是

A. 钝角三角形 B. 直角三角形 C. 锐角三角形 D. 都有可能

5. 已知函数 $f(x) = (1 - \cos 2x)\cos^2 x, x \in \mathbb{R}$,则 f(x)是

A. 最小正周期为 $\frac{\pi}{2}$ 的奇函数

B. 最小正周期为 $\frac{\pi}{2}$ 的偶函数

C. 最小正周期为 π 的奇函数

D. 最小正周期为 π 的偶函数

6. 已知 $\triangle ABC$ 中,a=2, $b=2\sqrt{7}$, $B=60^{\circ}$,则 $\triangle ABC$ 的面积是

A. 3

B. $3\sqrt{3}$

C. 6

D. $6\sqrt{3}$

7. 在 $\triangle ABC$ 中,角A,B,C所对的边分别为a,b,c. 若 $\sin^2 B + \sin^2 C - \sin^2 A + \sin B\sin C$ =0,则 $\tan A=$

A. $\frac{\sqrt{3}}{2}$ B. $-\frac{\sqrt{3}}{2}$ C. $\sqrt{3}$

D. $-\sqrt{3}$

8. 在 $\triangle ABC$ 中,角 A,B,C 的对边分别为 a,b,c. 已知 $a=4,b=2\sqrt{6}$, sin $2A=\sin B$, 则边 c 的长为

A. 2

B. 3

C. 4

D. 2 或 4

10. 已知	田函娄	女 f (x) =	sin ($\omega x + \varphi$	(A)	>0 , ω	>0,	φ	$\left(\frac{\pi}{2}\right)$ i	ត足 <i>j</i>	f(x+	$-\frac{\pi}{2}$) =			
f(x)	$\frac{\pi}{2}$),且.	$f\left(\frac{\pi}{6}\right)$	+x	=f(-	$\frac{\pi}{6} - x$),则	下列区	区间中	是 <i>f</i>	(x)的	的单调	减区间			
的是	<u>.</u>															
A. [$-\frac{5\pi}{6}$	$,-\frac{\pi}{3}$.]				В. [-	$-\frac{4\pi}{3}$,	$-\frac{5\pi}{6}$							
С. [$\frac{2\pi}{3}$, $\frac{7}{6}$	$\left[\frac{\pi}{3}\right]$					D. [-	$-\frac{\pi}{3}$,								
11. (201	19 全国	国卷 Ⅰ) \(\triangle A	BC fi	的内角	A, B	, C 的	対边	分別さ	为 a , b	, c, ⊟	L知 as	$\sin A$ —			
$b\sin$	B=4	csin C	cos A	4=-	$\frac{1}{4}$,则	$\frac{b}{c} =$										
A. 6			В. 5				C. 4			D	. 3					
12. 已知	函数	f(x)	$=x^{3}$	-3x,	若过点	$ \vec{\chi} M(\vec{z}) $	(B,t)页	「作曲:	线 y=	f(x)	的三	条切约	线,则实			
数 t	的取值	直范围	是													
A. (A. (-9,18)								B. (-18,18)							
C. (-18,	6)					D. $(-6,6)$									
					选	择题	答题	卡								
题号	1	2	3	4	5	6	7	8	9	10	11	12	得分			
答案																
二、填空	题:本	大题	共 4 小	∖题,€	事小题	5分,	共 20	分. 把	!答案均	真在题	中横	线上.				
13. 将十	进制	数 524	转化	为八词	性制数	为		.•								
14. 化简	$\tilde{J}: \frac{1}{\tan \theta}$	(_a -3)	sin ($(-\alpha)$	$\frac{-\sin}{180^{\circ}+}$	(900° -a) —	$\frac{-\alpha}{\cos(-\alpha)}$	$-\alpha$ -3	60°)	=						
15. 某船		-											°的方向			
		手里后														
海里																
16. 已知	ı∆AE	3C中,	角 <i>A</i> 、	B,C	所对的	的边分	·别为	a , b,c	$,S_{\triangle AB}$	c表示	∴AE	BC 的ī	面积,且			
有 b	(asin	A+bs	$\sin B$)	=4sii	n B • 3	$S_{\triangle ABC}$	+bcsi	n C,≢	<u></u> c=√	6,则/	$\triangle ABC$	こ的外	接圆半			
径为	J		_•													
						50	0									

9. 在 $\triangle ABC$ 中, $B=\frac{\pi}{4}$,BC 边上的高等于 $\frac{1}{3}BC$,则 $\cos A=$

A. $\frac{\sqrt{10}}{10}$ B. $-\frac{\sqrt{10}}{10}$ C. $-\frac{3\sqrt{10}}{10}$ D. $\frac{3\sqrt{10}}{10}$

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分 10 分)

在 $\triangle ABC$ 中,内角 A、B、C 所对的边分别是 a 、b、c,且 $2a\sin B\cos A - b\sin A = 0$. (1)求角 A;

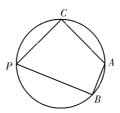
(2)当 $\sin B+\sqrt{3}\sin\left(C-\frac{\pi}{6}\right)$ 取得最大值时,试判断 $\triangle ABC$ 的形状.

已知
$$f(x) = x^2 + 2x \tan \theta - 1, x \in [-1, \sqrt{3}],$$
其中 $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- (1)当 $\theta = -\frac{\pi}{6}$ 时,求函数f(x)的最大值;
- (2) 求 θ 的取值范围,使 y=f(x)在区间[$-1,\sqrt{3}$]上是单调函数.

在 $\triangle ABC$ 中,角 $B=\frac{\pi}{3}$,BC=2.

- (1)若 AC=3,求 AB 的长;
- (2)若点 D 在边 AB 上,AD=DC, DE_AC ,E 为垂足, $ED=\frac{\sqrt{6}}{2}$, 求角 A 的大小.



20.(本小题满分12分)

已知 $f(x) = 4\cos^4 x + 4\sin^2 x - \sqrt{3}\sin 2x\cos 2x$.

- (1)求 f(x)的最小正周期;
- (2) f(x) 的图象上的各点的横坐标伸长为原来的 2 倍,纵坐标不变,再将所得图象向右平移 $\frac{\pi}{3}$ 个单位,得到函数 y=g(x) 的图象,求 g(x) 在 $x\in \left[0,\frac{\pi}{2}\right]$ 上的单调区间和最值.

某市某棚户区改造,四边形 ABPC 为拟定拆迁的棚户区,测得 $\angle BPC = \frac{\pi}{3}$, $\angle BAC = \frac{2\pi}{3}$, AC = 4 千米, AB = 2 千米, 工程规划用地近似为图中四边形 ABPC 的外接圆内部区域.

- (1)求四边形 ABPC 的外接圆半径 R;
- (2)求该棚户区即四边形 ABPC 的面积的最大值.

22.(本小题满分12分)

已知函数 $f(x) = \frac{1}{2}ax^2 - (a^2 + b)x + a\ln x(a, b \in \mathbf{R}).$

- (1)当 b=1 时,求函数 f(x)的单调区间;
- (2)当a=-1,b=0时,证明: $f(x)+e^x>-\frac{1}{2}x^2-x+1$ (其中 e 为自然对数的底数).

闘

巡

翢

+

K

镪

高考总复习单元同步滚动测试卷 文科数学(八)

(单元滚动卷)

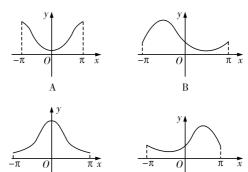
时量:120 分钟 总分:150 分

- 一、选择题: 本大题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知集合 $M = \{y | y = x^2 + 1, x \in \mathbf{R}\}$, $N = \{x | y = \sqrt{x+1}\}$,则 $M \cap N = 1$
- B. $\{(0,1)\}$
- C. $\{x | x \ge -1\}$ D. $\{y | y \ge 1\}$
- 2. 已知 α 是第二象限角, $\sin\left(\frac{3\pi}{2} \alpha\right) = \frac{1}{3}$, 则 $\sin(\pi + \alpha) =$
 - A. $\frac{1}{2}$
- B. $-\frac{1}{2}$ C. $\frac{2\sqrt{2}}{2}$
- D. $-\frac{2\sqrt{2}}{2}$

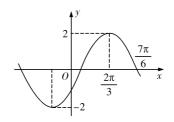
- 3. 下列结论正确的个数是
 - ①若 x>0,则 $x>\sin x$ 恒成立:
 - ②命题" $\forall x > 0, x \ln x > 0$ "的否定是" $\exists x_0 > 0, x_0 \ln x_0 \leq 0$ ";
 - ③"命题 $p \lor q$ 为真"是"命题 $p \land q$ 为真"的充分不必要条件.
- B. 2 个
- C. 3 个
- D. 4 个
- 4. 三位七进制的数表示的最大的十进制的数是
 - A. 322
- B. 402
- C. 342
- D. 365
- 5. 在 $\triangle ABC$ 中, $\sin A$: $\sin B$: $\sin C=3$: 2:3,则 $\cos C$ 的值为

- A. $\frac{1}{3}$ B. $-\frac{2}{3}$ C. $\frac{1}{4}$
- 6. 已知函数 $y = \log_a(x-1) + 3(a > 0, \exists a \neq 1)$ 的图象恒过点 P, 若角 α 的终边经过 点 P,则 $\sin^2 \alpha - \sin 2\alpha$ 的值等于
 - A. $\frac{3}{12}$

- B. $\frac{5}{13}$ C. $-\frac{3}{12}$ D. $-\frac{5}{12}$
- 7.《算法统宗》是中国古代数学名著,由程大位所著,其中记载这样一 首诗:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文 钱九个甜,甜苦两果各几个?请君布算莫迟疑!其含义为:用九百 九十九文钱共买了一千个甜果和苦果,其中四文钱可以买苦果七 个,十一文钱可以买甜果九个,请问究竟甜、苦果各有几个? 现有如 图所示的程序框图,输入m,n分别代表钱数和果子个数,则符合输 出值 n 的为
 - A. p 为甜果数 343


B. p 为苦果数 343

C. p 为甜果数 657


- D. p 为苦果数 657
- 8. 已知函数 $f(x+\frac{1}{2})$ 为奇函数, g(x) = f(x) + 1, 则 g(x) + 1g(1-x) =
 - A. 0
- B. $\frac{1}{2}$
- C. 1
- D. 2

[开始]

9. 函数 $y=e^{\sin x}(-\pi \leqslant x \leqslant \pi)$ 的大致图象为

10. 已知函数 $f(x) = A\sin(\omega x + \varphi)$ (其中 A, ω, φ 为常数,且 $A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}$) 的部分图象如图所示,若 $f(\alpha) = \frac{3}{2}$,则 $\sin(2\alpha + \frac{\pi}{6})$ 的值为

A.
$$-\frac{3}{4}$$

A.
$$-\frac{3}{4}$$
 B. $-\frac{1}{8}$

C.
$$\frac{1}{8}$$

D.
$$\frac{1}{3}$$

11. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱的水柱的高度,某人 在喷水柱正西方向的 A 处测得水柱顶端的仰角为 45°,沿 A 向北偏东 30°方向前 进 100 m 后到达 B 处,在 B 处测得水柱顶端的仰角为 30° ,则水柱的高度是

A. 50 m

12. 若函数 $f(x) = \frac{5}{2} \ln x + \frac{1}{ax} - ax - 1$ 在[1,2]上为增函数,则 a 的取值范围为

A.
$$(-\infty,0) \cup \left[\frac{1}{4},2\right]$$

B.
$$(-\infty,0) \cup \left[\frac{1}{2},1\right]$$

C.
$$[-1,0) \cup \left(0,\frac{1}{4}\right]$$

D.
$$[-1,0) \cup \left[\frac{1}{2},1\right]$$

选择题答题卡

题 号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

13. 若
$$\sin \theta = \frac{1}{4}$$
, $\theta \in \left(0, \frac{\pi}{2}\right)$,则 $\tan 2\theta =$ _____.

14. 在 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c,已知 $a=3,C=\frac{\pi}{3}$, $\triangle ABC$ 的面

积为
$$3\sqrt{3}$$
,则边 $c=$.

15. (2019 全国 # $\|$) 曲线 $y=3(x^2+x)e^x$ 在点(0,0)处的切线方程为

16. 若 f(x)是定义在 **R** 上的偶函数,当 $x \ge 0$ 时, $f(x) = \begin{cases} -\sin \frac{\pi}{2} x + 1, 0 \le x \le 2, \\ f(x-1), x \ge 2, \end{cases}$

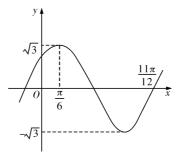
方程 f(x)=kx 恰有 3 个不同的实数根,则实数 k 的取值范围是

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分10分)

已知 $a \in \mathbb{R}$,命题 $p: \forall x \in [-2, -1], x^2 - a \ge 0$,命题 $q: \exists x_0 \in \mathbb{R}, x_0^2 + 2ax_0 - (a - 2) = 0$.

- (1)若命题 p 为真命题,求实数 a 的取值范围;
- (2)若命题" $p \lor q$ "为真命题,命题" $p \land q$ "为假命题,求实数 a 的取值范围.


已知 α , β 都是锐角, $\sin \alpha = \frac{1}{3}$, $\sin(2\alpha - \beta) = \frac{4}{5}$.

- (1)求 $\cos \beta$ 的值;
- (2)求 $\sin(\alpha \beta)$ 的值.

在 $\triangle ABC$ 中,角 A,B,C的对边分别为 a,b,c,已知 $b=c(2\sin A+\cos A)$. (1)求 sin C;

(2)若 $a=\sqrt{2}$, $B=\frac{3}{4}\pi$,求 $\triangle ABC$ 的面积.

已知函数 $f(x) = A\sin(\omega x + \varphi) \left(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}\right)$ 的部分图象如图所示.

- (1)求函数 f(x)的解析式,并求它的对称中心的坐标;
- (2)将函数 f(x)的图象向右平移 $m\left(0 < m < \frac{\pi}{2}\right)$ 个单位,得到的函数 g(x) 为偶函数,求函数 $y=f(x)g(x)+\frac{3}{4}$, $x \in \left[-\frac{\pi}{12},\frac{\pi}{6}\right]$ 的最值及相应的 x 值.

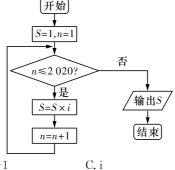
设函数 $f(x) = 2^{x + \cos \alpha} - 2^{-x + \cos \alpha}, x \in \mathbb{R}, \text{且 } f(1) = \frac{3}{4}.$

- (1)求α的取值的集合;
- (2)若当 0 \leqslant $\theta \leqslant \frac{\pi}{2}$ 时, $f(m\cos\theta)+f(1-m)>0$ 恒成立,求实数 m 的取值范围.

22.(本小题满分12分)

已知函数 $f(x) = \sin x - ax$, $\ln 2 > \sin \frac{1}{2}$, $\ln \frac{4}{\pi} < \frac{\sqrt{2}}{2}$.

- (1)若对于任意 $x \in (0,1), f(x) > 0$ 恒成立,求实数 a 的取值范围;
- (2)当a=0时, $h(x)=x(\ln x-1)-f'(x)$,证明h(x)存在唯一极值点.

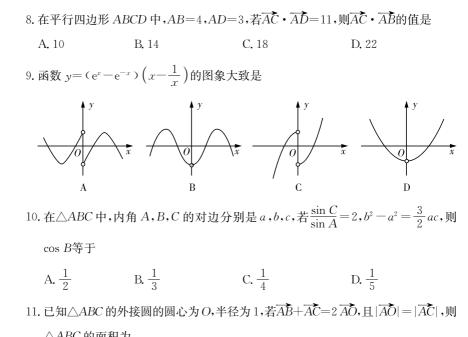

高考总复习单元同步滚动测试卷 文科数学(九)

(平面向量、复数)

时量:120 分钟 总分:150 分

- 一、选择题: 本大题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 复数 $\frac{5}{(1-2\mathrm{i})\mathrm{i}}$ 在复平面内对应的点的坐标为
- B. (2,-1)
- D. (-1,2)
- 2. 已知向量 a=(1,m), b=(3,-1),若 $a \perp b,$ 则 m=
 - A. $-\frac{1}{3}$ B. $\frac{1}{3}$
- D. -3

- 3. 下面给出的函数中以 π 为最小正周期的是
 - $(1)_{\nu} = \sin |x|$:
 - $2y = \cos\left(2x \frac{\pi}{3}\right);$
- $\Im y = \left| \cos x + \frac{1}{2} \right|$;
- $y=\tan\left(x+\frac{\pi}{4}\right).$
 - $A. \bigcirc \bigcirc$
- B. (1)(3)
- C. (2)(4)
- D. (3)(4)
- 4. (2019 全国卷 I)已知非零向量 a,b 满足 |a|=2|b| ,且 $(a-b)\perp b$,则 a 与 b 的夹
- B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$
- D. $\frac{5\pi}{\epsilon}$
- 5. 若复数 $z=\frac{a+\mathrm{i}}{1-\mathrm{i}}$,且 $z\cdot\mathrm{i}^3>0$,则实数 a 的值等于
- $B_{\bullet} 1$
- C. $\frac{1}{2}$
- 6. 已知平面向量 a,b 满足 $b \cdot (a+b)=3$,且 |a|=1, |b|=2,则 |a+b|等于
- $C_{\sim}\sqrt{7}$
- 7. 阅读下面的程序框图,输出结果 S 的值为(其中 i 为虚数单位, $i^2 = -1$)


- A. 1
- $B_{\bullet} 1$

 $D_{i} - i$

闘

沟

出

 $\triangle ABC$ 的面积为

 $A.\sqrt{3}$

B. $\frac{\sqrt{3}}{2}$

C. $2\sqrt{3}$

D. 1

12. 将函数 $f(x) = 4\cos\left(\frac{\pi}{2}x\right)$ 和直线 g(x) = x-1 的所有交点从左到右依次记为

 $A_1, A_2, A_3, \dots, A_n$,若 P 点坐标为 $(0, \sqrt{3})$,则 $|\overrightarrow{PA_1} + \overrightarrow{PA_2} + \dots + \overrightarrow{PA_n}| =$

A. 0

В. 2

C. 6

D. 10

选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

13. $\triangle ABC$ 中,AC=5, $\angle BAC=\frac{2}{3}\pi$,则 \overrightarrow{AC} 在 \overrightarrow{AB} 方向上的投影是_____.

14. 若 $\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{4}$,则 $\sin 2\alpha$ 的值为_____.

15. 已知函数 $f(x) = \begin{cases} \log_2(x^2+2), x \leq 1, \\ 2^x - m, x > 1 \end{cases}$ 在 **R** 上存在最小值,则 m 的取值范围

16. 在 $\triangle ABC$ 中,AB=2,AC=3, $\angle BAC=60$ °,P为 $\triangle ABC$ 所在平面内一点,满足 $\overrightarrow{CP} = \frac{3}{2}\overrightarrow{PB} + 2\overrightarrow{PA}$,则 $\overrightarrow{CP} \cdot \overrightarrow{AB}$ 的值为_____.

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

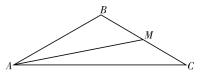
17. (本小题满分 10 分)

已知复数 $z=(m^2+2m)+(m^2-2m-3)$ i(i 为虚数单位), $m \in \mathbf{R}$.

- (1)当 m=1 时,求复数 $\frac{z}{1+i}$ 的值;
- (2)若复数z在复平面内对应的点位于第二象限,求m的取值范围.

18.(本小题满分12分)

- (1)已知 2a+b=(-4,3),a-2b=(3,4),求向量 a,b 的坐标;
- (2)已知x轴的正方向与向量a的夹角为 60° ,且|a|=2,求向量a的坐标.

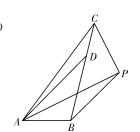

已知 $\triangle ABC$ 在平面直角坐标系 xOy 中,其顶点 A,B,C 坐标分别为 A(-2,3), B(1,6), $C(2\cos\theta,2\sin\theta)$.

(1)若 $\angle BAC = \frac{\pi}{2}$,且 θ 为第二象限角,求 $\cos \theta - \sin \theta$ 的值;

(2)若 $\theta = \frac{3}{2}\pi$,且 $\overrightarrow{AD} = \lambda \cdot \overrightarrow{AB}(\lambda \in \mathbf{R})$,求| \overrightarrow{CD} |的最小值.

如图,在 $\triangle ABC$ 中,M是边BC的中点,

$$\cos \angle BAM = \frac{5\sqrt{7}}{14}$$
, $\tan \angle AMC = -\frac{\sqrt{3}}{2}$.



- (1)求角 B 的大小;
- (2)若角 $\angle BAC = \frac{\pi}{6}$, BC 边上的中线 AM 的长为 $\sqrt{21}$, 求 $\triangle ABC$ 的面积.

如图,在 $\triangle ABC$ 中,AB=2,AC=5, $\cos\angle CAB=\frac{3}{5}$,D

是边BC上一点,且 \overrightarrow{BD} =2 \overrightarrow{DC} .

- (1)设 $\overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}$,求实数 x, y 的值;
- (2)若点 P满足 \overrightarrow{BP} 与 \overrightarrow{AD} 共线, \overrightarrow{PA} \bot \overrightarrow{PC} ,求 $\frac{|\overrightarrow{BP}|}{|\overrightarrow{AD}|}$ 的值.

22.(本小题满分12分)

已知函数 $f(x) = (2-a)(x-1) - 2\ln x (a \in \mathbf{R})$.

- (1) 若曲线 g(x) = f(x) + x 上点(1,g(1))处的切线过点(0,2),求函数 g(x)的单 调减区间;
- (2)若函数 y=f(x)在 $\left(0,\frac{1}{2}\right)$ 上无零点,求 a 的最小值.

高考总复习单元同步滚动测试卷 文科数学(十)

(数列)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知数列 $\{a_n\}$ 的前 5 项依次为 $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{3}$, $\frac{4}{3}$, $\frac{5}{3}$,则数列 $\{a_n\}$ 的一个通项公式 a_n =

A.
$$\begin{cases} 1 & (n=1) \\ \frac{n}{3} & (n \ge 2) \end{cases}$$

B.
$$\frac{2n-1}{3}$$

C.
$$\frac{n}{3}$$

D.
$$\begin{cases} \frac{1}{3} (n=1) \\ \frac{2n}{3} (n \ge 2) \end{cases}$$

2. 若复数z满足zi=1+2i,则z的共轭复数是

$$C. -2-i$$

$$D_{i} - 2 + i$$

3. 设等差数列 $\{a_n\}$ 的公差为d, 目 $a_1a_2=35, 2a_4-a_6=7, 则 <math>d=$

A. 4

B. 3

C. 2

D. 1

4. 已知数列 $\{a_n\}$ 是等比数列,且每一项都是正数,若 $a_1 = 1, a_{2.019} = 3, 则 <math>a_{1.010}$ 的值为

A. 9

 $B_{\bullet}\sqrt{3}$

C. $\pm \sqrt{3}$

5. 设 a,b 是不共线的两个平面向量,已知 $\overrightarrow{PQ} = a + kb$, $\overrightarrow{QR} = 2a - b$. 若 P,Q,R =点共 线,则实数k的值为

B. -2

C. $\frac{1}{2}$ D. $-\frac{1}{2}$

6. 等差数列 $\{a_n\}$ 、 $\{b_n\}$ 的前 n 项和分别为 S_n 和 T_n ,若 $\frac{S_n}{T_n} = \frac{2n+1}{3n+2}$,则 $\frac{a_3+a_{11}+a_{19}}{b_7+b_{15}} =$

B. $\frac{129}{120}$

C. $\frac{123}{124}$ D. $\frac{135}{136}$

- 7. 在重大节日里,从古至今我国有悬挂灯笼增加节日气氛的习俗, 据文献记载,古代 有一座 n 层的塔共挂了 127 盏灯笼,相邻两层中的下一层灯笼数是上一层灯笼数 的 2 倍,且底层的灯笼数与顶层的灯笼数之和为 65,则塔的底层共有灯笼
 - A. 27 盏
- B. 81 盏
- C. 64 盏
- D. 128 盏

9. 已知/	角α满	≒足 2c	os 2α	=cos($\left(\frac{\pi}{4}+\right)$	α) \neq (),则 si	in 2α=	=				
А. —	1 8		В	$-\frac{7}{8}$			C. $\frac{1}{8}$			D	$\frac{7}{8}$		
10. 已知	数列	$\{a_n\}$ 是	:首项	为 1,2	公差为	12的	等差数	女列,娄	対列 {b	"}满月	足关系	$\frac{a_1}{b_1} +$	$\frac{a_2}{b_2} + \frac{a_3}{b_3}$
+•••	$+\frac{a_n}{b_n}$	$=\frac{1}{2^n}$,	数列	$\{b_n\}$ 的	前 n ¹	页和为	$j S_n$, \mathbb{J}	$U S_5$ É	的值为	i			
A	-442		В	-446			C. –	150		D	. —45	4	
1. 已知	函数	f(x)	瞒足 <i>f</i>	(x) +	f(-x)	=4,	函数。	g(x) =	$=\frac{2x+}{x}$	1 与 f	(x)的	图象共	快有4个
交点	,交点	(坐标)	分别为	$j(x_1, y)$	y ₁),(2	(x_2, y_2)	$,(x_3,$	y ₃),((x_4, y_4)	,则 y	$_{1}+y_{2}$	$+y_3+$	$-y_4 =$
A. 0			B. 4				C. 8			D	. 16		
2. 设数	[列 { a	"}的真	前ヵ項	和为	S_n , a_n	$_{+1}+a$	n=2n	+1,	$\int_{0}^{\infty} S_n =$	=1 350). 若 a	$a_2 < 2$	则 n 的
最大	值为												
A. 5	1		B. 5	2			C. 53			D	. 54		
					选	择题	答题	卡					
题 号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													
范围 4. 三角 角形 5. 设曲 lg $\frac{1}{x}$	1命题 是	p:∀a —边长 积是_ =x ⁿ⁺¹ a ₁ +a ₂	x ∈ R , E 为 14 (n ∈ N	ax ² +	2x+; :边所; (1,1;	3≥0, 对的角)处的 =	如果60	ρ题「)°,另∫ 与 <i>x</i> 斩	<i>p</i> 是』 两边长 曲交点	真命思	5,则 ⁹ 为 8 : 坐标 ²	天数 a ∶ 5,则 内 x _n ,	的取值 这个
					J	00	<i>in</i> 1						
						7	4						

8. 若实数 1, x, y, 4 成等差数列, -2, a, b, c, -8 成等比数列, 则 $\frac{y-x}{b}$ =

A. $-\frac{1}{4}$ B. $\frac{1}{4}$ C. $\frac{1}{2}$

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分 10 分)

各项均为正数的等比数列 $\{a_n\}$ 中 $,a_1=1,a_5=4a_3$.

- (1)求 $\{a_n\}$ 的通项公式;
- (2)记 S_n 为 $\{a_n\}$ 的前 n 项和. 若 $S_m = 63$,求 m.

已知数列 $\{a_n\}$ 是递增的等差数列 $,a_3=7$,且 a_4 是 a_1 与27的等比中项.

- (1)求 a_n ;
- (2)若 $b_n = \frac{1}{\sqrt{a_n} + \sqrt{a_{n+1}}}$,求数列 $\{b_n\}$ 的前 n 项和 T_n .

已知公差不为零的等差数列 $\{a_n\}$ 的前n项和为 $S_n,S_8=64$,又 a_2 是 a_1 与 a_5 的等比中项.

- (1)求数列 $\{a_n\}$ 的通项公式;
- (2) 若 $S_n + a_n > 62$, 求 n 的最小值.

已知向量 $p=(1,\sqrt{3}),q=(\cos x,\sin x)$.

- (1)若 p//q,求 $\sin 2x \cos^2 x$ 的值;
- (2)设函数 $f(x) = \mathbf{p} \cdot \mathbf{q}$,将函数 f(x)的图象上所有的点的横坐标缩小到原来的 $\frac{1}{2}$ (纵坐标不变),再把所得的图象向左平移 $\frac{\pi}{3}$ 个单位,得到函数 g(x)的图象,求 g(-x)的单调增区间.

已知数列 $\{a_n\}$, S_n 是其前n 项的和,且满足 $3a_n=2S_n+n(n\in \mathbf{N}^*)$.

- (1)求证:数列 $\left\{a_n + \frac{1}{2}\right\}$ 为等比数列;
- (2)记 $T_n = S_1 + S_2 + \cdots + S_n$,求 T_n 的表达式.

设函数
$$f(x)=x-\frac{1}{x}-a\ln x$$
 ($a\in \mathbb{R}$).

- (1)求 f(x)的单调区间;
- (2)设 $g(x) = f(x) + 2a \ln x$,且 g(x)有两个极值点 x_1, x_2 ,其中 $x_1 \in (0, e]$,求 $g(x_1) g(x_2)$ 的最小值.

高考总复习单元同步滚动测试卷 文科数学(十一)

(不等式、推理与证明)

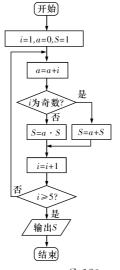
时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知集合 $A = \{x \mid 2 < x < 4\}, B = \{x \mid x^2 4x + 3 \le 0\}, 则 A \cap B = \{x \mid x^2 4x + 3 \le 0\}, N \cap B = \{x \mid x^2 4x + 3 \le 0\},$ A. $\{x \mid -1 < x \le 4\}$ B. $\{x \mid -1 \le x \le 4\}$ C. $\{x \mid 2 < x \le 3\}$ D. $\{x \mid 2 \le x \le 3\}$
- 2. 函数 $y=\tan\left(3x+\frac{\pi}{6}\right)$ 的图象的对称中心为

B.
$$\left(\frac{\pi}{2},0\right)$$

C.
$$(k\pi - \frac{\pi}{18}, 0), k \in \mathbb{Z}$$

D.
$$(\frac{k\pi}{6} - \frac{\pi}{18}, 0), k \in \mathbb{Z}$$


3. 已知等差数列 $\{a_n\}$,若 $a_2=10,a_5=1$,则 $\{a_n\}$ 的前7项的和是

- D. 18
- 4. 已知变量 x, y 满足约束条件 $\{2x-y\ge 0, \quad \text{则 } z=\frac{x+2y+2}{x+1}$ 的取值范围是 $x+y-6 \le 0$

$$A. \lceil 2, 4 \rceil$$

B.
$$\left[\frac{11}{4}, 4\right]$$
 C. $[3, 5]$

- D. $\left[\frac{3}{2}, \frac{5}{2}\right]$
- 5. 阅读如图所示的程序框图,运行相应程序,输出的结果是

A. 12

B. 18

C. 120

D. 125

沟

 \mathbb{K}

1

緻

出

A. 3		В	. 1			C. 1	1 或 3			D. 尤	解		
8. 已知数约	$\left(\frac{1}{1}\right)$,	$\left(\frac{1}{2}, \frac{1}{2}\right)$	$\frac{2}{1}$),	$\left(\frac{1}{3}, \frac{1}{3}\right)$	$\frac{2}{2}, \frac{3}{1}$		$, \left(\frac{1}{n}\right)$	$,\frac{2}{n-1}$	$, \cdots, \frac{n}{2}$	$\frac{n-1}{2}$,	$\left(\frac{n}{1}\right)$,.	••,记该	
数组为($(a_1), (a_2)$	$(a_3), ($	a_4 , a_5	$,a_{6}),$	…,则	a ₂₀₀ 鲁	等于						
A. $\frac{9}{11}$		В	$\frac{10}{11}$			С.	11 12			D. $\frac{9}{10}$	<u>.</u>		
9. 己知 $m=$	$=\frac{1}{x-2}+$	x(x>	(-2), n	$=2^{2-3}$	x^{2} (x<	(0),贝]m,n	的大小	卜关系	是			
A. $m < n$		В	. m>	n		C. 1	$m \leqslant n$			$D_{\bullet} m_{\epsilon}$	$\geqslant n$		
10. 设 a,b∈	∈ R ,现给	出下	列五个	条件	:①a-	b=2	; ②a-	<i>b</i> ≥2	;3a-	+ <i>b</i> >-	-2;4)ab>1;	
$\log_a b$	<0,其中	中能推	出"a,	む 中国	巨少有	一个ナ	大于 1'	'的条	牛为				
A. 23	(4)	В	. 23	45		C. (123	5		D. ②	(5)		
11. 已知 a2	>b>0,7	有下列	命题:	:									
①若√a	$-\sqrt{b}=1$,则 a-	- <i>b</i> <1	l;									
②若 a²	$-b^2 = 1$,则 a-	-b<1	l;									
③若 a³	$-b^3 = 1$,则 a-	-b<1	l;									
④若 a ⁴	$-b^4 = 1$,则 a-	-b<1	l.									
其中真	命题的个	数为											
A. 1		В	. 2			C. :	3			D. 4			
12. 已知函	数 f(x)	$=x^{3}+$	$-2ax^2$	+3bx	+ c 的	两个	吸值点	分别	在(一	1,0)	j(0,1	.)内,则	
2 <i>a</i> − <i>b</i> £	的取值范	围是											
A. (—	$\frac{3}{2}$,1)	В	. (-	$\frac{3}{2}$, $\frac{3}{2}$	-)	C.	$\left(-\frac{1}{2}\right)$	$(-,\frac{3}{2})$		D. (1	$(\frac{3}{2})$		
				选	择题	答题	卡						
题号 1	2	3	4	5	6	7	8	9	10	11	12	得 分	
答案													
二、填空题	- 木 大 题	# 4 /	、颗(京小野	i 5 分	世 20	分 押	□──□	直在駅	5 山構织	 绐 ト		
				_									
13. 已知平	面向量 6	ı,b 的	夹角)	$h\frac{2\pi}{3}$,	a =4	b	=2,贝	a-2	2b =		·		
				y—6≤									
14. 设 x,y	满足约束	条件	$\begin{vmatrix} x-y \\ x \geqslant 0 \end{vmatrix}$	<i>y</i> +2≥	:0 , 则	目标函	函数 ≈	=2x+	y 的量	最大值	为	·	
			$y \ge 0$,									
					8:	2							

B. $y = \sin x + \frac{1}{\sin x} \left(0 < x < \frac{\pi}{2} \right)$

D. $y = e^x + \frac{4}{e^x} - 2$

7. 已知 $\triangle ABC$ 的内角 A ,B ,C 的对边分别为 a ,b ,c ,a = $\sqrt{6}$,c = 3 , $\cos A$ = $\frac{2}{3}$,则 b =

6. 在下列各函数中,最小值等于2的函数是

A. $y = x + \frac{1}{x}$

C. $y = \frac{x^2 + 5}{\sqrt{x^2 + 4}}$

- 15. 已知函数 f(x) = 2x, $g(x) = 3x^2 + 2x + 1$, 当 x > 0 时, 函数 $\frac{g(x)}{f(x)}$ 的最小值为_____.
- 16. 已知正实数 x,y满足等式 x+y+8=xy,若对任意满足条件的 x,y,不等式(x+y) $^2-a(x+y)+1\ge 0$ 恒成立,则实数 a 的取值范围是_____.
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分 10 分)
 - (1)已知 $x \le 1$,比较 $3x^3$ 与 $3x^2 x + 1$ 的大小;
 - (2)若a>b>0,c<d<0,e<0,求证: $\frac{e}{(a-c)^2}>\frac{e}{(b-d)^2}$.

设 S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $S_n=2a_n-2$.

- (1)求数列 $\{a_n\}$ 的通项公式;
- (2)求数列 $\left\{\frac{2-n}{a_n}\right\}$ 的前n 项和 T_n .

已知
$$x>1, y>1, x+y=4$$
.

- (1)求证:*xy*≤4;
- (2)求 $\frac{x}{x-1} + \frac{2y}{y-1}$ 的最小值.

已知函数 $f(x) = \sin \frac{x}{2} \cdot (\sqrt{3} \sin \frac{x}{2} + \cos \frac{x}{2}).$

- (1)求函数 f(x)的单调递增区间;
- (2)设 $\triangle ABC$ 中的内角 A , B , C 所对的边分别为 a , b , c , 若 $f(B) = \frac{\sqrt{3}}{2}$, 且 $b = \sqrt{3}$, 求 $a^2 + c^2$ 的取值范围.

某公司决定对旗下的某商品进行一次评估,该商品原来每件售价为 25 元,年销售 8 万件.

- (1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
- (2)为了抓住 2022 年冬奧会契机,扩大该商品的影响力,提高年销售量,公司决定立即对该商品进行全面技术革新和销售策略改革,并提高定价到x元,公司拟投入 $\frac{1}{6}(x^2-600)$ 万作为技改费用,投入 50 万元作为固定宣传费用,投

人 $\frac{x}{5}$ 万元作为浮动宣传费用. 试问: 当该商品改革后的销售量 a 至少达到多少万件时, 才可能使改革后的销售收入不低于原收入与总投入之和? 并求出此时商品的每件定价.

设函数 $f(x) = ax + 2x \ln x, a \in \mathbf{R}$.

- (1)若函数 f(x)在(0, e^2]上单调递减,求实数 a 的取值范围;
- (2)当 a=2 时,若不等式 $t(x-2) \le f(x)$ 在 $x \in (2, +\infty)$ 上恒成立,求满足条件的 t 的最大整数值. (参考值: $\ln 2 \approx 0.7$, $\ln 3 \approx 1.1$, $\ln 5 \approx 1.6$).

闘

沟

更

1

 \mathbb{K}

涨

本

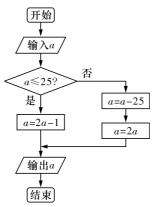
镪

高考总复习单元同步滚动测试卷 文科数学(十二)

(单元滚动卷)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知集合 $M=\mathbf{Z}(整数集)$ 和 $N=\left\{i,i^2,\frac{1}{i},\frac{(1+i)^2}{i},\frac{(1-i)^2}{i}\right\}$,其中 i 是虚数单位, 则集合 $M \cap N$ 所含元素的个数有


A. 2 个

B. 3 个

C 4 个

D. 5 个

2. 某班有49位同学玩"数字接龙"游戏,具体规则按如图所示的程序框图执行(其中 a 为座位号),并以输出的值作为下一个输入的值, 若第一次输入的值为 8,则第三 次输出的值为

B. 15

C. 29

D. 36

3. 设 $a,b \in \mathbb{R}$,函数 $f(x) = ax + b(0 \le x \le 1)$,则"f(x) > 0 恒成立"是"a + 2b > 0 成

A. 充分不必要条件

B. 必要不充分条件

C. 充分必要条件

- D. 既不充分也不必要条件
- 4. 已知平面上有 A(-2,1), B(1,4), D(4,-3) 三点, 点 C 在直线 AB 上, 且 AC = $\frac{1}{2}$ BC,连接 DC 并延长,取点 E,使 $\overline{CE} = \frac{1}{4}$ DE,则点 E 的坐标为

A.(0,1)

B. (0,1)或 $\left(\frac{4}{3},\frac{11}{3}\right)$

C. $\left(-\frac{8}{3}, \frac{11}{3}\right)$

- D. $\left(-8, -\frac{5}{2}\right)$
- 5. 若 $0 < a < b, a+b=1, 则 a, \frac{1}{2}, 2ab$ 中最大的数为

A. a

B. 2ab

C. $\frac{1}{2}$

D. 无法确定

实数	x,恒7	有 f(x	·)>0,	所以.	$\Delta \leqslant 0$	即 4($a_1 + a_1$	$(2)^2 - 8$	3≪0,	所以 a	$_{1}+a_{2}$	$\leq \sqrt{2}$.		
根据	上述证	E明方	法,若	n个ī	E实数	a_1, a_2	2,,	<i>ı</i> , 满月	$\frac{1}{2}a_1^2 +$	$a_2^2 + \cdot$	··+a	n = n	付,你能	į
得到的	的结论	是												
$A_{\bullet} a_1$	$+a_{2}+$	+	$a_n \leq 2$	n			B. $a_1 + a_2 + \cdots + a_n \le n^2$							
C. a_1	$+a_2+$	+	$a_n \leqslant n$				D. a_1	$+a_2+$	+	$a_n \leqslant \sqrt{r}$	- 1			
9. 已知		(2	-y>	0 ,										
9. 已知	不等式	₹组{a	·+y>	≥0,表	示平面	面区域	的面	积为 4	,点 F	P(x,y)) 在月	斤给的	平面区	
			:≤a											
	,则 z=	=2x+	-		为					_				
A. 2			B. 4				C. 6	_	2 2		. 8	1 1/1		
10. 已知		y > 0) , 且 x	:+2y-	-xy=	=0,若	x+2	y>m	$^{2}+2n$	1 怛成	立,则]买数	<i>m</i> 的取	
,	. 围是	,-2]	LIEA	±~	`		В. (-		_4711	Г 2	-~~)			
	$-\infty$, -2 , 4		UL4,	, $+\infty$,		D. (-			L2,7	-w)			
11. 在△			D左	建 段 1	8 <i>C</i> áti					5 占() 左线	的 CI) F(=	
							$(x) \overrightarrow{AC},$					HX CI	ノ <u> 工</u> (一)	
												1 ,		
	_			-			С. (-	_				-		
12. 已知	函数	f(x)	$=\left\{ \begin{array}{c} 1 \\ -1 \end{array} \right.$	g x ,	$x>0$ $2x,x \le 0$, _{≪0} ,∄	L方程	f^2 (x) - f((x)+2	2a - 3	=0有	8 个不	
同的	实根	,则实	数a飠	的取值	范围さ	勺								
A. ($\frac{3}{2}$,4)	в. ($(\frac{3}{2}, \frac{1}{8})$	$(\frac{3}{3})$		C. (=	$\frac{3}{2}$, +0	∞	D	. (2,4	1)		
					选	择题	答题	卡						
题号	1	2	3	4	5	6	7	8	9	10	11	12	得分	
答案														ĺ
二、填空	题:本	大题	共4/	\题,€	小题	5分,	共 20	分. 把	!答案 [!]	真在题	中横	 线上.		
13. 复数												•		
14. 将函											v = f(r). 出	$f r = \frac{2\pi}{3}$	
								1 <i>4.17</i> 14	可凹纵	、レレノリ、	y J	.u),=	3	
		得最						, .	# D	200	\	3 <i>11.</i> 	* 10 kk	
15. 在△							ŊŊa,	$D,C,\overline{\gamma}$	5 B=	ου , ∠	∆AB(り 的 面	枳等士	
$\frac{\sqrt{3}}{2}$,	则も的	的取值	范围是	Ē										
						90	0							

6. 设等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,公差 d < 0, $S_7 = 21$,且 $a_2 \cdot a_6 = 5$,则 $a_{19} =$

7. 已知|a|=1, $|b|=\sqrt{2}$,且 $a\perp(a-b)$,则向量a在b方向上的投影为

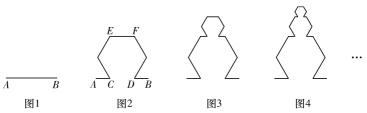
8. 请阅读下列材料:若两个正实数 a_1, a_2 满足 $a_1^2 + a_2^2 = 1$,求证: $a_1 + a_2 \leq \sqrt{2}$.

C. -10

C. $\frac{1}{2}$

证明:构造函数 $f(x) = (x-a_1)^2 + (x-a_2)^2 = 2x^2 - 2(a_1+a_2)x + 1$,因为对一切

D. $\frac{\sqrt{2}}{2}$


 $B_{\bullet} - 14$

 $B.\sqrt{2}$

A. -12

A. 1

16. 如图 1,线段 AB 的长度为 a,在线段 AB 上取两个点 C, D,使得 $AC = DB = \frac{1}{4}AB$,以 CD 为一边在线段 AB 的上方作一个正六边形,然后去掉线段 CD,得到图 2 中的图形;对图 2 中的最上方的线段 EF 作相同的操作,得到图 3 中的图形;依此类推,我们就得到了以下一系列图形:

记第n个图形(图 1 为第 1 个图形)中的所有线段长的和为 S_n ,现给出有关数列 $\{S_n\}$ 的四个命题:

- ①数列 $\{S_n\}$ 是等比数列;
- ②数列 $\{S_n\}$ 是递增数列;
- ③存在最小的正数 a,使得对任意的正整数 n,都有 $S_n > 2$ 020;

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分10分)

已知向量 $\mathbf{a} = (\cos \alpha, \sin \alpha), \mathbf{b} = (\cos \beta, \sin \beta), |\mathbf{a} - \mathbf{b}| = \frac{2\sqrt{5}}{5}.$

- (1)求 $\cos(\alpha \beta)$ 的值;
- (2)若 0< α < $\frac{\pi}{2}$, $-\frac{\pi}{2}$ < β <0,且 $\sin \beta$ = $-\frac{5}{13}$,求 $\sin \alpha$.

已知数列 $\{a_n\}$ 的前n项和为 S_n ,且 $S_n=2a_n-1$.

- (1)证明:数列 $\{a_n\}$ 是等比数列;
- (2)设 $b_n = (2n-1)a_n$,求数列 $\{b_n\}$ 的前 n 项和 T_n .

已知函数 $f(x)=\sin(\omega x-\varphi)\left(\omega>0,0<\varphi<\frac{\pi}{2}\right)$ 的图象经过点 $\left(\frac{\pi}{4},\frac{\sqrt{3}}{2}\right)$,且相邻两条对称轴的距离为 $\frac{\pi}{2}$.

- (1)求函数 f(x)的解析式及其在 $[0,\pi]$ 上的单调递增区间;
- (2)在 $\triangle ABC$ 中,a,b,c 分别是角 A ,B ,C 的对边,若 $f\left(\frac{A}{2}\right) + \cos A = \frac{1}{2}$,求 $\angle A$ 的大小.

已知函数 $f(x) = (ax-2)e^x$ 在 x=1 处取得极值.

- (1)求 a 的值;
- (2)求证:对任意 $x_1, x_2 \in [0,2]$,都有 $|f(x_1) f(x_2)| \le e$.

已知数列 $\{a_n\}$ 满足 $a_2=-4$, $a_3=-5$,若 $\{a_n+3n\}$ 为等比数列.

- (1)证明:数列 a_3 , a_4 , a_5 ,…, a_n ,…为递增数列;
- (2)求数列 $\left\{\frac{2^{n-1}-3}{a_na_{n+1}}\right\}$ 的前 n 项和 S_n .

已知 a>0,函数 $f(x)=\frac{1}{3}x^3+\frac{1-a}{2}x^2-ax-a$.

- (1)讨论 f(x)的单调性;
- (2)当 a=1 时,设函数 g(t)表示 f(x)在区间[t,t+3]上最大值与最小值的差,求g(t)在区间[-3,-1]上的最小值.

闘

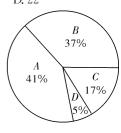
巡

要

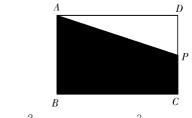
1

 \mathbb{K}

蜇


郑

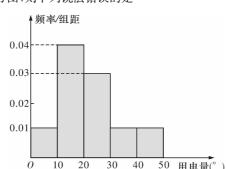
高考总复习单元同步滚动测试卷 文科数学(十三)


(概率与统计)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.
- 1. 设 i 为虚数单位,若复数 $\frac{z}{1+i}$ 在复平面内对应的点为(1,-2),则 z=
 - A. 3 + i
- B. 3-i
- C.1+3i
- D. 1 3i
- 2. 某高中高二(2)班男生 36 人,女生 18 人,现用分层抽样方法从中抽出 n 人,若抽出的男生人数为 12,则 n 等于
 - A. 16
- B 18
- C. 20
- D. 22
- 3. 某省的学业水平测试成绩是分等级来表示的,考试分为四个成绩等级:24分及以下不给等级,25~49分为 D,50~69分为 C,70~84分为 B,85~100分为 A. 该省某中学高二学生参加 2019年6月份学业水平测试的成绩全部在 D级(含 D级)以上. 该校共有500名学生参加了考试,学生成绩等级统计如图所示,则该校学业水平测试成绩等级为 A 的学生人数是

- A. 205
- B. 185
- C. 85
- D. 25
- 4. 如图,长方形 ABCD 中,点 P 是边 CD 的中点,若在长方形的区域内随机地取一个点 M,则点 M 取自阴影区域的概率是



- A. $\frac{1}{4}$
- B. $\frac{2}{3}$
- C. $\frac{3}{5}$
- D. $\frac{3}{4}$
- 5. 已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为

甲组		乙氧	1	
4	2	1		
6 m	3	2	4	6

- Δ 30
- B. 31
- C 32
- D. 33
- 6. 若从集合 $A = \{-2,1,2\}$ 中随机取一个数 a,从集合 $B = \{-1,1,3\}$ 中随机取一个数 b,则直线 ax-y+b=0 不经过第四象限的概率为

A. $\frac{2}{9}$	B. $\frac{1}{3}$	C. $\frac{4}{9}$	D. $\frac{1}{4}$	
7. 小明需要从	甲城市编号为1~14	的 14 个工厂或乙城	- 战市编号为 15~32 的	18 个工
厂中选择一	个去实习,设"小明在	甲城市实习"为事件	+A,"小明在乙城市 $+$	且编号为
3 的倍数的	工厂实习"为事件 B ,	则 $P(A+B)=$		
A. $\frac{3}{32}$	B. $\frac{5}{8}$	C. $\frac{9}{16}$	D. $\frac{1}{4}$	
8. 供电部门对	某社区 1 000 位居民	2018年12月份人	均用电情况进行统计	后,按人
均用电量分	为[0,10),[10,20)	, [20,30), [30,40]),[40,50]五组,整理	里得到如
下的频率分	布直方图,则下列说》	法错误的是		

- A. 12 月份人均用电量人数最多的一组有 400 人
- B. 12 月份人均用电量不低于 20 度的有 500 人
- C. 12 月份人均用电量为 25 度
- D. 在这 1 000 位居民中任选 1 位协助收费,选到的居民用电量在[30,40)的概率 为 $\frac{1}{10}$
- 9. 甲、乙两架歼击机的飞行员向同一架敌机射击,击中的概率分别为 0.4,0.5,则恰 有一人击中敌机的概率为

A. 0. 9

B. 0. 2

C. 0. 7

10. 在 $\triangle ABC$ 中,边 a,b,c 所对的角分别为A,B,C,A=3B,且 b=1,则 $\frac{c \cdot \sin B}{\sin 4B}=$

A. $\frac{1}{3}$ B. $\frac{1}{2}$

C. 2

D. 1

11. 已知 |a| = |b| = 2,且 $a \cdot b = 0$, $c = \frac{1}{2}(a+b)$, $|d-c| = \sqrt{2}$,则 |d|的取值范围是

A. $\lceil 0, 2\sqrt{2} \rceil$ B. $\lceil 0, 2 \rceil$

C. $\lceil 0, \sqrt{2} \rceil$

12. 定义域为 R 的函数 f(x)满足 f(x+2)=2f(x)-2, 当 $x\in(0,2]$ 时, f(x)= $\begin{cases} x^2 - x, x \in (0,1), \\ \frac{1}{x}, x \in [1,2], \end{cases}$ 若 $x \in (0,4]$ 时, $t^2 - \frac{7t}{2} \leqslant f(x)$ 恒成立,则实数 t 的取值范

用是

A. [1,2] B. $\left[2,\frac{5}{2}\right]$ C. $[2,+\infty)$ D. $\left[1,\frac{5}{2}\right]$

选择题答题卡

题 号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

- 13. 关于 x 的不等式 ax-b<0 的解集是 $(1,+\infty)$,则关于 x 的不等式(ax+b)(x-3)>0 的解集是
- 14. 一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了 5 次 试验,收集数据如下:

零件数 x(个)	15	20	30	40	50
加工时间 y(分钟)	65	70	75	80	90

由表中数据,求得线性回归方程 y=0.66x+a,则估计加工 70 个零件所花费的时间为 分钟(精确到 0.1).

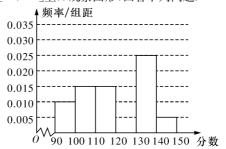
- 15. 口袋中有形状和大小完全相同的 4 个球,球的编号分别为 1,2,3,4, 若从袋中一次随机摸出 2 个球,则摸出的 2 个球的编号之和大于 4 的概率为
- 16. 已知函数 $f(x) = \begin{cases} -x^2 2x + 1, -2 \leqslant x \leqslant 0, \\ e^x, x \geqslant 0, \end{cases}$ 若函数 g(x) = f(x) ax + a 存

在零点,则实数 a 的取值范围是

- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分 10 分)

某中学为了解高二学生对"地方历史"校本课程的喜欢是否与在本地成长有关,在全校高二学生中随机抽取了20名,得到一组不完全的统计数据如下表:

	喜欢"地方历史"校本课程	不喜欢"地方历史"校本课程	合计
在本地成长		2	10
非本地成长		6	
合计			20

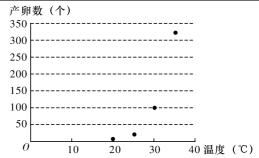

- (1)补齐上表数据,并分别从被抽取的喜欢"地方历史"校本课程与不喜欢"地方历史"校本课程的学生中各选1名做进一步访谈,求至少有1名学生属于在本地成长的概率;
- (2)试回答:能否在犯错误的概率不超过 0.10 的前提下认为"是否喜欢'地方历史'校本课程与在本地成长有关"?

附:

$P(K^2 \geqslant k_0)$	0.10	0.05	0.025	0.010	0.005	0.001
k_0	2.706	3.841	5.024	6. 635	7.879	10.828

(参考公式:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,其中 $n=a+b+c+d$)

某校从参加高三模拟考试的学生中随机抽取 60 名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图(学生成绩均在「90,150]上).观察图形,回答下列问题.


- (1)求分数在[120,130)内的频率,补全这个频率分布直方图,并据此估计本次考试的平均分;
- (2)用分层抽样的方法,在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $b_n-a_n=2^n+1$,且 $2S_n=n^2-n$.

- (1)求数列 $\{b_n\}$ 的通项公式;
- (2)若 $c_n = (a_n + 1)(b_n n)$,求数列 $\{c_n\}$ 的前 n 项和 T_n .

一只红铃虫的产卵数 y 和温度 x 有关,现收集了 4 组观测数据列于下表中,根据数据作出散点图如下.

温度 x/℃	20	25	30	35
产卵数 y/个	5	20	100	325

- (1)根据散点图判断 y=bx+a 与 $y=e^{bx+a}$ 哪一个更适宜作为产卵数 y 关于温度 x 的回归方程类型?(给出判断即可,不必说明理由)
- (2)根据(1)的判断结果及表中数据,建立 y 关于 x 的回归方程(数字保留 2 位小数);
- (3)要使得产卵数不超过 50,则温度控制在多少℃以下?(最后结果保留到整数) 参考数据: $^{\frac{1}{2}}x_iy_i = 1$ 4975, $^{\frac{1}{2}}x_iz_i = 447$. 8, $^{\frac{1}{2}}x_i^2 = 3$ 150, ln 50=3. 91

•	i=1	i=1	i=	=1	
	У	5	20	100	325
	$z=\ln y$	1.61	3	4.61	5.78

已知袋子中放有大小和形状相同的小球若干个,其中标号为 0 的小球 1 个,标号为 1 的小球 1 个,标号为 2 的小球 n 个. 若从袋子中随机抽取 1 个小球,取到标号为 2 的小球的概率是 $\frac{1}{2}$.

- (1) 求 n 的值;
- (2)从袋子中有放回地随机抽取 2 个小球,记第一次取出的小球标号为 a,第二次取出的小球标号为 b.
 - ①记"a+b=2"为事件 A,求事件 A 的概率;
 - ②在区间[0,2]内任取 2 个实数 x,y,求事件" $x^2+y^2>(a-b)^2$ 恒成立"的 概率.

已知函数 $f(x) = x - a^2 \ln x (a > 0)$.

- (1)讨论函数 f(x)在(a,+ ∞)上的单调性;
- (2)证明: $x^3 x^2 \ln x \ge x^2$ 且 $2x^3 x^2 \ln x 16x + 20 > 0$.

闘

沟

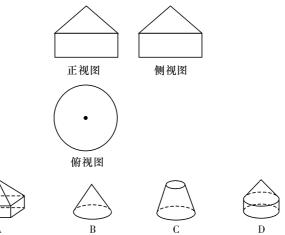
更

1

 \mathbb{K}

涨

蜇


緻

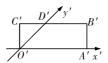
高考总复习单元同步滚动测试卷 文科数学(十四)

(立体几何)

时量:120 分钟 总分:150 分

- 一、选择题: 本大题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 如图所示是一个物体的三视图,则此三视图所描述物体的直观图是

- 2. 设 i 是虚数单位, \bar{z} 是复数 z 的共扼复数,若 z=1+2i,则复数 z+i \bar{z} 在复平面内 对应的点位于
- A. 第一象限 B. 第二象限 C. 第三象限
- D. 第四象限
- 3. 已知平面 α 及平面 α 外同一侧的不共线三点 A, B, C, 则"A, B, C 三点到平面 α 的 距离都相等"是"平面 ABC//平面 α "的
 - A. 充分不必要条件


B. 充要条件

C. 必要不充分条件

- D. 既不充分又不必要条件
- 4. 已知关于 x 的不等式 $\left(\frac{1}{3}\right)^{x-4}>3^{-2x}$,则该不等式的解集为

 - A. $\lceil 4, +\infty \rangle$ B. $(-4, +\infty)$ C. $(-\infty, -4)$ D. (-4, 1)
- 5. 设 α , β , γ 为三个不同的平面, m, n 为两条不同的直线,则下列命题中的假命题是
 - A. $\exists \alpha \perp \beta$ 时, $\overline{A} \beta // \gamma$, 则 $\alpha \perp \gamma$
 - B. 当 $m \perp_{\alpha}$, $n \perp_{\beta}$ 时, 若 $\alpha //\beta$, 则 m //n
 - C. 当 $m \subset \alpha, n \subset \beta$ 时, 若 $\alpha //\beta$, 则 m, n 是异面直线
 - D. 当 $m//n, n \perp \beta$, 若 $m \subseteq \alpha$, 则 $\alpha \perp \beta$

6. 已知圆锥的母	线长为5,底面周	长为8π,则它的体积为						
Α. 48π	B. $\frac{64}{3}\pi$	C. 16π	D. $\frac{80}{3}\pi$					
7. 如图,矩形 $O'A'B'C'$ 是水平放置的一个平面图形的直观图,其中 $O'A'=3$								
O'C'=1 cm,]]原图形的面积是	: E						

A. $3\sqrt{2} \text{ cm}^2$ B. $6\sqrt{2} \text{ cm}^2$

C. $2\sqrt{2} \text{ cm}^2$

cm,

8. 正方体 $ABCD-A_1B_1C_1D_1$ 中, BB_1 与平面 ACD_1 所成角的余弦值为

B. $\frac{\sqrt{3}}{2}$

C. $\frac{2}{2}$

D. $\frac{\sqrt{6}}{2}$

9. 在 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c,且 a+b=c • (cos $A+\cos B$),则 $\triangle ABC$ 的形状是

A. 等腰三角形

B. 首角三角形

C. 锐角三角形

D. 不能判断

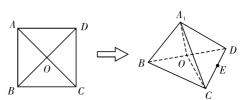
10. 已知△ABC的三个顶点在以 O 为球心的球面上,且 AB=2,AC=4, $BC=2\sqrt{5}$,

三棱锥 O-ABC 的体积为 $\frac{8}{3}$,则球 O 的表面积为

A. 22π

B. $\frac{74\pi}{2}$

C. 24π


11. 函数 $f(x) = \sin(2x + \varphi) \left(|\varphi| < \frac{\pi}{2} \right)$ 的图象向左平移 $\frac{\pi}{6}$ 个单位后为偶函数,设数

列 $\{a_n\}$ 的通项公式为 $a_n = f\left(\frac{n\pi}{6}\right)$,则数列 $\{a_n\}$ 的前 2 020 项之和为

A. 0

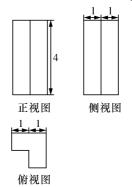
C. $\frac{3}{2}$

12. 如图,将边长为 2 的正方形 ABCD 沿对角线 BD 折起,得到三棱锥 $A_1 - BCD$,则 下列命题中,错误的为

A. 直线 BD_上平面 A₁OC

B. 三棱锥 $A_1 - BCD$ 的外接球的半径为 $\sqrt{2}$

 $C. A_1B \perp CD$


D. 若 E 为 CD 的中点,则 BC//平面 A_1OE

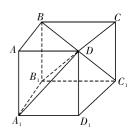
选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													

二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分. 把答案填在题中横线上.

- 13. 若非零向量 a,b 满足 $a \perp (a+2b)$,则 $\frac{|a+b|}{|b|} = \underline{\hspace{1cm}}$.
- 14. 某几何体的三视图如图所示,则该几何体的表面积为

- 15. 已知实数 x, y 满足 $\begin{cases} x+2y \ge 0, \\ x-y \le 0, \text{ } \\ x = x+y \text{ } \\ 0 \le y \le k, \end{cases}$
- 16. 在底面是边长为 6 的正方形的四棱锥 P-ABCD 中,点 P 在底面的射影 H 为正 方形 ABCD 的中心,异面直线 PB 与 AD 所成角的正切值为 $\frac{5}{3}$,则四棱锥 P-ABCD 的内切球与外接球的半径之比为
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分 10 分)

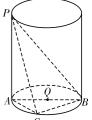

已知平面直角坐标系中,向量 a=(1,2), $b=(\cos x, \sin x)$,且 a//b.

- (1)求 tan x 的值;
- (2)设 $x \in (0, \frac{\pi}{2})$,求 $\sin(2x + \frac{\pi}{3})$ 的值.

如图,在直四棱柱 $ABCD-A_1B_1C_1D_1$ 中,AB=BD=1,

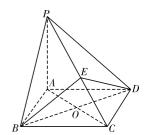
 $AD = \sqrt{2}, AA_1 = BC = 2, AD//BC.$

- (1)证明:BD上平面 ABB₁A₁;
- (2)比较四棱锥 $D-ABB_1A_1$ 与四棱锥 $D-A_1B_1C_1D_1$ 的体积的大小.

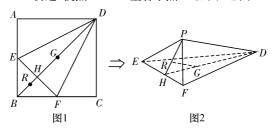


2019 年某市举办"好心杯"少年美术书法作品比赛,某赛区收到 100 件参赛作品,为了解作品质量,现从这些作品中随机抽取 10 件作品进行试评. 若这 10 件作品的成绩如下:65,82,78,86,96,81,73,84,76,59.

- (1)请绘制以上数据的茎叶图;
- (2)求该样本的中位数和方差;
- (3)在该样本中,从成绩在平均分以上(含平均分)的作品中随机抽取两件作品,求成绩为82分的作品被抽到的概率.


如图所示,PA 是圆柱的母线,AB 是圆柱底面圆的直径,C 是底面圆周上异于 A ,B 的任意一点,PA=AB=2.

- (1)求证:BC⊥PC;
- (2)求三棱锥 P-ABC 体积的最大值,并写出此时三棱锥 P-ABC外接球的表面积.



如图,在四棱锥 P-ABCD 中,ABCD 为菱形,PA 上 平面 ABCD,连接 AC,BD 交于点 O,AC=6,BD=8, E 是棱 PC 上的动点,连接 BE,DE.

- (1) 求证:平面 *BDE* 上平面 *PAC*;
- (2)当 $\triangle BED$ 面积的最小值是 4 时,求四棱锥 P-ABCD 的体积.

如图 1,在正方形 ABCD 中,点 E,F 分别是 AB,BC 的中点,BD 与 EF 交于点 H,点 G,R 分别在线段 DH,HB 上,且 $\frac{DG}{GH} = \frac{BR}{RH}$,将 $\triangle AED$, $\triangle CFD$, $\triangle BEF$ 分别沿 DE,DF,EF 折起,使点 A,B,C 重合于点 P,如图 2 所示.

- (1)求证:GR 上平面 PEF;
- (2)若正方形 ABCD 的边长为 4,求三棱锥 P-DEF 的内切球的半径.

闘

巡

翢

1

 \mathbb{K}

XX:

斑

出

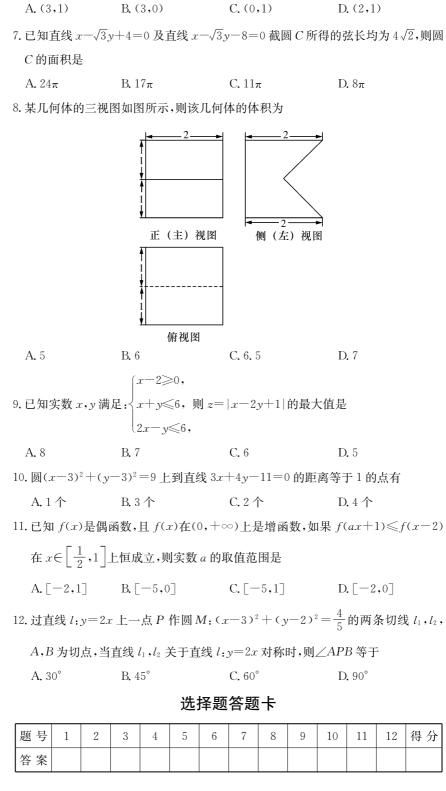
高考总复习单元同步滚动测试卷 文科数学(十五)

(直线与圆)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中只有一项是符合题目要求的.
- 1. 直线 $x+\sqrt{3}y+a=0$ (a 为实常数)的倾斜角的大小是
 - A. 30°
- B. 60°
- C. 120°
- D. 150°
- 2. 已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $a_3 = 3S_2 + 2$, $a_4 = 3S_3 + 2$,则公比 q 等于
 - **A.** 2
- B. $\frac{1}{2}$
- C. 4
- D. $\frac{1}{4}$
- 3. 某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90 后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是

注:90 后指 1990 年及以后出生,80 后指 1980-1989 年之间出生,80 前指 1979 年 及以前出生.



- A. 互联网行业从业人员中 90 后占一半以上
- B. 互联网行业中从事技术岗位的人数超过总人数的 20%
- C. 互联网行业中从事运营岗位的人数 90 后比 80 前多
- D. 互联网行业中从事技术岗位的人数 90 后比 80 后多
- 4. 当点 P(3,2)到直线 mx-y+1-2m=0 的距离最大时,m 的值为
 - $A.\sqrt{2}$
- B. 0
- C. -1
- D. 1
- 5. 若圆 C_1 : $(x-1)^2 + y^2 = 1$ 与圆 C_2 : $x^2 + y^2 8x + 8y + m = 0$ 相切,则 m 等于
 - A. 16

B. 7

C. -4 或 16

D.7或16

6. 若直线 $l_1: y = kx - k + 2$ 与直线 l_2 关于点(2,1)对称,则直线 l_2 恒过定点

14. 从 1,3,5,7,9 中任取 3 个不同的数字分别作为 a , b , c (a < b < c),则 a + b > c 的概
率是
15. 在四边形 $ABCD$ 中,已知 $\overrightarrow{AB} = a + 2b$, $\overrightarrow{BC} = -4a - b$, $\overrightarrow{CD} = -5a - 3b$,其中 a , b 是
不共线的向量,则四边形 ABCD 的形状是
16. 已知 $O(0,0)$, $A(-2,2)$, 点 M 是圆 $(x-3)^2+(y-1)^2=2$ 上的动点,则 $\triangle OAM$

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

13. 经过点 M(2,1) 且与直线 3x-y+8=0 垂直的直线方程为

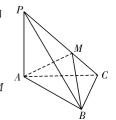
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分 10 分)

求满足下列条件的曲线方程:

面积的最大值为___ .

- (1)过A(1,-2),B(-2,1)两点的直线方程;
- (2)过点 A(2,1)且圆心为(4,0)的圆的方程.

设函数
$$f(x) = \cos(2x - \frac{4\pi}{3}) + 2\cos^2 x$$
.


- (1)求 f(x)的对称轴方程;
- (2)已知 $\triangle ABC$ 中,角 A,B,C 的对边分别是a,b,c,若 $f\left(\frac{A}{2}\right) = \frac{1}{2}$,b+c=2,求 a 的最小值.

已知直线 l 过点 P(0,1) ,圆 $C: x^2 + y^2 - 6x + 8 = 0$,直线 l 与圆 C 交于 A ,B 两点.

- (1)求直线 l 的斜率 k 的取值范围;
- (2)是否存在过点 Q(6,4)且垂直平分弦 AB 的直线 l_1 ? 若存在,求直线 l_1 的斜率 k_1 的值;若不存在,请说明理由.

如图,在三棱锥 P-ABC 中, $\triangle ABC$ 是边长为 2 的等边三角形,PB=PC.

- (1)求证:BC⊥PA;
- (2)若 $PA=\sqrt{3}$, $\angle PAB=90^{\circ}$, M 为线段 PC 上一点, 且 PM=2MC, 求三棱锥 P-ABM 的体积.

已知圆 E 的方程为 $(x-2)^2+y^2=1$,直线 l 的方程为 2x-y=0,点 P 在直线 l 上.

- (1) 若点 P 的坐标为(1,2),过点 P 作圆 E 的割线交圆 E 于 C ,D 两点,当 |CD| = $\sqrt{2}$ 时,求直线 CD 的方程;
- (2) 若过点 P 作圆 E 的切线 PA, PB, 切点为 A, B, 求证: 经过 P, A, E, B 四点的圆必过定点, 并求出所有定点的坐标.

已知 A(-2,0) , B(1,0) , Q(6,0) , 若动点 P(x',y')满足 |PA|=2|PB| , 设 线段 PQ 的中点为 M.

- (1)求点 M 的轨迹方程;
- (2)设直线 y=kx-1 与点 M 的轨迹交于不同的两点 $C(x_1,y_1),D(x_2,y_2)$,且 满足 $|x_1-x_2|=\frac{1}{1+k^2}$,求直线 l 的方程.

闘

巡

要

1

 \mathbb{K}

涨

蜇

斑

型

高考总复习单元同步滚动测试卷 文科数学(十六)

(单元滚动卷)

时量:120 分钟 总分:150 分

一、选择题:本大题共12小题,每小题5	分,共60分	. 在每小题给出的四	个选项中只
有一项是符合题目要求的.			

1. 设全集 $U = \mathbf{R}$,集合 $A = \{x \mid y = \log_2(-x)\}$, $B = \{y \mid y = \sin x\}$,则($\int_{U} A$) $\cap B = \{y \mid y = \sin x\}$,

 $A. \lceil 0.1 \rceil$

 $B_{\bullet}(0,1)$

 $C, \lceil -1, 0 \rangle$

2. 有一段演绎推理是这样的,"直线平行于平面,则平行于平面内所有直线;已知直 线 b仁平面 α , 直线 a二平面 α , 直线 b//平面 α ,则直线 b//直线 a",结论显然是错误 的,这是因为

A. 大前提错误 B. 小前提错误 C. 推理形式错误 D. 非以上错误

3. 设 $a \in \mathbb{R}$,则"a=1"是"直线 $l_1: ax+2y-1=0$ 与直线 $l_2: x+(a+1)y+4=0$ 平 行"的

A. 充要条件

B. 必要不充分条件

C. 充分不必要条件

D. 既不充分也不必要条件

4. 在学校组织的考试中,45 名学生的数学成绩的茎叶图如图所示,若将学生按成绩 由低到高编为1~45号,再用系统抽样方法从中抽取9人,则其中成绩在区间 [120,135]内的学生人数是

0 0 0 2 2 3 4

A. 4

B. 5

C. 6

D. 7

5, 下列命题正确的个数是

- ①已知复数 z=i(1-i),则 z 在复平面内对应的点位于第四象限;
- ②若 x,y 是实数,则" $x^2 \neq y^2$ "的充要条件是" $x\neq y$ 或 $x\neq -y$ ";
- ③命题 p: " $\exists x_0 \in \mathbf{R}, x_0^2 x_0 1 > 0$ "的否定 $\neg p:$ " $\forall x \in \mathbf{R}, x^2 x 1 \leq 0$ ".

A. 3

B. 2

C. 1

6. 某单位 1~4 月份用水量(单位:百吨)的一组数据如下表所示:

月份 x	1	2	3	4
用水量 y	4.5	4	3	2.5

根据收集到的数据,由最小二乘法可求得线性回归方程 $\hat{v}=\hat{b}x+5$. 25,则 $\hat{b}=$

 $A_{1} = 0.7$

B. 0. 7

 $C_{2} = 0.75$

A. 4

B. 8

C. 12

D. 20

8. 设变量 x,y 满足约束条件 $\begin{cases} x+2y-2\geqslant 0, \\ x-2y+2\leqslant 0, \text{则目标函数 } z=x+y \text{ 的最大值为} \\ y\leqslant 2, \end{cases}$

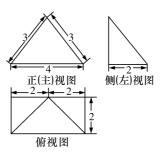
A. 7

В. 6

C. 5

D. 4

9. 在正三棱柱 ABC-A'B'C'中,若 AA'=2AB,则异面直线 AB'与 BC'所成的角的 余弦值为

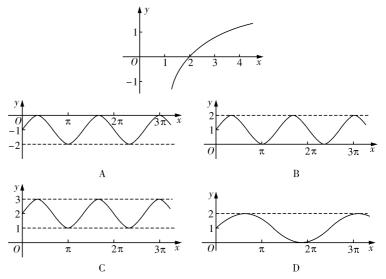

A. $\frac{3}{8}$

B. $\frac{3}{5}$

C. $\frac{7}{10}$

D. $\frac{4}{5}$

10. 某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是


A. 3

B. $2\sqrt{5}$

C. 6

D. $3\sqrt{5}$

11. 已知函数 $y = \log_b(x-a)(b>0$ 且 $b\neq 1$)的图象如图所示,那么函数 $y=a+\sin bx$ 的图象可能是

12. 已知函数 $f(x) = \sqrt{4 - (x - 2)^2}$, $x \in [2, 4]$, 对于满足 $2 < x_1 < x_2 < 4$ 的任意 x_1 , x_2 , 给出下列结论:

 $((x_2-x_1)[f(x_2)-f(x_1)]<0;$

 $((x_2-x_1)[f(x_2)-f(x_1)]>0.$

其中正确的是

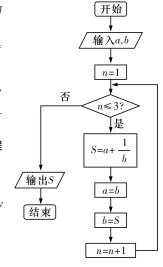
A. ①③

B. (1)(4)

C. (2)(3)

D. 24

选择题答题卡

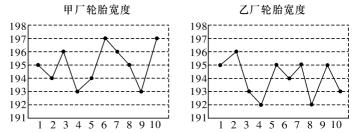

题号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分. 把答案填在题中横线上.

- 13. 在区间[1,10]上随机地取一个数 x,则事件"x-3≤0"发生的概率为
- 14. 阅读如图所示的程序框图, 若输入的 *a*, *b* 分别为 1, 2, 运行相应的程序, 则输出 *S* 的值为
- 15. 在 $\triangle ABC$ 中, BD 为 $\angle ABC$ 的平分线, 已知 AB=3, BC=2, $AC=\sqrt{7}$, 则tan/ABD=
- 16. 已知函数 $f(x) = \ln x a$, 若 $f(x) < x^2$ 在(1, $+\infty$)上恒成立,则实数 a 的取值范围是_____
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.
- 17. (本小题满分10分)

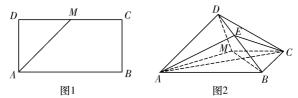
已知直线 l 经过直线 3x+4y-2=0 与直线 2x+y+2=0 的交点 P,且垂直于直线 x-2y-1=0.

- (1)求直线 l 的方程;
- (2)求直线 l 与两坐标轴围成的三角形的面积 S.


设数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 $a_1=1,S_{n+1}=4a_n+2$.

- (1)设 $b_n = a_{n+1} 2a_n$,证明:数列 $\{b_n\}$ 是等比数列;
- (2)求数列 $\{a_n\}$ 的通项公式.

已知点 P(2,0)及 $\odot C: x^2 + y^2 - 6x + 4y + 4 = 0$.


- (1)当直线 l 过点 P 且与圆心 C 的距离为 1 时,求直线 l 的方程;
- (2)设过点 P 的直线与 $\odot C$ 交于 A 、B 两点,当 |AB|=4 时,求以线段 AB 为直径 的圆的方程.

为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机选取了 10 个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如图所示的折线图.

- (1)分别计算甲、乙两厂提供的10个轮胎宽度的平均数;
- (2) 若轮胎宽度在[194,196]内,则称这个轮胎是标准轮胎.
 - ①若从甲厂提供的 10 个轮胎中随机选取 1 个,求所选的轮胎是标准轮胎的概率:
 - ②试比较甲、乙两厂各自提供的 10 个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个工厂的轮胎相对更好.

已知长方形 ABCD 中, AB=2AD, M 是 DC 中点, 如图 1 所示. 将 $\triangle ADM$ 沿 AM 折起, 使得 $AD \perp BM$, 如图 2 所示, 点 E 是 BD 上一点.

- (1)求证:平面 ADM 上平面 ABCM;
- (2)若 BE=2DE,AM=2,求三棱锥 E-ABC 的体积.

已知函数
$$f(x) = \ln x - \frac{x^2}{2} + x - \frac{1}{2}$$
.

- (1)证明:当x > 1时,f(x) < x-1;
- (2)确定实数 k 的值,使得存在 $x_0>1$,当 $x\in (1,x_0)$ 时,恒有 f(x)>k(x-1).

闘

巡

1

 \mathbb{K}

蜇

出

高考总复习单元同步滚动测试卷 文科数学(十七)

(圆锥曲线的概念和性质)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 设 i 是虚数单位, 若复数 $m + \frac{10}{3+1} (m \in \mathbb{R})$ 是纯虚数, 则 m 的值为

- D. 3
- 2. 若拋物线 $y=ax^2$ 的准线方程是 y=-2,则 a 的值为
- B. 8
- $C.\frac{1}{Q}$
- 3. 已知曲线 C 的方程为 $\frac{x^2}{2m-1} + \frac{y^2}{m} = 1$. 现给出下列两个命题: $p: 0 < m < \frac{1}{2}$ 是曲线 C 为双曲线的充要条件; $q:m>\frac{1}{2}$ 是曲线 C 为椭圆的充要条件. 则下列命题中的真 命题是
 - A. $(\neg p) \land (\neg q)$ B. $(\neg p) \land q$ C. $p \land (\neg q)$
- 4. 已知等差数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_6=3$, $S_8=12$,则 $\{a_n\}$ 的公差为

- 5. 已知 AB 是抛物线 $y^2 = 2x$ 的一条焦点弦, |AB| = 4,则 AB 中点 C 的横坐标是
- B. $\frac{3}{2}$ C. $\frac{1}{2}$
- 6. 若双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的离心率为 $\sqrt{5}$,则斜率为正的渐近线的斜率为
 - A. $\frac{\sqrt{3}}{2}$
- B. $\frac{1}{2}$
- D. 2
- 7. 已知 $F_1(-1,0)$, $F_2(1,0)$ 是椭圆 C 的焦点, 过 F_2 且垂直于 x 轴的直线交椭圆 C于A,B两点,且|AB|=3,则椭圆C的方程为
 - A. $\frac{x^2}{2} + y^2 = 1$

B. $\frac{x^2}{2} + \frac{y^2}{2} = 1$

C. $\frac{x^2}{4} + \frac{y^2}{2} = 1$

- D. $\frac{x^2}{5} + \frac{y^2}{4} = 1$
- 8. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右焦点分别为 F_1 、 F_2 ,点 P 在椭圆 C 上, 且 $\triangle POF_2$ 为等边三角形,则椭圆 C 的离心率 e=
 - A. $\sqrt{3}-1$ B. $\frac{\sqrt{2}}{2}$
- C. $\frac{1}{2}$
- D. $\frac{3}{\sqrt{3}}$

10. 若直线 l 将圆 $x^2 + y^2 - 4x - 2y = 0$ 平分,且不通过第四象限,则直线 l 的斜率的取值范围是													
A. [0,1]	В. [$0, \frac{1}{2}$]		C. [-	$\left[\frac{1}{2},1\right]$		D	.[0,2]			
11. 在直角坐标系	хОу 탁	,抛牧	物线 M	2px(<i>p</i> >0)	与圆	$C_{:}x^{2}$	$+y^{2}-$	$-2\sqrt{3}$	y=0相			
交于两点,且两	交于两点,且两点间的距离为 $\sqrt{6}$,则抛物线 M 的焦点到其准线的距离为												
A. $\frac{\sqrt{3}}{2}$	В. √	3		C. $\frac{\sqrt{6}}{2}$ D. $\sqrt{6}$									
12. 设函数 $f(x) = \begin{cases} 2^{x} + a, x < 1, \\ 4(x+a)(x+2a), x \ge 1, \end{cases}$ 若 $f(x)$ 恰有 2 个零点,则实数 a 的													
取值范围是													
A. $\left[-2, -\frac{1}{2}\right]$					В. (-	-∞,-	-2]U	$\left(-1\right)$	$,-\frac{1}{2}$.]			
C. $(-\infty, -1)$)				D. [-	-2,+	∞)						
选择题答题卡													
题号 1 2	3	4	5	6	7	8	9	10	11	12	得 分		
答案													
二、填空题:本大题										线上.			
13. 已知双曲线 $\frac{x^2}{m}$	$-\frac{y^2}{3m}$	=1 的-	一个焦	点为	$(2\sqrt{3},$	0),贝	m = 1		<u>_</u> .				
14. 将正整数有规	律地排	列如-	下:										
1													
2 3 4													
5 6 7			4.0										
10 11 12	13 14	15	16										
则在此表中第	45 行第	第 84 泵	祖出 现	的数年	字是								
$15.$ 已知椭圆 $C:\frac{\alpha}{1}$] C 的	两焦	点,点	P 在	椭圆 (5上,且		
$ PF_2 =3$, \downarrow	$\triangle PF_1$	F_2 的	面积为	J		_•							
$ PF_2 =3$,则 $\triangle PF_1F_2$ 的面积为 16. 已知 P 是双曲线 $x^2-\frac{y^2}{15}=1$ 右支上一点, M , N 分别是圆 $(x+4)^2+y^2=4$ 和													
16. 已知 P 是双曲线 $x^2 - \frac{y}{15} = 1$ 右支上一点, M , N 分别是圆 $(x+4)^2 + y^2 = 4$ 和 $(x-4)^2 + y^2 = 1$ 上的点,则 $ PM - PN $ 的最大值为													
											1 /јн		

9. 已知左、右焦点分别为 F_1 , F_2 的双曲线 $C: \frac{x^2}{a^2} - y^2 = 1$ (a > 0)过点 $\left(\sqrt{15}, -\frac{\sqrt{6}}{3}\right)$,

C. 9

D. 12

点 P 在双曲线 C 上, 若 $|PF_1| = 3$, 则 $|PF_2| =$

B. 6

A. 3

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

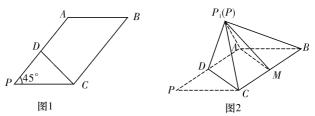
17. (本小题满分10分)

已知斜率为 k 的直线 l 经过抛物线 $y=\frac{1}{4}x^2$ 的焦点 F,且与抛物线相交于 A,B 两点,若线段 |AB| 的长为 8.

- (1)求抛物线的焦点 F 的坐标和准线方程;
- (2)求直线 l 的斜率 k.

已知 $\triangle ABC$ 为锐角三角形,角 A ,B ,C 的对边分别为 a ,b ,c ,且满足 $2b\sin A-\sqrt{3}a=0$.

- (1)求角 B 的大小;
- (2)若 $\triangle ABC$ 的面积为 $\sqrt{3}$,且 a+c=6-b,求 b 的值.


已知中心在原点的双曲线 C 的右焦点为(2,0),实轴长为 $2\sqrt{3}$.

- (1)求双曲线 C 的方程;
- (2)若直线 $l,y=kx+\sqrt{2}$ 与双曲线 C 的左支交于 A 、B 两点,求 k 的取值范围.

已知椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
($a > b > 0$)的离心率 $e = \frac{1}{2}$,且过点 $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

- (1)求椭圆C的方程;
- (2)设过点 P(1,1) 的直线与椭圆 C 交于 A ,B 两点,当 P 是 AB 中点时,求直线 AB 的方程.

在 $\square PABC$ 中,PA=4, $PC=2\sqrt{2}$, $\angle P=45^{\circ}$,D是 PA 中点(如图 1). 将 $\triangle PCD$ 沿 CD 折起到图 2 中 $\triangle P_1CD$ 的位置,得到四棱锥 P_1-ABCD .

- (1)将 $\triangle PCD$ 沿 CD 折起的过程中,CD 上平面 P_1DA 是否恒成立?证明你的结论;
- (2)若 $P_1A=2$,过 P_1A 的平面交 BC 于点 M,且 M 为 BC 的中点,求三棱锥 $B-P_1AM$ 的体积.

已知抛物线 $C: x^2 = 2py(p > 0)$ 的焦点为 F.

- (1) 若抛物线 C 的焦点到准线的距离为 4,直线 l: x+2y-4=0,求直线 l 截抛物 线 C 所得的弦长;
- (2)过点 F 的直线交抛物线 C 于 M ,N 两点 ,过点 M ,N 作抛物线的切线 ,两切线相交于点 P ,若 k_1 , k_2 分别表示直线 MN 与直线 PF 的斜率 ,且 $k_1+k_2=\frac{3}{2}$,求 k_1 的值.

卓 紪

汝

翢

本

出

高考总复习单元同步滚动测试卷 文科数学(十八)

(圆锥曲线的综合应用)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知集合 $M = \{x \mid -1 < x < 1\}, N = \{x \mid x^2 < 2, x \in \mathbb{Z}\}, 则$

B. $N \subseteq M$

C. $M \cap N = \{0\}$ D. $M \cup N = N$

2. 椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的短轴长为

A. $2\sqrt{3}$

 $B_{\bullet}\sqrt{3}$

D. 4

3. 函数 $y=x+\frac{1}{4x}(x>0)$ 取得最小值时,x 的值为

A. $-\frac{1}{2}$ B. $\frac{1}{2}$

C. 1

D. 2

4. 椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{F^2} = 1$ (a > b > 0)的左、右焦点分别为 F_1 , F_2 ,P 是 C 上的点, PF_2 \bot F_1F_2 , $/PF_1F_2=30^\circ$, 则椭圆 C 的离心率为

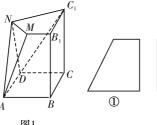
A. $\frac{\sqrt{3}}{3}$

B. $\frac{1}{2}$

C. $\frac{1}{2}$

D. $\frac{\sqrt{3}}{2}$

5. 若 x>0, y>0, 则"x+y>1"是" $x^2+y^2>1$ "的


A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 非充分非必要条件

6. 点 M、N 分别是正方体 $ABCD - A_1B_1C_1D_1$ 的棱 A_1B_1 、 A_1D_1 的中点,用过 A、M、 $N \to D \setminus N \setminus C_1$ 的两个截面截去正方体的两个角后得到的几何体如图 1,则该几何 体的正视图、侧视图(左视图)、俯视图依次为图2中的

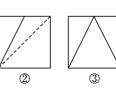


图2

图1

A. (1)(2)(3)

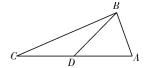
B. (2)(3)(4)

C. (1)(3)(4)

7. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0,b>0)的一条渐近线的倾斜角为 60° ,且一个焦点 与抛物线 $y^2 = 8x$ 的焦点重合,则双曲线 C 的方程为

A. $\frac{x^2}{3} - y^2 = 1$ B. $\frac{x^2}{0} - \frac{y^2}{3} = 1$ C. $x^2 - \frac{y^2}{3} = 1$ D. $\frac{x^2}{3} - \frac{y^2}{0} = 1$

AM^{\perp}	j BM	的斜	率的商	新是λ ((λ≠1)	,则点	M的	轨迹是	皀				
A. 直	线		В. [员			C. 椭	圆		D	. 抛物	线	
9. 已知》	以曲线	$\frac{x^2}{3}$	$y^2 = 1$	的左、	、右焦)	点分别	为 F ₁	F_2 ,	点 P 在	E双曲:	线上,	且满人	로 PF ₁
+ P	$ F_2 = 2$	2√5,J	$\mathbb{Q}\triangle P$	F_1F_2	的面积	只为							
A. 1			В. у	/3			C.√5			D	$\frac{1}{2}$		
	物线 点 <i>P</i> ,							,交抛	物线	F点 M	I,N,3	交抛物	7 线的准
А. =	$=\sqrt{2}$		В. :	±2			C. ±	$2\sqrt{2}$		D	<u>.</u> ±4		
11. 已知	双曲组	线 $\frac{x^2}{a^2}$	$-\frac{y^2}{b^2}$	=1(a>	>0,b>	>0),j	过其左	焦点	F作:	x 轴的	重线	,交双	(曲线于
A,E 范围		,若双	曲线的	的右顶	〔点在〕	以 AB	为直	径的圆]内,贝	此双	曲线	离心率	区的取值
А. ($1, \frac{3}{2}$)	В. ((1,2)			C. (2	,+∞ì)	D	$(\frac{3}{2})$,+∞)
	点,则 0, $\sqrt{3}$			_)	择题		$(\frac{5}{5}, \frac{\sqrt{3}}{3})$)	D	. (0,	$(\frac{1}{3})$	
题号	1	2	3	4	5	6	7	8	9	10	11	12	得 分
答案													
二、填空 13. 已知 14. 已知	l sin(π	τ+α):	$=\frac{1}{3}$,	则 co	$s(\frac{\pi}{2})$	$+_{\alpha}$)=		·]其离心
率等	于		<u>_</u> .										
15.已知	抛物组	线 C:3	$x^2 = 2$	y,过其	丰焦点	F作	斜率为	$g\frac{1}{2}$ 的	直线。	l 交 C	$\mp A$, B两,	点,则弦
长口	AB =		·										
16. 椭圆	$C:\frac{x^2}{4}$	$+\frac{y^2}{3}$	=1 f	内左、	右焦点	(分别	为 F ₁	F_2 ,	4为6	上的	动点	, 点 <i>P</i>	在线段
F_1A	的延	长线	上,且	$(\overrightarrow{AP}$	$+\overline{A}\overline{F}$	$(\frac{1}{2})$	$\overrightarrow{F_2P}$ =	= 0,贝] P 至	リッ雑	距离	的最	大值为
	·												
						1	38						


8. 已知点 A,B 的坐标分别是(-1,0),(1,0),直线 AM 与 BM 相交于点 M,且直线

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分 10 分)

如图,在 $\triangle ABC$ 中,角A,B,C所对的边分别为a,b,

- $c, \pm 2a\cos B + b = 2c$.
- (1)求角 A 的大小;
- (2)若 AC 边上的中线 BD 的长为 $\sqrt{3}$,且 $AB \perp BD$,求 BC 的长.

已知双曲线 $C_1: x^2 - \frac{y^2}{4} = 1$.

- (1)求与双曲线 C_1 有相同的焦点,且过点 $P(4,\sqrt{3})$ 的双曲线 C_2 的标准方程;
- (2)直线 l: y=x+m 分别交双曲线 C_1 的两条渐近线于 A,B 两点. 当 $\overrightarrow{OA} \cdot \overrightarrow{OB}=3$ 时,求实数 m 的值.

已知数列 $\{a_n\}$ 是等差数列,且 $a_8=1$, $S_{16}=24$.

- (1)求数列 $\{a_n\}$ 的通项公式 a_n ;
- (2)若数列 $\{b_n\}$ 是递增的等比数列,且 $b_1+b_4=9$, $b_2b_3=8$,求 $(a_1+b_1)+(a_3+b_3)+(a_5+b_5)+\cdots+(a_{2n-1}+b_{2n-1})$.

已知抛物线 $C: y^2 = 2px(p>0)$ 的焦点为 F, 抛物线 C 与直线 $l_1: y = -x$ 的一个交 点的横坐标为 4.

- (1)求抛物线 C 的方程;
- (2)不过原点的直线 l_2 与 l_1 垂直,且与抛物线 C 交于不同的两点 A、B,若线段 AB 的中点为 P,且 |OP| = |PB|,求 $\triangle FAB$ 的面积.

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{2} = 1$ 过点 P(2,1).

- (1)求椭圆 C 的方程,并求其离心率;
- (2)过点 P 作 x 轴的垂线 l ,设点 A 为第四象限内一点且在椭圆 C 上(点 A 不在直线 l 上),点 A 关于 l 的对称点为 A' ,直线 A'P 与 C 交于另一点 B .设 O 为原点,判断直线 AB 与直线 OP 的位置关系,并说明理由.

设圆 $x^2 + y^2 + 2x - 15 = 0$ 的圆心为 A,直线 l 过点 B(1,0) 且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E.

- (1)证明|EA|+|EB|为定值,并写出点 E 的轨迹方程;
- (2)设点 E 的轨迹为曲线 C_1 , 直线 l 交 C_1 于 M, N 两点, 过 B 且与 l 垂直的直线与圆 A 交于 P, Q 两点, 求四边形 MPNQ 面积的取值范围.

高考总复习单元同步滚动测试卷 文科数学(十九)

(坐标系与参数方程、不等式选讲)

时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知复数 $z = \frac{2}{1+i}$ (i 为虚数单位),则|z| =

A. 2

闘

巡

1

出

緻

 $B_{\bullet}\sqrt{2}$

 $C_{\bullet} - 1 - i$

D. 1-i

2. 极坐标方程 ρ =2 $\cos \theta$ 表示的圆的半径是

A. $\frac{1}{2}$

B. $\frac{1}{4}$

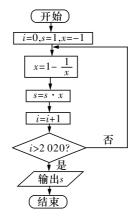
C. 2

D. 1

3. 在平面直角坐标系中,直线 3x-2y-2=0 经过伸缩变换 $\begin{cases} x' = \frac{1}{3}x, \\ y' = 2y \end{cases}$ 后的直线方

程为

A. x-4y-2=0 B. x-y-2=0 C. 9x-4y-2=0 D. 9x-y-2=0


4. 已知双曲线 $\frac{x^2}{a} - \frac{y^2}{2} = 1$ (a > 0)的一条渐近线方程为 2x - y = 0,则实数 a = 0

A. $\frac{1}{4}$

B. $\frac{1}{2}$

D. 8

5. 执行如图所示的程序框图,则输出的结果为

A. $\frac{1}{2}$ B. $-\frac{1}{2}$

C. 1

D. -1

6. 不等式(1+x)(1-|x|)>0 的解集是

A. $\{x \mid 0 \le x < 1\}$

B. $\{x \mid x < 0 \ \exists \ x \neq -1\}$

C. $\{x \mid -1 < x < 1\}$

D. $\{x | x < 1 \exists x \neq -1\}$

7. 直线	$\begin{cases} x=1 \\ y=2 \end{cases}$	$\pm t \sin 2 \pm t \cos 2$	n 70°, s 70°	(t 为言	参数)自	的倾斜	角为							
	A. 70° B. 20°								C. 160° D. 110°					
8. 已知	函数 ƒ	f(x)	r上	的减品	函数,师	则满足	$f(\cdot)$	$\frac{1}{x}$)	< f(1)的实	数水	的取值	ī范围是	
A. (-					(1,+									
C. (-							D. (0							
9. 点 P	(x,y)	在曲线	₺ C: {	x = 40 $y = 3s$	$\cos \theta$, $\sin \theta$	(θ 为耄	参数)_	上,则.	x+y	的最大	值为			
A. 3			B. 4				C. 5		_		. 6			
		3C 的タ 上的			心为€),半名	经为 2,	且 <i>OA</i>	$+\overline{AB}$	$+\overline{AC}$	=0,贝	小向量	CÀ在向	
A. 3			В. √				C. —				. —√3			
11. 已矢	印实数	女 p>	~0, 曲	3线 €	$C_1: \begin{cases} x \\ y \end{cases}$	=2pt $=2pt$	² ,(t)	为参数	数)上	的点	A (2	, m),	圆 C2:	
$\begin{cases} x = 0 \\ y = 0 \end{cases}$	$= \frac{p}{2} + 6\sin \theta$	-6cos θ	θ , (θ)	为参数	文)的圆	圆心为	点 B,	若 A、	.B两,	点间的]距离	等于區	圆 C₂ 的	
	至,则 /	₅ =					a .			-				
A. 4			В. 6			2	C. 8				. 10	1	1	
12. 已知	数列	$\{a_n\}$	满足 a	$_{1}a_{2}a_{3}$	$\cdots a_n =$	$=2^{n^2}$ ($n \in \mathbb{N}$	*),且	[对任]	意 <i>n</i> ∈	N* 都		$+\frac{1}{a_2}+$	
•••+	$\frac{1}{a_n}$	t,则多	戻数 t ∣	的取值	直范围	是								
A. ($(\frac{1}{3}, +$	$+\infty$)					В.	$\frac{1}{3}$,+0	∞					
С. ($\frac{2}{3}$, +	$-\infty$)					D. [-	$\frac{2}{3}$, +0	∞					
					选	择题	答题	卡						
题 号	1	2	3	4	5	6	7	8	9	10	11	12	得分	
答案														
志愿 14. 不等 15. 已知 (极) 心 迎 16. 设 F	A,B,C 君,若, 至式 x 「直线」 「直线」 「方双	E 三所: E 在 A +1 - l 的 I 点 直 L 的 世 4 ()	学校, $ x- $ 数 合离 $\frac{x^2}{a^2}$	学生/ 含字/ 2 ≥ 2 2 ⇒ 2 2 ⇒ 2 4 → 1 - y ² /b ² =	人数的 2 的解 2 的解 y=1 x 轴的 ——· =1(a)	I比例是 名志愿 集为_ (1+4t]非负。 >0,6>	为 3:	4:5, B 么 n=	现用分 = 圆 <i>C</i> 的 且单位 点,过〕	分层抽 的极坐 长度和	样的; 一· 标方和 相同) 率为·	方法招 呈为 ρ ⁼ ,则圆 <u>a_</u> 的 I	l 募 n 名 = 2cos θ C 的圆 [线 l 与 6 线 C 的	
呙心	率为.		•			1	46							
						1.	T U							

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.

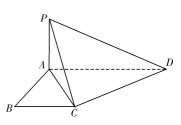
17. (本小题满分10分)

在平面直角坐标系 xOy 中,圆 C_1 的参数方程为 $\begin{cases} x=2\cos\alpha, \\ y=2+2\sin\alpha \end{cases}$ (α 为参数),以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系,圆 C_2 的极坐标方程为 $\rho=2\sqrt{2}\cos\left(\theta+\frac{\pi}{4}\right)$.

- (1)求圆 C_1 的普通方程和圆 C_2 的直角坐标方程;
- (2)判断圆 C_1 与圆 C_2 的位置关系.

已知函数 f(x) = |2x-1| + |2x+a|.

- (1)当 a=3 时,求不等式 f(x)≥6 的解集;
- (2)若不等式 f(x) > 3-2a 对任意 $x \in \mathbf{R}$ 恒成立,求实数 a 的取值范围.

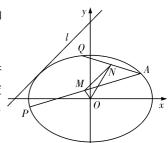

在平面直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x=\sqrt{3}+2\cos\varphi, (\varphi$ 为参数), $y=1+2\sin\varphi \end{cases}$

以坐标原点 () 为极点, x 轴正半轴为极轴建立极坐标系.

- (1)求曲线 C的极坐标方程;
- (2)在曲线 C 上取两点 M, N 与原点 O 构成 $\triangle MON$,且满足 $\angle MON = \frac{\pi}{2}$,求 $\triangle MON$ 面积的最大值.

如图,已知 ABCD 是直角梯形, $\angle ABC = 90^{\circ}$, AD // BC, AD = 4, AB = BC = 2, $PA \perp \Psi$ 面 ABCD.

- (1) PA 上是否存在点 E 使 BE // 平面 PCD,若存在,指出点 E 的位置并证明;若不存在,请说明理由;
- (2)证明:PC_CD;
- (3)若 $PA = \sqrt{10}$,求点 B 到平面 PCD 的距离.


已知 x+y+z=1.

(1)证明:
$$x^2 + y^2 + z^2 \geqslant \frac{1}{3}$$
;

(2)设
$$x,y,z$$
为正数,求证: $\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right) > 8$.

已知定直线 l: y=x+3, 定点 A(2,1), 以坐标轴 为对称轴的椭圆 C 过点 A 且与 l 相切.

- (1)求椭圆C的标准方程;
- (2)椭圆 C 的弦 AP, AQ 的中点分别为 M, N, 若 MN 平行于 l, 则 OM, ON 斜率之和是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.

高考总复习单元同步滚动测试卷 文科数学(二十)

(单元滚动卷)

时量:120 分钟 总分:150 分

- 一、选择题: 本大题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中只 有一项是符合题目要求的.
- 1. 已知集合 $U = \{x \mid x \le 8\}$,集合 $A = \{x \mid x^2 8x \le 0\}$,则 $\int_U U A = \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty$

A. $(-\infty, 8)$ B. $(-\infty, 0]$ C. $(-\infty, 0)$

2. 设复数 z_1, z_2 在复平面内对应的点关于虚轴对称,且 $z_1 = 2 + i$,则 $z_1 \cdot z_2 = 2 + i$

A. -4+3i B. 4-3i

 $C_{1} = 3 = 4i$

3. 在 $\triangle ABC$ 中,内角 A,B,C 所对边的长分别为 a,b,c,已知 $A=\frac{\pi}{4}$,a=2, $b=\sqrt{6}$,则

A. $\frac{\pi}{2}$

B. $\frac{2\pi}{3}$ C. $\frac{\pi}{3}$ $\frac{2\pi}{3}$ D. $\frac{\pi}{6}$ $\frac{\pi}{3}$

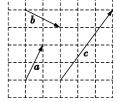
4. 已知直线 y=kx+1,椭圆 $\frac{x^2}{36}+\frac{y^2}{20}=1$,则直线与椭圆的位置关系是

A. 相切

B. 相离

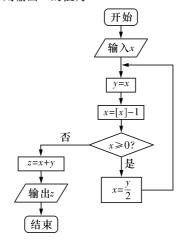
C. 相交

D. 相切或相交


5. 如图,在6×6的方格纸中,若起点和终点均在格点的向量 a,b,c 满足 $c=xa+yb(x,y\in \mathbf{R})$,则 x+y=

A. 0

B. 1


C. $5\sqrt{5}$

D. $\frac{13}{5}$

6. 已知[x]表示不超过 x 的最大整数. 执行如图所示的程序框

图,若输入x的值为2,则输出z的值为

A. 1

B. -0.5

C.0.5

D. -0.4

巡

更

1

 \mathbb{K}

শ

災 蜇

歐

끮

A. $\frac{1}{2}$			В	<u>1</u>			C. 1-	$-\frac{\pi}{12}$		D	.1	<u>π</u>			
8. 将函数 $f(x) = \sin(2x + \varphi) \left(\varphi < \frac{\pi}{2} \right)$ 的图象向左平移 $\frac{\pi}{6}$ 个单位后的图象关于															
原点对称,则函数 $f(x)$ 在 $\left[0,\frac{\pi}{2}\right]$ 上的最小值为															
A. $\frac{\sqrt{3}}{2}$	A. $\frac{\sqrt{3}}{2}$ B. $\frac{1}{2}$ C. $-\frac{1}{2}$ D. $-\frac{\sqrt{3}}{2}$														
9. 设 M 是圆 P : $(x-4)^2 + y^2 = 36$ 上一动点,点 Q 的坐标为 $(-4,0)$,若线段 MQ 的 垂直平分线交直线 PM 于点 N ,则点 N 的轨迹方程为															
A. $\frac{x^2}{25}$	$+\frac{y^2}{9}$	=1	B. $\frac{3}{1}$	$\frac{c^2}{6} + \frac{y}{6}$	$\frac{2}{9} = 1$		C. $\frac{x^2}{7}$	$-\frac{y^2}{9}$	=1	D	$\frac{x^2}{9}$	$-\frac{y^2}{7}$	1		
且该 如果	,丙染 公司- : <i>A</i> 产	料 2 『 一天 <i>之</i> 品的和	屯,生产 と内甲	产毎吨 、乙、同 300 た	5 <i>B</i> 产 万三种	品,需	要甲的用量	染料 1 量分别	吨,Z 不超过	L染料 上 50 四	0吨, E,160	丙染料 吨和	乙染料 料 5 吨, 200 吨, ·司一天		
					元		C. 18	5 000 テ	â	D	. 20 0	00 元			
11. 如图	,在匹	棱锥	C-A	BOD.	中, C	0上平	面 A	BOD,	AB//(OD,O	В		\mathcal{A}^{C}		
								ī线 CI				ر 1 <u>ا</u>	<u></u>		
		点 O,	B,C,I	D 都有	E同一	个球面	百上,!	则该球	的表面	面积为	A A		B		
A. 7		a	В. 8				C. 12		// l==/		. 168π				
12. 已知 点 <i>F</i> 值是 A. ¹)与y :			线 l2			·点 B		没 AB	中点		从坐标	的最大		
	_				选	择题	答題	下				_			
题 号	1	2	3	4	5	6	7	8	9	10	11	12	得分		
答案															
14.《张」 数列 某女 天约	两直 ⁽ 元建算 ,同类 子善 ⁽ 7 + 4	线 x ⁻	- y=2 是我国 在三百 5,后-	与 cx 南北韓 百多年 一天比 按 15	+ y= 朝时期 后的6 前一5 天计算	= 3 的 目的一 印度才 天织得	交点不 部重 ³ 首次 身快,「	在第一 要数学 出现. 而且每	象限, 著作, 书中有 天增力	则实 书中 可这样 加的数	数 c 的 系统 ^均 一个 ^[] 位量相	的取值 也介绍 可题,; 同,已	范围是 了等差 大意为: 知第一 多少尺?		
	154														

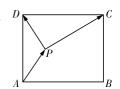
7. 一只蚂蚁在三边长分别为 3、4、5 的三角形内爬行,某时刻该蚂蚁与三角形的三个

顶点的距离均超过1的概率为

15. 已知点 P 为抛物线 $C: y^2 = 4x$ 上任意一点,点 A(3,0),则 |PA| 的最小值为____

16. 已知椭圆具有如下性质:若椭圆的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,则椭圆在其上一点 $A(x_0, y_0)$ 处的切线方程为 $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$. 试运用该性质解决以下问题: 椭圆 $C_1: \frac{x^2}{2} + y^2 = 1$,点 $B \to C_1$ 在第一象限中的任意一点,过 B 作 C_1 的切线 l ,l 分别与x 轴和y 轴的正半轴交于C,D 两点,则 $\triangle OCD$ 面积的最小值为______.

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.


17. (本小题满分 10 分)

已知数列
$$\{a_n\}$$
满足: $a_1=0$ 且 $\frac{1}{1-a_{n+1}}-\frac{1}{1-a_n}=1$.

- (1)求 $\{a_n\}$ 的通项公式;
- (2)令 $b_n = \frac{1 \sqrt{a_{n+1}}}{\sqrt{n}} (n \in \mathbf{N}_+)$,数列 $\{b_n\}$ 前 n 项和为 S_n ,证明: $S_n < 1$.

如图,矩形 ABCD 中,AB=2, $AD=\sqrt{3}$,点 P 为矩形内一点,且 $|\overrightarrow{AP}|=1$,设 $\angle BAP=\alpha$.

- (1)当 $\alpha = \frac{\pi}{3}$ 时,求 $\overrightarrow{PC} \cdot \overrightarrow{PD}$ 的值;
- (2)求($\overrightarrow{PC}+\overrightarrow{PD}$) \overrightarrow{AP} 的最大值.

人工智能真的来到我们身边了. 对于人工智能,很多人看法不一致. 对于普通公众而言,对人工智能有多少了解? 在他们心目中,人工智能和人类大脑相比,哪个更"聪明"一些? 人工智能的发展,会给工作、生活带来怎样的改变? 某日报社会调查中心联合某机构在线调研,进行了一项名为"人工智能来了,你准备好了吗?"的调查. 调查采取在线调查方式,样本总数 50 份,按年龄分段,他们年龄的频数分布及"了解人工智能"人数如下表:

年龄	[15,25)	[25,35)	[35,45)	[45,55)	[55,65)
频数	15	15	10	5	5
"了解人工智能"	9	12	8	2	1

(1)由以上统计数据填下面 2×2 列联表,并判断是否有 99%的把握认为以 45 岁为分界点对"了解人工智能"有差异?

	年龄不低于 45 岁 的人数	年龄低于 45 岁 的人数	合计
了解人工智能			
不了解人工智能			
合计			

(2) 若对年龄在[45,55)的被调查人中随机选取两人进行调查,两人中恰好一人"了解人工智能"的概率是多少?

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \geqslant k_0)$	0.050	0.025	0.010	0.005	0.001
k_0	3.841	5.024	6. 635	7.879	10.828

已知拋物线 $C: y^2 = 2px(p>0)$ 的焦点 F 和椭圆 $E: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的右焦点重合,直线 l 过点 F 交抛物线于 A, B 两点.

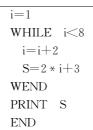
- (1)若直线 l 的倾斜角为 135° ,求 |AB| 的长;
- (2)若直线 $l \otimes y$ 轴于点 M, 且 $\overrightarrow{MA} = m\overrightarrow{AF}$, $\overrightarrow{MB} = n\overrightarrow{BF}$, 试求 m+n 的值.

在直角坐标系 xOy 中,圆 C 的方程为 $(x-\sqrt{3})^2+(y+1)^2=9$,以 O 为极点,x 轴 的非负半轴为极轴建立极坐标系.

- (1)求圆 C 的极坐标方程;
- (2)直线 OP: $\theta = \frac{\pi}{6} (\rho \in \mathbf{R})$ 与圆 C 交于点 M,N,求线段 MN 的长.

已知函数 f(x) = |2x+1| - |x| - 2.

- (1)解不等式 $f(x) \ge 0$;
- (2)若存在实数 x,使得 $f(x) \leq |x| + a$ 成立,求实数 a 的取值范围.


高考总复习单元同步滚动测试卷 文科数学(二十一)

「综合测试券(高考所有内容)] 时量:120 分钟 总分:150 分

- 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只 有一项是符合题目要求的.

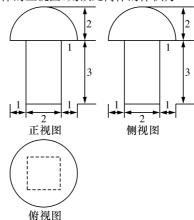
- В. 3
- C.3或-1
- 2. 已知 $a \in \mathbb{R}$,若(1-ai)(3+2i)为纯虚数,则 a 的值为
- C. $-\frac{2}{3}$

3. 以下程序运行后的输出结果为

A. 21

B. 13

C. 17


D. 25

- 4. 已知 $P_1(2,-1)$, $P_2(0,5)$, 且点 P 在 P_1P_2 的延长线上, $|\overline{P_1P}|=2|\overline{PP_2}|$, 则点 P的坐标为

- A. (2,-7) B. $(\frac{4}{3},3)$ C. $(\frac{2}{3},3)$ D. (-2,11)
- 5. 已知函数 $f(x) = \sin(x+\varphi)$ 满足 $f\left(\frac{\pi}{3}\right) = 1$,则 $f\left(\frac{5\pi}{6}\right)$ 的值是

D. 1

6. 如图是一个空间几何体的三视图,则该几何体的体积为

沟

1

 \mathbb{K}

緻

斑

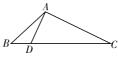
	A. $12 + \frac{4\pi}{3}$	B. $12 + \frac{16\pi}{3}$	C. $4 + \frac{16\pi}{3}$	D. $4 + \frac{4\pi}{3}$	
7.	设不等式组《	$\begin{cases} 2x+y \ge 2, \\ x-2y \ge -4, 所表示 \\ 3x-y \le 3 \end{cases}$	的平面区域为 M, 若函	質数 $y=k(x+1)+1$ 的图	[]
		M,则实数 k 的取值剂			
	A. $\left[-\frac{1}{2}, 1 \right]$) B. $\left(-\frac{1}{2}, 1\right]$	C. $\left(-\frac{1}{2},1\right)$	D. $\left[-\frac{1}{2},1\right]$	

B.
$$\left(-\frac{1}{2},1\right]$$

C.
$$\left(-\frac{1}{2},1\right)$$

D.
$$\left[-\frac{1}{2}, 1 \right]$$

8. 已知圆 C 与直线 2x-y+5=0 及 2x-y-5=0 都相切,圆心在直线 x+y=0 上, 则圆 C 的方程为


A.
$$(x+1)^2 + (y-1)^2 = 5$$

B.
$$x^2 + y^2 = 5$$

C.
$$(x-1)^2 + (y-1)^2 = \sqrt{5}$$

D.
$$x^2 + y^2 = \sqrt{5}$$

9. 如图, $\triangle ABC$ 中,点D在BC边上, $AD\bot AC$, $\sin \angle BAC = \frac{2\sqrt{2}}{3}$, $AB = 3\sqrt{2}$,AD = 3, 则 BD 的长为

 $A.\sqrt{2}$

 $B_{x}\sqrt{3}$

D. $2\sqrt{3}$

10. 已知双曲线 C 的中心为原点,F(3,0)是 C 的焦点,过 F 的直线 l 与 C 相交干 A, B 两点,且 AB 的中点为 N(-12,-15),则该双曲线的渐近线方程为

A.
$$y = \pm \frac{\sqrt{5}}{2}x$$

B.
$$y = \pm \frac{2\sqrt{5}}{5}x$$

C.
$$y = \pm \sqrt{2}x$$

D.
$$y = \pm \frac{\sqrt{2}}{2}x$$

11. 正四棱锥的顶点都在同一球面上, 若该棱锥的高为 4, 底面边长为 2, 则该球的表 面积为

A.
$$\frac{27\pi}{4}$$

B.
$$\frac{81\pi}{4}$$

12. 已知函数 $f(x) = \left| e^x + \frac{a}{e^x} \right|$ $(a \in \mathbb{R})$ 在区间 [0,1] 上单调递增,则实数 a 的取值 范围是

$$B(-1 \pm \infty)$$

C.
$$[-1,1]$$

A.
$$(-1,1)$$
 B. $(-1,+\infty)$ C. $\lceil -1,1 \rceil$ D. $(0,+\infty)$

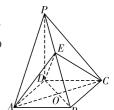
选择题答题卡

题号	1	2	3	4	5	6	7	8	9	10	11	12	得分
答案													

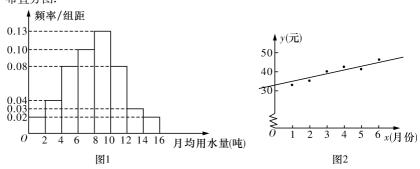
二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分. 把答案填在题中横线上.

13. 下图是某高三学生进入高中三年来第1次到14次的数学考试成绩茎叶图,根据 茎叶图计算数据的中位数为_____.

7 8 9 10 11	9						
8	6	3	8				
9	3	9	8	8	4	1	5
10	3	1					
11	4						


- 14. 在区间[0,4]上随机取一个数 x,则事件" $-1 \le \log_{\frac{1}{2}} \left(x + \frac{1}{2}\right) \le 1$ "发生的概率为
- 15. 已知数列 $\{a_n\}$ 的通项公式 $a_n=n\cos\frac{n\pi}{2}$,其前n项和为 S_n ,则 $S_{2\,020}=$ ______.
- 16. 已知抛物线 $y^2 = 4x$ 的焦点为 F , 若点 A , B 是该抛物线上的点 , $\angle AFB = \frac{\pi}{2}$, 线 段 AB 的 中点 M 在 抛 物 线 的 准 线 上 的 射 影 为 N , 则 $\frac{|MN|}{|AB|}$ 的 最 大 值 为
- 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.
- (一)必考题,共60分.
- 17. (本小题满分 12 分)

设数列 $\{b_n\}$ $(n \in \mathbb{N}^*)$ 的前 n 项和为 S_n ,且 $b_n = 2 - 2S_n$.


- (1)求数列 $\{b_n\}$ 的通项公式;
- (2)若 $c_n = \frac{n}{2} \cdot b_n$,设 T_n 为数列 $\{c_n\}$ 的前 n 项和,求 T_n .

如图,在四棱锥 P-ABCD 中,PD上平面 ABCD,底面 AB-

- CD 是菱形, $\angle BAD = 60^{\circ}$,AB = 2, $PD = \sqrt{6}$,O 为 AC 与 BD 的交点,E 为棱 PB 上一点.
- (1)证明:平面 *EAC* 上平面 *PBD*;
- (2) 若 PD//平面 EAC, 求三棱锥 P-EAD 的体积.

某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全县居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.

- (1)通过频率分布直方图,估计该县居民每月的用水量的平均数和中位数(精确到 0.01);
- (2) 求居民用水费用 y(元) 关于月用水量 t(吨) 的函数关系式;
- (3)如图 2 是该县居民李某 2019 年 $1\sim6$ 月份的月用水费 $y(\pi)$ 与月份 x 的散点图,其拟合的线性回归方程是 y=2x+33. 若李某 2019 年 $1\sim7$ 月份水费总支出为 294.6元,试估计李某 7 月份的用水吨数.

已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b>0)的左、右两个焦点分别为 F_1 、 F_2 ,离心率 $e=\frac{\sqrt{2}}{2}$,短轴长为 2.

- (1)求椭圆的方程;
- (2)设点 A 为椭圆上的一动点(非长轴端点), AF_2 的延长线与椭圆交于 B 点,AO (O 为坐标原点)的延长线与椭圆交于 C 点,若 $\triangle ABC$ 面积为 $\frac{\sqrt{6}}{2}$,求直线 AB 的方程.

已知 $f(x) = x \ln x$.

- (1)求函数 f(x)在[t,t+2](t>0)上的最小值;
- (2)证明:对一切 $x \in (0, +\infty)$,都有 $\ln x > \frac{1}{e^x} \frac{2}{ex}$ 成立.

- (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
- 22. (本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x=2\cos\alpha, (\alpha \text{ 为参数}), \text{以 } O \text{ 为极} \\ y=2\sin\alpha \end{cases}$

点,x 轴正半轴为极轴,建立极坐标系,直线 l 的极坐标方程为 $\rho\cos\theta-\sqrt{3}\rho\sin\theta-m=0$.

- (1)若 m=1,求直线 l 交曲线 C 所得的弦长;
- (2)若 C上的点到 l 的距离的最小值为 1,求 m 的值.
- 23. (本小题满分 10 分)选修 4-5:不等式选讲

已知函数 f(x) = |x+1| - |x-2|.

- (1)求不等式 $f(x) \ge 1$ 的解集;
- (2)若不等式 $f(x) \ge x^2 x + m$ 的解集非空,求 m 的取值范围.