2019 年清华大学领军计划笔试试题

1.	1. 满足方程 $\frac{1}{x} + \frac{1}{y} = \frac{3}{100}$ 的有序正整数组 (x, y)	的个数为。
Α.	A. 12 B. 13 C. 2	4 D. 25
2.	2. 已知不定方程 $x_1^4 + x_2^4 + \dots + x_n^4 = 799$ 有	正整数解,则正整数n的最小值为
3.	。 A. 11 B. 13 C. 1 3. 在十进制数下,设α是4444 ⁴⁴⁴⁴ 的各位数字 的各位数字之和为。	z之和, b 是 a 的各位数字之和,则 b
Α.	的各位敛子之和万。 A.5 B.6 C.7	D. 16
	4. 若集合 A,B 满足 $A \cap B = \emptyset$, $A \cup B = \mathbb{N}^*$,	
	$ \exists A. \;\;\; orall A = \{x x = 3k, k \in \mathbb{N}^*\}, B = \{x x = 3k \leq 3k\}, $	$\{1,k\in\mathbb{N}^*\}$,则 (A,B) 是 \mathbb{N}^* 的一个二
В.	B. 设 $A = \{x x > 0, x$ 为质数 $\}, B = \{x x > 0, x\}$	为合数},则(A , B)是 \mathbb{N}^* 的一个二划
	分; C. 能找到N*的一个二划分满足: A中不存在∃ 无穷项的等差数列;	三个成等差数列的数,且 B 中不存在
	D. 能找到N*的一个二划分满足 : <i>A</i> 中不存在 = 无穷项的等比数列。	三个成等比数列的数,且B中不存在
5.	5. <i>A,B,C,D,E,F</i> 六名同学进行乒乓球比第 <i>A,B,C,D,E</i> 已经赛过的局数分别为 1、2、3	
Α.	A. 1 B. 2 C. 3	D. 4
6.	5. 设数列 $\{a_n\}$ 满足 $a_{n+1}=a_n^2-3a_n+4$,且 $a_n^2-3a_n+4$,且	a ₁ = 3. 则。
	A. $\{a_n\}$ 是递增数列 B. $\{a_n\}$	
С.	C. $a_{100} = 101$ D. $\lim_{n \to \infty} a_{100} = 101$	$\lim_{n \to \infty} \left(\frac{1}{a_1 - 1} + \frac{1}{a_2 - 1} + \dots + \frac{1}{a_n - 1} \right) = 1$
7.	7. 已知数列 $\{a_n\}$ 的通项为 $a_n = \left(n - \frac{1}{2}\right) \left(\frac{9}{10}\right)^n$	$a_{n},b_{n}=a_{n+1}-a_{n}$. 则。
Α.	A. 数列 $\{a_n\}$ 的最大项为 a_9 B. 数	如 $\{a_n\}$ 的最小项为 a_1
С.	C. 数列 $\left\{\frac{b_{n+1}}{b_n}\right\}$ 的最大项为 $\frac{27}{10}$ D. 数	$ \sqrt{b} \left\{ \frac{b_{n+1}}{b_n} \right\} $ 的最小项为 $-\frac{9}{10}$
8.	8. 对正整数 n ,整数 x_n , y_n 满足 $x_n + \sqrt{3}y_n = ($	$(2+\sqrt{3})^n$. 则。
В.	A. 对每个正整数 n ,都有 $x_{n+1} = 2x_n + 3y_n$ B. 对每个正整数 n ,都有 $y_{n+1} = x_n + 2y_n$ C. 存在正整数 n ,使得 $x_n = 2019$	
D.	$\lim_{n \to \infty} x_n - \sqrt{3}y_n = 0$	
	$9.$ 设 l_1,l_2 是直角坐标平面上两条不同直线, A	$_1,A_2$ 分别是 l_1,l_2 上的动点, P 是 A_1A_2

A. 当 l_1 , l_2 平行时, P 的轨迹是一条直	1线	
B. $\exists l_1, l_2$ 平行时, P 的轨迹是一条射		
C. 当 l_1 , l_2 不平行时, P 能取遍平面上D. 当 l_1 , l_2 不平行时, P 不能取遍平面		
10. 设 x 是实数, z 是辐角为 $\frac{\pi}{4}$ 的复数。		+ <i>i</i> - <i>z</i> + <i>x</i> - <i>z</i> 的最小
值为。		
	C. $\sqrt{10}$	D. $\sqrt{11}$
11. $ \ddot{\mathbf{z}}_{k} = \cos \frac{2(k-1)\pi}{5} + i \sin \frac{2(k-1)\pi}{5} $	k, $(k = 1,2,3,4,5)$, it	1
$a_i = \prod_{j \neq i, 1 \le j \le 5} ($	$(z_i - z_j)$, $i = 1,2,3,4,5$	5.
则。		
A. $a_1 = 5$ B. $a_3 a_4 = 5^2$		
12. 设 $z_1, z_2,, z_4$ 是多项式方程 $x^4 + z_3 z_4$)($z_1 z_3 + z_2 z_4$)($z_1 z_4 + z_2 z_3$) =		
$z_3z_4)(z_1z_3 + z_2z_4)(z_1z_4 + z_2z_3) = $ A6 B. 6		
13. 若正数 a, b 满足 $ab(a + 8b) = 20$		
A. 4 B. 5	C. $\sqrt[3]{60}$	D. $\frac{4\sqrt[3]{60}}{3}$
14. 设函数 $f(x) = 9^x - 3^{x+1} + a(a)$ A. 若对任意 $x \in (0,1)$,都有 $f(x) <$	· · · · · · · · · · · · · · · · · · ·	
B. 若存在 $x \in (0,1)$ 使得 $f(x) < 0$ 成立	立,则 a 的取值范围是	$\frac{1}{2}\left(-\infty,\frac{9}{4}\right);$
C. 当方程 $f(x) = a \cdot 3^x$ 在[0,1]上有明 D. 当方程 $f(x) = a \cdot 3^x$ 在[0,1]上有解		
15. 设 $f(x)$ 定义在 \mathbb{R} 上,若对任意实	C数 c ,总存在实数 a ,	, b使得 $f'(c) = \frac{f(b) - f(a)}{b - a}$,
则称函数 $f(x)$ 具有性质 T . 下列函数写	中不具有性质 T 的是_	o
$A. f(x) = \sin(2x - 1)$	$B. f(x) = x^3 -$	$3x^2 + 3x$
$C. f(x) = e^{x+1}$	D. $f(x) = \frac{1}{1+x^2}$	
16. 设实数 x , y 满足 $x^3 + 27y^3 + 9xy$,	0
A. x^3y 的最大值为 $\frac{1}{3}$	B. x^3y 的最大值	直为 27
C. x^3y 的最小值为 $-\frac{\sqrt{3}}{3}$	D. <i>x³y</i> 无最小值	<u> </u>
17. $\ddot{\nabla}u = \frac{x+\sqrt{3}y}{\sqrt{x^2+y^2}}, D = \{(x,y) x^2+(y) x^2+($	$(y-2)^2 \le 1$ },则当($(x,y)\in D$
$\sqrt{x^2+y^2}$ A. u 的最小值为 1	B. u 的最大值为	
C. <i>u</i> 的最小值为 0	D. <i>u</i> 的最大值为	

18. 设P是 $x^2 + y^2 = 1$ 上的动点,M(0,-1), N(0,2),则 $|PM|^2 \cdot |PN|$ 的最大值为

A. 3 ₁	/2	В.	$3\sqrt{3}$	С.	6	D.	8
					$l_2: x + y + a = 0$ 角形的三个顶点,	_	
A. 2	。 组	В.	3组	С.	4组	D.	5组
20. [己知椭圆 $C: \frac{x^2}{6}$	$+\frac{y^2}{2}$	=1,直线 l 过点 I	7(2,	0),且与 <i>C</i> 交于A,	B 两	j点, P为直线 $x =$
3上一	·点,若ΔPAB)	为正	三角形,则 ΔPA I	3的	面积为	o	
A. $\frac{\sqrt{3}}{2}$	•	В.	$\sqrt{3}$	С.	$\frac{3\sqrt{3}}{2}$	D.	$2\sqrt{3}$
				线与	f 抛物线 $y^2 = 8x^2$	相交	于 <i>A,B</i> 两点,若
A. 2		В.	1	С.	$\frac{2}{3}$	D.	$\frac{1}{2}$
na d	己知 <i>AB</i> 是圆 <i>O</i> 的 。	的直	径, <i>C</i> 是圆弧 <i>AB</i>	的中	^口 点, <i>M是AC</i> 的中	点,	$CH \perp BM$ 于 H ,
Α. ΔΑ	$AMH \sim \Delta BMA$				$\Delta BOH \sim \Delta BMA$		
C. 01	$H = \frac{1}{2}AH$			D.	$OH = \frac{1}{2}AM$		
	□知三棱锥A - A - BCD的外接			<i>C</i> =°	AD = BD = CD	= 6	, <i>BC</i> = 9,则三
A. $\sqrt{2}$	21	В.	$\frac{\sqrt{21}}{2}$	С.	$\frac{\sqrt{210}}{3}$	D.	$\frac{\sqrt{210}}{6}$
					11 ,棱 AA_1 的中点 方体所得截面的		
A. $\frac{\sqrt{6}}{4}$		В.	$\frac{\sqrt{2}}{2}$	С.	$\frac{\sqrt{3}}{2}$	D.	1
25. 7	生直三棱柱AB(C -	$A_1B_1C_1$ $+$, $AB =$	- 6, .	$BC = CC_1 = 3\sqrt{2}$, _	$ABC = 90^{\circ}$,点 P
在线段 B_1C 上,则 A_1P+BP 的。							
A. 最	小值为3 + √1	0		В.	最小值为3√10		
C. 最	大值为6 + 3√	2		D.	最大值为9√2		
26. n	$\min_{x,b\in\mathbb{R}}\max_{x\in[0,4]}\{ (x$	- 2]	$)^3 + ax + b \} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		0		
A. 1		В.	2	C.	$\frac{2\sqrt{3}}{27}$	D.	$\frac{4\sqrt{3}}{27}$
					是小值为	-	_0
A. 31			4 ln 2		5	D.	р
28. E	$ \exists$ 知函数 $f(x)$ =	$=\frac{\pi}{e^{\frac{1}{2}}}$	-1 ,则	°			

A. 不等式 $0 \le f(x) \le \frac{1}{e^2}$ 的解集是 $\{x x \ge 1\}$	1}			
B. 不等式 $0 \le f(x) \le \frac{1}{e^2}$ 的解集是 $\{x 1 \le$	$x \le 2$			
C. 直线 $y = 2x - 1$ 与曲线 $y = f(x)$ 只有一	一个交点			
D. 直线 $y = \frac{1}{3}(x-1)$ 与曲线 $y = f(x)$ 只有	有一个交点			
29. 已知 X 是含有 15 个元素的集合, Y 射,则满足条件 $f(x_1) = f(x_2)(x_1, x_2)$				
° B. 45	C. 60 D. 75			
30. 在 ΔABC 内,若 $\sin^2 A - \sin^2 C = \sin$ 的最大值为。	$A\sin B - \sin^2 B$,且 $c = 2$,则 ΔABC 面积			
A. $\sqrt{3}$ B. 2	C. $\sqrt{5}$ D. $2\sqrt{2}$			
31. 下列等式中,成立的有	_0			
A. $\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{6\pi}{7} = 1$	B. $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$			
C. $\sin 6^{\circ} \sin 42^{\circ} \sin 66^{\circ} \sin 78^{\circ} = \frac{1}{16}$	D. $\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ} = \frac{1}{16}$			
33. $\int_{-1}^{1} (1 - \sin x) x^2 dx = \underline{\qquad}$				
A. 0 B. 1	C. $\frac{1}{3}$ D. $\frac{2}{3}$			
34. 随机地将 1 、 2 、 3 、 4 、 5 、 6 这六个的为 a_1 ,最大的为 a_2 , B 中最小的为 b_1 ,最则。				
A. $\mathbb{E}X = \frac{7}{2}$ B. $\mathbb{E}Y = \frac{7}{3}$	C. $\mathbb{P}(X = Y) = \frac{2}{5}$ D. $\mathbb{P}(X = Y) = \frac{3}{10}$			
35. 已知平面向量 \vec{a} , \vec{b} , \vec{c} , \vec{d} 满足 $ \vec{a} = \vec{b} $	$=1$, \vec{b} 在 \vec{a} 方向上的投影为 $\frac{1}{2}$, $(\vec{a}-\vec{c})$ ·			
$(\vec{b} - \vec{c}) = 0, \vec{d} - \vec{c} = 1, M \vec{d} $ 的最大值为。				

A. $\frac{3+\sqrt{3}}{2}$ B. $\frac{4+\sqrt{3}}{2}$ C. $\frac{3+\sqrt{5}}{2}$ D. $\frac{4+\sqrt{5}}{2}$

B站 ID: 阿不高中数学