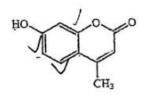
2021 学年高三上学期 8 月省实、执信、广雅、六中四校联考 化学试卷

命题学校:广州市第六中学


可能用到的相对原子质量: H-1 C-12 N-14 O-16 Na -23

一、选择题: 本题共 16 小, 共 44 分。第 1-10 题, 每小 2 分; 第 11-16 题, 每小题 4 分; 在每小题给出 的四个选项中,只有一项符是合题目要求的。

1.宋代《千里江山图》描绘了山清水秀的美丽景色,历经千年色彩依然,其中绿色来自孔雀石颜料[主要成 分为Cu(OH), $\cdot CuCO$,], 青色来自蓝铜矿颜料[主要成分为Cu(OH), $\cdot 2CuCO$,]。下列说法错误的是 (

- A. 《千里江山图》的颜料难溶于水,且不易被空气氧化
- B.铜是人类最早使用的金属之一,由孔雀石与焦炭共热可获得粗铜
- C.孔雀石、蓝钢矿颜料主要成分属于盐,难溶于水、酸、碱
- D.《千里江山图》的材质为麦青色的蚕丝织品——绢,蚕丝主要成分属于蛋白质
- 2.2020 年我国北斗三号全球卫星导航系统正式开通,其中"铷(Rb)原子钟"被誉为卫星的"心脏",下列有 关说法错误的是(
- A.铷元素位于 I A 族
- B.铷的金属性比钠弱
- C. ⁸⁵₃₇Rb 的中子数为 48 D. ⁸⁵₃₇Rb 和 ⁸⁷₃₇Rb 具有相同的电子数
- 3.新冠肺炎肆虐神州,一场疫情阻击战打响,疫情防控要注重杀菌消毒。下列关于杀菌消毒试剂的说法正确 的是(
- A.CH₅CH₂OH 作为杀菌消毒洗手液的有效成分,浓度越高消杀效果越好
- B.环境、餐具、水果等的杀菌消毒常使用"84"消毒液,其有效成分为Ca(ClO)。
- C."84"消毒液、酒精消毒液、 H_2O_2 、过氧乙酸(CH_3COOOH)的消毒原理相同
- D. Cl₂、NaClO₂、Ca(ClO)₂、ClO₂均可用于水的杀菌消毒
- 4.化学与生活密切相关,下列说法错误的是()
- A.液氨和干冰均可作制冷剂
- B. CaO和 CaCl,·6H,O均可作食品干燥剂
- C.用 Na₂S 除去工业废水中的 Cu²⁺和 Hg²⁺
- D.铁粉与和维生素 C 均可作食品袋内的脱氧剂

5.羟甲香豆素(MSDS)又称利胆通,是一种新型利胆药物,常用作医药中间体,有关 MSDS 下列说法不正确的是()

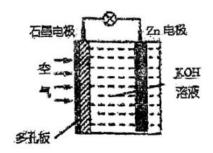
- Δ 该物质的分子式为 $C_{10}H_8O_3$
- B.可发生氧化反应
- C.能使酸性高锰酸钾溶液褪色
- D. lmol 该物质最多能与5mol H₂发生加成反应
- 6.下列叙述 Ⅰ 和 Ⅱ 均正确并且有因果关系的是()

选项	叙述 I	叙述Ⅱ	
Α	纯碱是强碱弱酸盐	用纯碱溶液可清洗油污	
В	不锈钢合金	不锈钢在潮湿环境中容易被腐蚀	
С	Fe ₂ O ₃ 是碱性氧化物	Fe_2O_3 可用作红色油漆和涂料	
D	NO ₂ 是红棕色气体	常温下可用铜与浓硝酸制取 NO ₂	

7.下列实验装置设计正确的是()

A.干燥氯气

B.稀释浓硫酸

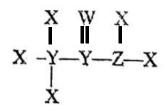

C.实验室制氨气

D.测定盐酸浓度

- 8.下列叙述正确的是()
- A. $0.1 \text{mol} \cdot \text{L}^{-1} \text{ NH}_4 \text{Cl}$ 溶液: $c(\text{NH}_4^+) = c(\text{Cl}^-)$
- B.室温下,pH=4的盐酸pH=10与的氨水溶液等体积混合后pH>7
- C.0.1mol· L^{-1} 与0.2mol· L^{-1} 氨水溶液中 $c(OH^{-})$ 之比为1:2
- D.中和pH与体积都相同的氨水和 $Ba(OH)_2$ 溶液,消耗的HCl物质的量之比是1:2

9.锌—空气电池(原理如图)适宜用作城市电动车的动力电源,该电池放电时 Zn 转化为 ZnO 。该电池工作时下列说法不正确的是()

- A.多孔板的目的是增大与空气的接触面积
- B.该电池的负极反应为 $Zn 2e^- + H_2O = ZnO + 2H^+$
- C.该电池放电时 K^+ 向石墨电极移动
- D.外电路电子由 Zn 电极流向石墨电极
- 10.部分含氯物质的分类与相应氯元素的化合价关系如图所示。下列说法不正确的是()

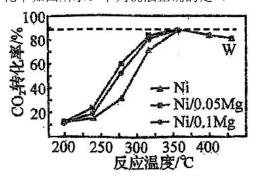


- A.a 与 d, a 与 f 在酸性情况下反应,均可以得到 b
- B.加入适量 NaHCO, 溶液可以增强 b 溶液的漂白性
- C.c 可作为一种新型自来水消毒剂
- D.工业上利用阴离子交换膜电解饱和 e 溶液制备烧碱
- 11.设 $N_{\rm A}$ 为阿伏加德罗常数的值。下列说法正确的是(
- $A.3.9g Na_2O_2$ 晶体中阴离子的数目为 $0.1N_A$
- B.常温常压下,1mol NO₂ 气体与水反应生成 N_A 个 NO₃
- $C.18gC_{60}$ 和石墨的混合物中含有的碳原子数目为 $1.5N_{A}$
- D.标准状况下,2.24L HCl 气体中含有的 H^+ 数目为 $0.1N_A$

12.通过下列实验操作和实验现象,得出的结论正确的是()

选项	实验操作	现象	结论
	向 2mL 0.1mol·L ⁻¹ 的 NaCl溶液中滴加 3	先产生白色沉淀, 然后变为黄色沉淀	$K_{\rm sp}({\rm AgI}) > K_{\rm sp}({\rm AgCl})$
Α	滴相同浓度的 AgNO ₃ ,然后再滴加 3 滴相		
	同浓度的 KI 溶液		
В	向酸性 KMnO ₄ 溶液中滴加 H ₂ O ₂ 溶液	有气泡产生	H_2O_2 具有氧化性
С	向滴有酚酞的 NaOH 溶液中通入气体	溶液红色褪去	SO_2 具有漂白性
D	将丙烯通入碘水中	碘水褪色并分层	丙烯与碘水发生了加成反应

13.X、Y、Z、W 四种短周期元素位于三个不同的周期,且原子序数依次增大。它们能形成结构如图所示的分子,下列推断错误的是()


A.X、Z 原子之间形成的是极性共价键

B.汽态氢化物的沸点: W > Z

C.Y、Z、W 分别与 X 可形成 18 电子分子

D.最高价含氧酸的酸性: W>Y

14.在恒压、 H_2 和 CO_2 的起始浓度一定的条件下,用不同 Mg 含量的催化剂 Ni/xMg(x 值越大表示 Mg 含量越大)催化反应相同时间,测得不同温度下反应: $4H_2(g)+CO_2(g)=CH_4(g)+2H_2O(g)$ 的 CO_2 的转化率如图所示。下列说法正确的是(

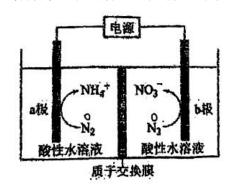
A.反应 $4H_2(g) + CO_2(g) = CH_4(g) + 2H_2O(g)$ 的 $\Delta H > 0$ B.延长 W 点的反应时间可提高 CO_2 的转化率

C.相同条件下催化剂中 Mg 的含量越高催化效率越高

D. 当反应温度低于 350℃时,使用合适的催化剂可以提高 CO₂ 的转化率

15.下列离子反应方程式正确的是()

A.向硫酸铝溶液中滴加碳酸钠溶液: $2Al^{3+} + 3CO_3^{2-}$ = $Ml_2(CO_3)_3$ ↓

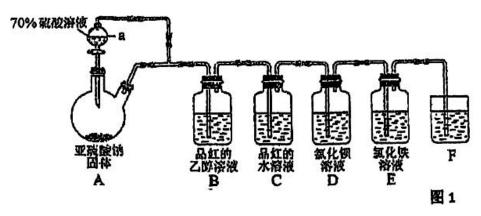

B.氧化亚铁溶于稀硝酸: $FeO + 2H^+ = Fe^{2+} + H_2O$

C.向草酸溶液中逐滴加入酸性高锰酸钾溶液,溶液褪色:

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ = 2Mn^{2+} + 10CO_2 \uparrow +8H_2O$$

D.向硫代硫酸钠溶液中滴加稀硫酸: $S_2O_3^{2-} + 2H^+ = S \downarrow + SO_2 \uparrow + H_2O$

16.我国科学家合成了一种新型的 $Fe-SnO_2$ 催化剂,用该催化剂修饰电极,可实现在室温条件下电催化氮气制备铵盐和硝酸盐。下列说法错误的是()

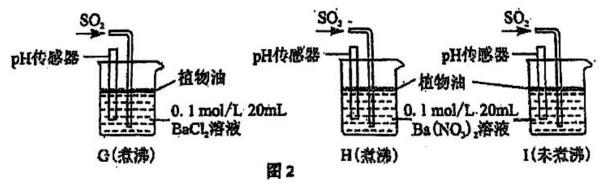

A. 电解过程中 H^+ 由 b 极区向 a 极区迁移

B.电解一段时间, 阴极区的 pH 增大

C.电解一段时间,阳极、阴极消耗 N_2 的物质的量之比为 5:3

D.阳极反应式为 $N_2 + 6H_2O - 10e^- = 2NO_3^- + 12H^+$

二、非地择题(56分)第 17~19 题为必考题,考生都必须作答。第 20-21 题为选考题,考生根据要求作答。 (一)必考题:共 42分。 **17**.(**15** 分)二氧化硫是国内外允许使用的一种食品添加剂,可用于食物的增白、防腐等,但必须严格遵守国家有关标准使用。某学习小组设计了如图 **1** 装置用于制取 SO_2 并验证其性质。

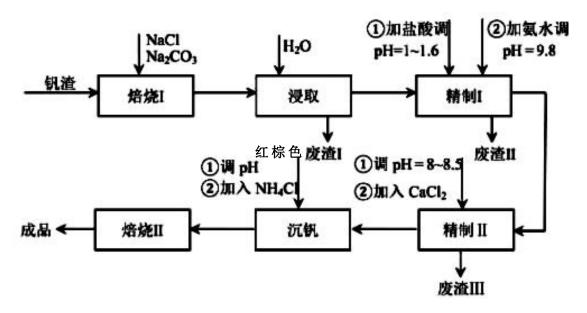


(1)	仪器a	的名称为	o

- (2) 装置 A 中反应的化学方程式。
- (3) 烧杯 F 中的试剂可以是_____。(填序号)
- a.饱和 NaHSO, 溶液 b.饱和 Na, CO, 溶液 c. NaOH 溶液

d.饱和 NaCl溶液

- (4) 实验时装置 E 中溶液变为浅绿色, 检验该离子产物的实验操作及现象是
- (5) 实验时观察到装置 B 无明显现象,装置 C 红色褪去,则使品红的水溶液褪色的微粒一定不是____。 (填化学式)
- (6)学生甲预测装置 D 中没有白色沉淀产生,但随着反应的进行,发现装置 D 中产生了少量白色沉淀。为进一步探究产生沉淀的原因,分别用煮沸和未煮沸过的蒸馏水配制的 $Ba(NO_3)_2$ 和 $BaCl_2$ 溶液,进行如图 2 实验:



如图 2 实验中 G、H、I 烧杯中观察到的现象如表:

烧杯	实验现象	
G	无白色沉淀产生,pH 传感器测得溶液 pH = 5.3	
Н	有白色沉淀产生	
I	有白色沉淀产生,I中出现白色沉淀比 H 中快很多	

- ①据 G 中现象得出的结论是
- ②H 中发生反应的离子方程式。
- ③I 中出现白色沉淀的速率比 H 中快很多的原因可能是______。

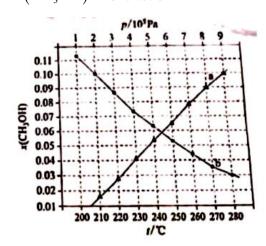
18. (13 分) 利用钒钛磁铁矿冶炼后产生的钒渣(主要含 $FeO\cdot V_2O_3$ 、 Al_2O_3 、 SiO_2 及少量可溶性磷酸盐) 生产 V_2O_5 的工艺流程如下,回答下列问题:

已知: V_2O_5 、 Al_2O_3 、 SiO_2 可与 Na_2CO_3 、NaCl组成的混合钠盐在高温下反应,并转化为 $NaVO_3$ 、 $NaAlO_2$ 、 Na_2SiO_3 等可溶性钠盐。

(1) 焙烧 I 包括氧化和钠化成盐两个过程,氧化的目的是芬	兵得 $\mathrm{V_2O_5}$,写出氧化过程中 $\mathrm{FeO\cdot V_2O_3}$ 发生反
应的化学方程式	; 废渣 I 的主要成分是
0	
(2) 精制 I 加入 $NH_3 \cdot H_2O$ 后,写出相关的离子反应方程式	Ç:
, $c(NH_4^+)/c(NH_3 \cdot H_2O) =$	。(结果不用化简)[已
知 $K_b(NH_3 \cdot H_2O) = 1.8 \times 10^{-5}$]	
(3)精制 II 中加入 CaCl ₂ 溶液除去磷酸盐, pH 过小时影响除	\$磷效果的原因是; pH
过大时,沉淀量增大的原因是	·
(4) 沉钒所得 $\mathrm{NH_4VO_3}$ 沉淀需进行洗涤,洗涤时除去的阴离	写子主要是。NH ₄ VO ₃
在 500 ℃时焙烧脱氨制得产品,反应方程式为 2NH₄VO ₃ —	^{□热} V ₂ O ₅ + H ₂ O↑+2NH ₃ ↑。但脱氨过程
中,部分 $\mathbf{V_2O_5}$ 会被 $\mathbf{NH_3}$ 转化成 $\mathbf{V_2O_4}$,反应中氧化剂与还原	i剂物质的量之比为3:2,该反应的化学方程式
<i>አ</i>	

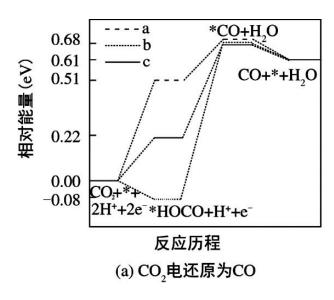
19.(**14** 分)当今,世界多国相继规划了碳达峰、碳中和的时间节点。因此,研发二氧化碳利用技术,降低空气中二氧化碳含量成为研究热点。

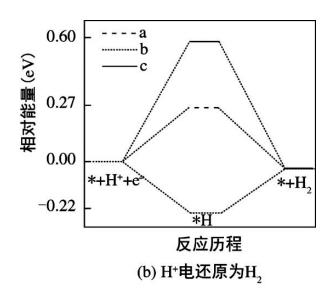
(1) 二氧化碳催化加氢制甲醇,有利于减少温室气体二氧化碳。其总反应可表示为


 $CO_2(g) + 3H_2(g) = CH_3OH(g) + H_2O(g)$,该反应一般认为通过如下步骤来实现:

I.
$$CO_2(g) + H_2(g) = CO(g) + H_2O(g)$$
 $\Delta H_1 = +41 \text{kJ} \cdot \text{mol}^{-1}$

II .
$$CO(g) + 2H_2(g) = CH_3OH(g)$$
 $\Delta H_2 = -90kJ \cdot mol^{-1}$


总反应的 $\Delta H = kJ \cdot mol^{-1}$;


(2)二氧化碳催化加氢制甲醇合成总反应在起始物 $n(H_2)/n(CO_2)=3$ 时,在不同条件下达到平衡,设体系中甲醇的物质的量分数为 $x(CH_3OH)$,在 t=250 °C 下的 $x(CH_3OH)\sim p$ 、在 $p=5\times10^5$ Pa 下的 $x(CH_3OH)\sim t$ 如图所示。

- ①用各物质的平衡分压表示总反应的平衡常数,表达式 $K_{p}=$ ______;
- ③当 $x(CH_3OH)=0.10$ 时, CO_2 的平衡转化率 $\alpha=$ _______,反应条件可能为_______或
- (3)研究表明,在电解质水溶液中,CO,气体可被电化学还原。
- ①CO,在碱性介面中电还原为正丙醇(CH₃CH₂CH₂OH)的电极反应方程式为

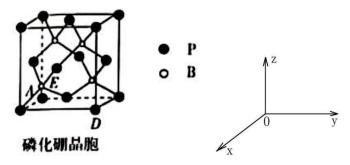
②在电解质水溶液中,三种不同催化剂(a、b、c)上 CO_2 电还原为CO的反应进程中(H*被还原为 H_2 的反应可同时发生),相对能量变化如图。由此判断, CO_2 电还原为CO从易到难的顺序为_____(用 a、b、c 字母排序)。

(二)选考题:共14分。请考生从2道题中任选一题作答。如果多做,则按所做的第一题计分。 20. (14 分) [选修 3: 物质结构与性质]

氨酸络合剂指含有 $-N(CH_2COOH)$,基团的有机化合物,它是一类具有广泛络合性能和强的络合能力的 络合剂。

(HOOCCH₂), N-CH₂-CH₂-N(CH₂COOH), NH(CH₂COOH) N(CH₂COOH), \coprod Ī

- (1) 基态氮原子价电子排布式为
- (2) NH₃、CH₄、H₂O的沸点由高到低顺序为____。
- (3) I、II、III都可以与Cu²⁺形成络合物
- ①铜元素位于元素周期表第四周期第 族。
- ②预测_____(填编号"I"、"II"、"III")与Cu²⁺形成的络合物最稳定。
- (4) 下列说法正确的有。


A.在 $I \times II \times III$ 中 N 原子采取的都是 sp^3 杂化 B.在 II中 C 元素的电负性最大

C.在III中C-N-C键角是107°18′

D.在III中 N 元素的第一电离能最大。

E.在III中碳氧键的键能均相等

(5) 某杂志报道了一种磷化硼纳米颗粒作为高选择性 CO₂ 电化学还原为甲醇的非金属电催化剂。磷化硼熔 点特别高,处于极高温的空气环境时也具有抗氧化作用。其晶胞结构如图所示:

- ①磷化硼晶体中与硼原子距离最近且相等的硼原子数为。
- ③已知磷化硼晶胞中 A 处磷原子与 D 处磷原子间的距离为 a pm,则硼原子与最近磷原子的核间距为 $_____pm$ 。

21. (14 分) [选修 5: 有机化学基础]

Inubosin B 是一种可引发神经再生的天然菊苣碱,其实验室合成路线如下:

- (1) E 中含氧官能团的名称为____。
- (2) B到C的反应类型为 ,已知C到D过程只发生取代反应,写出D的结构简式 。
- (3) 写出 A 到 B 的化学反应方程式。
- (4) F 为化合物 B 的同分异构体,其苯环上有两个取代基。满足下列条件的 F 有______种,任写出其中一种结构简式:
- ①可与FeCl,溶液发生显色反应
- ② lmol F 可与足量 NaHCO, 溶液反应生成 44.8L 气体 (标准状况下)
- ③核磁共振氢谱显示苯环上有2组峰,且峰面积之比为1:1

2021 学年高三上学期 8 月省实、执信、广雅、六中四校联考试卷 化学参考答案

一、选择题

1.C	2.B	3.D	4.B	5.D
6.A	7.C	8.B	9.B	10.D
11.C	12.D	13.B	14.D	15.D

16.C

二、非选择题

- 17. (15分)
- (I) 分液漏斗 (I分)
- (2) $H_2SO_4 + Na_2SO_3 = Na_2SO_4 + SO_2 \uparrow + H_2O$ (2分)
- (3) bc (2分;漏选得1分,错选不得分)
- (4) 取少量 E 中溶液于试管中,滴加 1~2 滴铁氰化钾溶液,有蓝色沉淀,则该产物为 Fe^{2+} (2分)
- (5) SO₂ (2分)
- (6) ① SO_2 可溶于水,溶于水的二氧化硫部分与水反应生成亚硫酸使溶液呈酸性; SO_2 与 $BaCl_2$ 不能发生复分解反应(每答对一条结论得 1 分,满分 2 分)

$$3SO_2 + Ba^{2+} + 2NO_3 + 2H_2O = BaSO_4 \downarrow +2NO + 4H^+ + 2SO_4^{2-}$$

③在水溶液中 O_2 氧化 SO_2 比 NO_3^- 氧化 SO_2 活化能小。[或 O_2 的氧化性比 NO_3^- (H^+)强,合理即可,仅回答" I 中反应速率快",不得分](2 分)

18. (13 分) (1)
$$\triangle$$
 (2 分); Fe_2O_3 (1 分) $4FeO \cdot V_2O_3 + 5O_2 = 2Fe_2O_3 + 4V_2O_{:5}$

$$(2) \ Al^{3-} + 3NH_3 \cdot H_2O = Al \Big(OH\Big)_3 \downarrow + 3NH_4^+ \ (2 \%) \ H^- + NH_3 \cdot H_2O = H_2O + NH_4^+ \ (2 \%)$$

1.8×10^{-0.8} (1分)

(3) 形成溶解度较大的酸式盐(成形成溶解度较大的磷酸氢钙或硝酸二氢钙)(1分); 产生了Ca(OH), 沉淀(1分)

(4)
$$Cl^{-}$$
 (1分); $3V_2O_3 + 2NH_3 = 3V_2O_4 + N_2 + 3H_2O$ (2分)

19. (14分)

(1) -49 (2分)

(2) ①
$$\frac{p(H_2O) \cdot p(CH_3OH)}{p^3(H_2) \cdot p(CO_2)}$$
 (1 $\stackrel{\text{$^{\circ}$}}{/}$)

②b (1分)

总反应 $\Delta H < 0$,升高温度时平衡向逆反应方向移动,甲醇的物质的量分数变小(2分)

③33.3% (2分) 5×10^5 Pa , 210° (1分) 9×10^5 Pa , 280° (1分)

(3)
$$12\text{CO}_2 + 18\text{e}^- + 4\text{H}_2\text{O} = \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + 9\text{CO}_3^{2-}$$
 或

 $3CO_2 + 18e^- + 13H_2O = CH_3CH_2CH_2OH + 18OH^-$ (2 %)

c、a、b(2分)

20. (14分)

- (1) $2s^22p^3$ (1分)
- (2) $H_2O > NH_3 > CH_4$ (2分)
- (3) ①IB (1分) ②III (2分)
- (4) AD(2分, 错选0分, 漏选1分)

(5) ①12 (2分) ②
$$\left(\frac{3}{4},\frac{1}{4},\frac{1}{4}\right)$$
 (2分) ③ $\frac{\sqrt{6}}{8}a$ (2分, 没有化简得 1分)

21.[选修 5: 有机化学基础] (14 分)

(1) 羟基、酯基(2分)

(2) 还原反应(2分)

(4) 5 (2分)

(3)

(5)
$$\frac{Br_2}{FeBr_3}$$
 O^{Br} O^{Br}

化学 upupup 提分课程

1、2022 届高三化学优质卷精讲(第一期)试卷下载地址(免费): q 群 566821486 视频精讲(微信扫码观看)

- 2、2022 届高三化学一二轮联合课程: b 站搜"化学 upupup", 公益课程。
- **3、2021** 届广东高三模拟卷详细解析合集: b 站搜"化学 upupup", 公益课程, 试卷下载地址(免费): q 群 566821486。