广东省 2022 届高三 8 月阶段性质量检测

化学试题

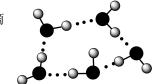
本试卷共6页,21小题,满分100分。考试用时75分钟。

可能用到的相对原子质量: H-1 N-14 Al-27 Ti-48 Fe-56

- 一、选择题: 本题共 16 小题, 共 44 分。第 1~10 小题, 每小题 2 分; 第 11~16 小题, 每小题 4分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 广东醒狮是国家第一批非物质文化遗产, 佛山彩扎狮头的制作工序: 以竹篾扎作狮头, 以纱纸纱绸朴狮, 油彩上色,以绒球、缨珞、小铜镜等装饰。下列说法不正确的是
- A. 竹篾主要成分为纤维素

B. 丝绸的主要成分是蛋白质

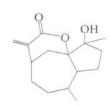
C. 小铜镜所用材料为合金


- D. 传统油彩所含天然树脂是无机物
- 2. "玉兔"号月球巡视器白天用三结砷化镓太阳能电池板收集能量,夜晚用放射性同位素元素钚(238 Pu)
- "核电池"释放能量。有关说法正确的是
- A. ²³⁸₉₄ Pu 的质量数为 144

- B. 砷化镓属于金属材料
- C. "玉兔"号白天用太阳能转化为电能
- D. "核电池"是通过化学反应提供电能
- 3. 我国科学家结合光谱实验和理论计算,证明了五个水分子就可以构成最小水滴 (微观结构如图所示)。关于该最小水滴的说法正确的是
- A. 是纯净物

B. 是一种胶体

C. 水分子内形成氢键


D. 水分子内存在非极性键

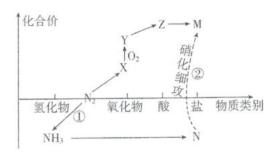
4. 热爱劳动是中华民族的传统美德。下列家务劳动与所涉及的化学知识不相符的是

选项	家务劳动	化学知识
A	炒菜时添加食盐调味	食盐的主要成分是 NaCl
В	柠檬煮水除去水壶中的水垢	柠檬酸可溶解碳酸钙等沉淀
С	漂白粉使用后要密封放于阴凉处	漂白粉见光容易被氧化
D	蒸煮碱性食物时不用铝制餐具	铝及其氧化物均能与碱反应

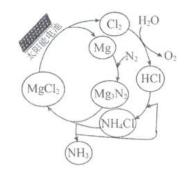
- 5. 我国研究人员从山胡椒根中分离出一种具有极强抗炎和靶向抗肿瘤作用的化合物 (结构如图),有关该化合物,下列叙述错误的是
- A. 分子式为 C₁₅H₂₂O₃
- B. 属于易溶于水的烃类物质
- C. 可发生酯化反应和水解反应 D. 可与溴的四氯化碳溶液反应

6. 检验黑木耳中的铁离子的步骤为: 灼烧黑木耳→加酸溶解→过滤→取滤液检验, 所选择的装置(夹持装置 已略去)及操作正确的是

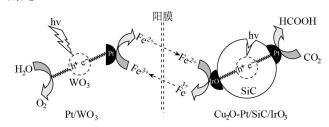
A. 灼烧木耳	B. 加酸后搅拌溶解	C. 过滤得滤液	D. 检验滤液铁离子


- 7. 已知 $N_{\rm A}$ 是阿伏加德罗常数的值,下列说法正确的的是
- A. 1mol 乙醇中含 OH 的数目为 $N_{\rm A}$
- B. $22.4LC_2H_4$ 完全燃烧产生 CO_2 数目为 $2N_A$
- C. 1L1mol/LNaOH 溶液中含阳离子数目大于 N_A
- D. 28g 铁片置于冷的浓硝酸中反应转移电子数为 $1.5\,N_{\rm A}$
- 8. 我国科学家以金属钠和石墨作为电极,在石墨电极通入 SO_2 制备成 $Na-SO_2$ 二次电池,有关该电池,下 列说法错误的是
- A. 放电时SO₂发生还原反应

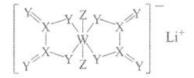
- B. 放电时阴离子向 Na 电极移动
- C. 充电时石墨电极与电源负极相连
- D. 电解质不能是水溶液
- 9. 化合物 MA 是由碱 MOH 和酸 HA 中和所得的盐,其水溶液显中性,下列叙述一定正确的是
- A. 温度升高,水的电离程度增大


- B. 0.01mol·L⁻¹HA 水溶液的 pH=2
- C. MOH 在水中的电离方程式为: $MOH=M^++OH^-$ D. MA 水溶液中: $c(OH^-)+c(A^-)=c(M^+)+c(HA)$
- 10. 化学是以实验为基础的学科。下列实验操作或做法正确且能达到目的的是

	19.4 (C) (S) (42) (42) (42) (42) (42) (42) (42) (42			
选项	操作或做法	目的		
A	往 FeCl ₃ 溶液中加入稀硝酸	除去溶液中的 Fe ²⁺ 提纯 FeCl ₃ 溶液		
В	往浓硫酸中依次加乙醇和乙酸,加热	制备乙酸乙酯		
С	将灼烧后的铜丝插入无水乙醇中	检验乙醇的还原性		
D	往不同浓度 $H_2C_2O_4$ 溶液中分别加过量的 $KMnO_4$ 溶液	探究浓度对反应速率的影响		

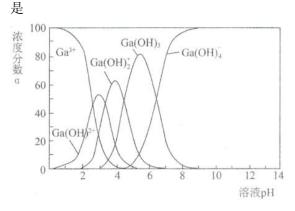

- 11. 某实验小组研究刻蚀电路板以及刻蚀废液的性质,下列实验对应的离子方程式书写正确的是
- A. 用盐酸双氧水刻蚀铜板: Cu+H₂O₂+2H⁺=Cu²⁺+2H₂O+O₂↑
- B. 用 FeCl, 溶液刻蚀铜板: Cu+2Fe³⁺=Cu²⁺+2Fe²⁺
- C. 检验废液中含有 Fe³⁺: Fe³⁺+3SCN⁻=Fe(SCN), ↓
- D. 用酸性 KMnO₄ 检验 Fe²⁺: 3Fe²⁺+MnO₄+4H⁺=3Fe³⁺+MnO₂↓+2H₂O
- 12. 自然界中氮的部分循环过程如下图,有关说法正确的是
- A. 过程①和过程②均属于自然固氮
- B. X 转化为 Y 的反应原子利用率为 100%
- C. N 转为为 NH,或 M 均发生氧化还原反应
- D. 若为硫循环, X 在空气中点燃可得 Y

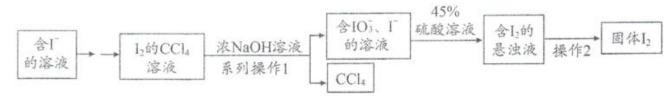
- 13. 一种以水和氮气为原料,用电驱动可实现常压下合成氨的机理如图所示。有关该过程的叙述正确的是
- A. 电解 MgCl, 的水溶液可得到 Mg 和 Cl,
- B. Mg,N2既是氧化产物又是还原剂
- C. NH₄Cl 是催化剂
- D. 产生了副产物 O_2


14. 我国科学家构建直接异质结和间接异质结构系统,实现 CO_2 还原和 $\mathrm{H}_2\mathrm{O}$ 氧化。有关该过程的叙述正确的是

A. 只涉及太阳能转化为化学能

- B. 金属 Pt 表面的反应为: Fe²⁺-e⁻=Fe³⁺
- C. Fe^{2+}/Fe^{3+} 作为氧化还原协同电对,可以换成 I/I,
- D. 总反应为: 2H₂O+2CO₂=O₂+2HCOOH

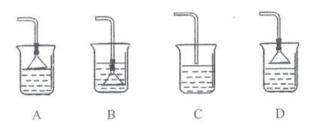

15. 一种锂离子电池、锂离子电容器中非水电解液添加剂如图所示,四种元素中 X、Y、Z 处于同一周期,W 原子序数最大,且最外层电子是内层电子的一半。下列说法正确的是


- A. WZ,是离子化合物
- C. 原子半径: X>Z>Y

- B. 非金属性: Z>W>Y
- D. 简单氢化物的沸点: Y>Z>X

16. Ga 与 Al 同为第IIIA 族元素,溶液中 Ga^{3+} 及其与 OH 形成的微粒的浓度分数 α 随溶液 pH 变化的关系如图所示。已知 $Ksp[Ga(OH)_3]=1.4\times10^{-34}$,向 $GaCl_3$ 溶液中滴加 NaOH 溶液,关于该过程的说法错误的

- A. Ga(OH)⁺ 浓度分数先增大后减少
- B. $Ga^{3+}+H_2O \rightleftharpoons Ga(OH)^{2+}+H^+$, 该平衡常数 K 的数量级为 10^{-3}
- C. $\frac{c(Ga^{3+})}{c^3(H^+)}$ 的比值逐渐减少
- D. pH=9时, $c(Na^+)>c[Ga(OH)_4]$
- 二、非选择题: 共 56 分。第 17~19 题为必考题,考生都必须作答。第 20~21 题为选考题,考生根据要求作答。
- (一)必考题: 共 42 分。
- 17. 碘是人体的必需微量元素之一,海带提取碘的部分实验流程如下

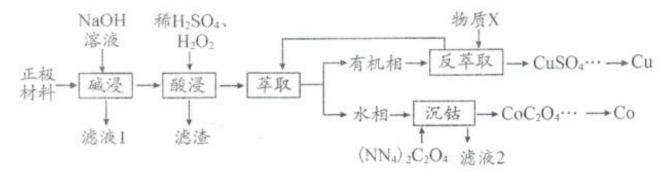

(1). 系列操作 1 中需用到的玻璃仪器有烧杯、玻璃棒和 ,操作 2 的实验方法是

- (2). 氧化 Γ 通常用 H_2O_2 作为氧化剂,写出反应的离子方程式_____。
- (3). 某实验小组研究 Γ 的氧化,将 SO_2 通入 KI 溶液中,出现黄色,查阅资料,发生了以下反应:

 $SO_2+4I^-+4H^+=S+2I_2+2H_2O$ 。为了探究该反应的影响因素,设计以下实验:

实验序号	SO ₂ 水溶液 (mL)	0.4mol/LKI 溶液 (mL)	稀盐酸 (mL)	蒸馏水(mL)	实验现象
1	a(过量)	b	0	d	溶液逐渐变浅黄色
2	a(过量)	b	С		溶液变黄,有浑浊
3	a(过量)	2b	С	0	溶液变黄,比实验 2出现浑浊更快

①用水吸收SO₂制取SO₂水溶液,吸收装置最佳的是_____。

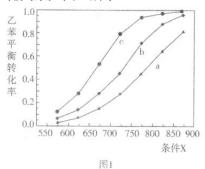


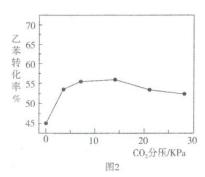
②实验1和2探究_____对实验的影响,实验2和3探究_____对实验的影响,实验2加蒸馏水的体积为_____(用表中字母或字母的表达式作答)。

③添加药品的合理顺序为: SO_2 水溶液、_____、稀盐酸、_____(填"KI 溶液"或"蒸馏水")。

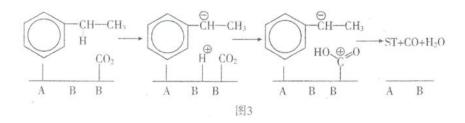
④往三组实验中滴加淀粉溶液,均没有出现蓝色,你认为原因是______(用化学方程式解释)。检验该反应发生的实验试剂是____。

18. 一种废旧钴酸锂电池正极材料(粉料中含 $LiCoO_2$ 、Cu、炭黑和 AI)中有价金属的回收工艺如下:




已知: 常温下, $\mathrm{H_2C_2O_4}$ 的电离常数 $K_{\mathrm{al}}=5.4\times10^{-2}$, $K_{\mathrm{a2}}=5.4\times10^{-5}$;溶度积常数

$$K_{\rm sp} \left({\rm CoC_2O_4} \right) = 6.3 \times 10^{-8}, K_{\rm sp} \left[{\rm Co} \left({\rm OH} \right)_2 \right] = 6.3 \times 10^{-15}$$

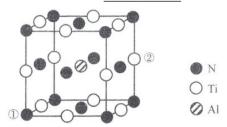

回答下列问题: (1). 往滤液 1 中通入过量气体可沉淀含铝的物质。 (2). 写出"酸浸"中发生反应的离子方程式, "滤渣"中含有的成分。
(3). "滤液 2"中含有的金属离子是。
(4). "萃取" Cu^{2+} 的原理为 $RH_2+Cu^{2+} \rightleftharpoons RCu+2H^+$,加入物质 X 可将 Cu^{2+} 从萃取剂中解脱,推测 X 为
(填"酸"或"碱")。 pH 为 2.0 ,萃取剂浓度对 Cu^{2+} 和 Co^{2+} 萃取率的影响如图,为了提取高纯
度的Co ²⁺ ,萃取剂选择合适的浓度是。
100 80 W 0.2 0.1 0.0 10 15 20 25 30 萃取剂浓度/%
(5). "沉钴"时 pH 控制 $4.5\sim5.0$ 之间 ${\rm CoC_2O_4}$ 的产率较高,pH 过大或者过小都导致产率下降,试分析原
因
$c(C_2O_4^{2-})$ 不小于mol/L 才不容易产生 $Co(OH)_2$ 沉淀。
(6). CoC_2O_4 在空气中充分加热得到 Co_3O_4 的化学方程式为。
19. CO_2 的资源化有利于碳中和,利用 CO_2 氧化烷烃可制得烯烃。以 CO_2 和乙苯(CH_2 CH ₃)为原料
合成苯乙烯(CH=CH ₂)为例,涉及以下反应:
2
回答下列问题:
(1). 根据盖斯定律,写出 \mathbf{CO}_2 与 \mathbf{H}_2 反应的热化学方程式。
(2). 判断下列说法正确的是。
A. 当 $v(CO_2)=v(CO)$,反应②达到平衡状态
B. 升高温度,反应②的正、逆反应速率都增大 C. 增大压强,反应①平衡逆向移动,平衡常数 K 减小 D. 加入反应①的催化剂,可减小反应①的活化能 (3). 刚性容器中,进料浓度比 c(乙苯):c(CO ₂)分别等于 1:5、1:15、1:50 时,乙苯平衡转化率随条件 X 的变

化关系如图 1 所示:

- ①曲线 a 的进料浓度比 c(乙苯):c(CO₂)为
- ②条件 X 是 (填"温度"或"压强"), 依据是
- (4). 图 3 为乙苯与 CO₂ 在催化剂表面反应的机理:

在刚性容器中乙苯分压不变时,继续增加 CO_2 分压,乙苯转化率反而下降(见图 2)的原因是______。

(5). 某温度下,等物质的量的乙苯和 CO_2 在刚性容器内发生反应②,初始压强为 p_0 平衡时苯乙烯的体积分数为 20%,则平衡总压为 ,该反应的平衡常数 $\mathit{Kp}=$ 。


(二)选考题: 共14分。

- 20. 将金属元素 Al 掺杂到 TiN 多层膜中,能有效地改善纳米多层膜的耐磨性。回答下列问题:
- (1). Ti 元素位于元素周期表的第四周期第_____族,基态 Ti 原子的次外层电子数为_____
- (2). 第二周期元素中,第一电离能比 N 大的元素有____。(填元素符号)
- (3). 叠氮酸根 N_3 的几何构型为______,而 1mol 亚硝酸根 NO_2 中含有的价层电子对数目为

(4). Mg 的熔点是 648℃, 而 Al 的熔点是 660℃, 分析 Al 熔点更高的原因是___。

(5). 用 Al 掺杂 TiN 后, 其晶胞结构如下图所示, 距离 Ti 最近的 Al 有______个, 掺杂 Al 后的晶体密

与原子②距离为 nm。

21. 缬沙坦是一种新型抗高血压药。一种合成沙坦的路线如下(部分反应条件省略,Ph 表示 - C_6H_5):

- (1). 化合物 C 的分子式为______, 含有的官能团的名称为_____。
- (2). 化合物 A 可以先水解为醇,再催化氧化为化合物 B,水解反应的条件为_____。
- (3). D 生成 F 的取代反应生成小分子 HCl,则化合物 E 的结构简式为 , G 生成 H 的反应类型为
- (5). 化合物 C 可以由化合物 $M(H_2N)$ 制得,与 M 官能团相同的同分异构体有_____种(不包

括 M), 其中核磁共振氢谱峰面积之比为 3:3:2:2:1 的同分异构体结构简式为: ______

(6). 以 , 与出合成路线 (不需

注明反应条件)

答案

1-5DCACB 6-10BCCAC 11-16BBDDDC

- 17、【答案】(1). ①. 分液漏斗 ②. 过滤、洗涤、烘干
- (2). $2I^{-} + H_{2}O_{2} + 2H^{+} = I_{2} + 2H_{2}O$
- (3). ①. A ②. 溶液的酸碱性 ③. 碘离子浓度 ④. b 或 d-c ⑤. 蒸馏水 ⑥. KI 溶液 ⑦. SO₂+I₂+2H₂O=2HI+H₂SO₄ ⑧. 稀盐酸和氯化钡溶液
- 18、【答案】(1). CO₂
- $(2). \\ \textcircled{1}. \quad 2LiCoO_2 + H_2O_2 + 6H^+ = 2Li^+ + 2Co^{2+} + O_2 \\ \uparrow + 4H_2O \\ , \quad Cu + H_2O_2 + 2H^+ = Cu^{2+} + 2H_2O \\ ; \\ \end{matrix}$
- ②. 炭黑
- (3). Li⁺, Na⁺
- (4). ①. 酸 ②. 20%
- (5). ①. pH 过大易生成Co(OH), 沉淀,pH 过小,溶液中 $C_2O_4^{2-}$ 浓度减小,都导致 CoC_2O_4 产率下降;
- ②. 1×10⁻⁷
- (6). $3\text{CoC}_2\text{O}_4 + 2\text{O}_2 = \text{Co}_3\text{O}_4 + 6\text{CO}_2$
- 19、【答案】(1). $CO_2(g)+H_2(g)=CO(g)+H_2O(g)$ $\Delta H ==+41.1 \text{ kJ} \cdot \text{mol}^{-1}$ (2). BD
- (3). ①. 1:5 ②. 温度 ③. 该反应正方向为吸热,升高温度,平衡正向移动,乙苯平衡转化率增大。
- (4). CO, 分压过大, CO2 附着在催化剂表面,减少了乙苯与催化剂的接触
- (5) ①. $1.25p_0$ ②. $0.25p_0$
- 21、【答案】(1). ①. C₆H₁₃O₂ ②. 酯基、氨基 (2). 氢氧化钠(强碱)水溶液加热
- (3). ①. ②. 水解反应
- (4). 1 (5). ①. 11 ②. CH₃-CH₂-C(NH₂)(CH₃)COOH

(6)
$$+Br_2 \rightarrow \qquad \qquad +H_2N \rightarrow \qquad \qquad \qquad H \rightarrow \qquad H$$

化学 upupup 提分课程

1、2022 届高三化学优质卷精讲(第一期)试卷下载地址(免费): q 群 566821486 视频精讲(微信扫码观看)

- 2、2022 届高三化学一二轮联合课程: b 站搜"化学 upupup", 公益课程。
- 3、2021 届广东高三模拟卷详细解析合集: b 站搜 "化学 upupup", 公益课程, 试卷下载地址 (免费): q 群 566821486。