

能力提升卷(一)

学(文科) 数

本试卷满分 150 分,考试时间 120 分钟.

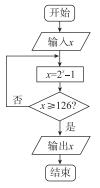
第 【 卷(选择题 共 60 分)

- 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题 目要求的.
- 则 $A \cap B =$
- A. $\{x \mid 0 < x < 1\}$ B. $\{x \mid -1 < x < 1\}$

 - C. $\{x \mid 0 \le x < 1\}$
- D. $\{x | x < 1\}$
- 2. 已知 z=1-i,则 $\frac{z^2}{z-1}=$

- $B_{.}-2$
- C. 2i
- 3. 命题 $p:\exists x_0>0,2^{x_0}<1,$ 则命题 p 的否定是

- A. $\exists x_0 > 0, 2^{x_0} \ge 1$ B. $\exists x_0 \le 0, 2^{x_0} \ge 1$
- C. $\forall x > 0, 2^x \ge 1$ D. $\forall x \le 0, 2^x \ge 1$
- · 封 4. 执行如图所示的程序框图,若输入的 x 值为 2,则 输出的 x 值为



- **A.** 3
- B. 126
- C. 127
- 5. 已知 $\{a_n\}$ 为等差数列 $,a_1+a_5=8,a_2+a_6=4,则$

 $a_{20} =$

- A. -10
- B. -30

- $(2x-y+2 \ge 0,$ 6. 若实数 x, y 满足不等式组 $\sqrt{3}x - y - 3 \le 0$,则 z = $(x+y-4) \ge 0$,

5x-2y的最小值为

- A. 1 B. $\frac{17}{4}$ C. $-\frac{10}{2}$ D. -1
- 7. 甲、乙两位学生参加数学竞赛培训,现分别从他们 在培训期间参加的若干次预赛成绩中随机抽取

8次,记录如图,下列结论正确的是

			甲		;	Z			
		9	8	7	5				_
8	4	2	1	8 9	0	0	3	5	
		5	3	9	0	2	5		

- A. 甲的平均成绩大于乙的平均成绩
- B. 甲的中位数大于乙的中位数
- C. 甲的成绩更稳定
- D. 以上说法都不对
- 8. 为了得到函数 $y = \cos 2x$ 的图象,只需将函数 y =

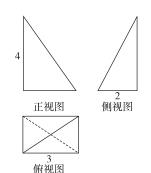
$$\sin\left(2x + \frac{\pi}{6}\right)$$
的图象 (

- A. 向右平移 $\frac{\pi}{6}$ 个单位长度
- B. 向右平移 $\frac{\pi}{3}$ 个单位长度
- C. 向左平移 $\frac{\pi}{3}$ 个单位长度
- D. 向左平移 $\frac{\pi}{6}$ 个单位长度
- 9. 已知 a=(1,3), b=(m,-1),若 a+b 与 a-b 的夹 角为锐角,则 m 的取值范围为
 - A. $(-\infty, -3) \cup (3, +\infty)$

B.
$$\left(-3, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, 3\right)$$

D.
$$\left[-3, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, 3\right]$$

10. 某几何体的三视图如图所示,则该几何体的体 积为



- A. 8
- B. $\frac{2\sqrt{3}}{2}$
- C. $2\sqrt{3}$
- D. 4

11. 已知 $m \in \mathbb{R}$,若 $f(x) = \frac{x^2}{2} + x + m \left(\ln x + \frac{1}{x} \right)$ 在 (0,1)上不单调,则 m 的取值范围是 ()

A. m > 0

B. *m*≤1

C. m > 1

D. $m \leq 0$

12. 已 知 数 列 $\{a_n\}$ 的 前 n 项 和 为 S_n , $a_n = \frac{2^n}{2^{2n+3}-9 \cdot 2^{n+1}+9}$, $n \in \mathbb{N}^*$, 则使不等式 $\left|S_n - \frac{1}{2}\right| < 1$

 $\frac{1}{2019}$ 成立的最小正整数 n 的值为

2 019 A. 11 B. 10 C. 9

D 8

第Ⅱ卷(非选择题 共90分)

- 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 把答案填在题中的横线上.
- 13. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$,离心率 $e = \sqrt{2}$,目双曲线过点 $(\sqrt{3}, 1)$,则 a = -.
- **14.** 已知体积为 4 的正四棱柱各顶点都在同一个球面上,其高为 1,则这个球的体积为
- 15. 偶函数 f(x)满足 f(1-x) = f(x+1),且 $x \in [0, 1]$ 时,f(x) = -x+1,在(-2,2)上满足 $f(x) \le \frac{1}{2}|x|$ 的 x 的取值范围是______.
- 16. 已知函数 $f(x) = \begin{cases} x^2 + 4x, x \leq 0, \\ \frac{2x}{e^x}, & x > 0, \end{cases}$ 数 F(x) = f(x) g(x)有两个零点,则实数 k 的取值范围为
- 三、解答题:本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤. 第17~21题为必考题,每个考生都必须作答,第22,23题为选考题,考生根据要求作答.
- (一)必考题:共60分.
- 17. (本小题满分 12 分)

已知 a,b,c 分别是 $\triangle ABC$ 内角 A,B,C 的对边,

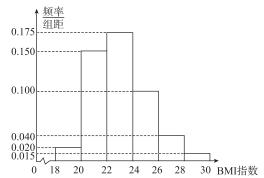
$$2a\sin\left(C+\frac{\pi}{6}\right)=b+c.$$

(I)求A:

(|||) 若 a=2,求 $\wedge ABC$ 面积的最大值.

18. (本小题满分 12 分)

体重指数(BMI,Body Mass Index)是国际上常用的衡量人体肥胖程度和是否健康的重要标准,主要用于统计分析. 体重指数 BMI = 体重/身高的平方(国际单位 kg/m²). 一般认为 BMI 指数小于18.5 为偏瘦,BMI 指数在18.5~24 为正常,BMI 指数在24~28 为超重,28 以上为肥胖. 某学校为了了解当前高三学生的身体状况,从全校高三学生中随机抽取了100 名学生,对这100 名学生的BMI 指数进行分组,得到的频率分布直方图如下:



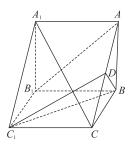
(I)求这 100 名学生的 BMI 指数的平均值和中位数(精确到 0.01);

(Ⅱ)高三年级从第二组和第四组的学生中采用分层抽样的方法抽取了5名学生作为备查对象,学校决定在高三年级提供的这5名备查对象中随机抽取2名调查,求抽到的2名学生体重都正常的概率.

堑堵是一个长方体沿不在同一面上的相对棱斜截所得的几何体,即底面为直角三角形的直棱柱,最早的文字记载见于《九章算术·商功》.如图为一堑堵, $AB \perp BC$, $AA_1 = AB = 2$,D 为AC 的中点.

(I)求证:*AB*₁//平面 *BDC*₁;

(II)若 BC=3,求三棱锥 $D-A_1CB$ 的体积.



20. (本小题满分 12 分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右焦点分别为 F_1 , F_2 , 离心率 $e = \frac{1}{2}$, $A\left(0, \frac{3}{4}\right)$, 直线 F_1A 与椭圆 C 在第一象限的交点为 P, 且 $PF_2 \perp x$ 轴. (I)求椭圆 C 的方程:

([])直线 PE, PF 与圆 $(x-1)^2 + y^2 = r^2 (0 < r < r)$

 $\frac{3}{2}$)相切于点 E, F, \mathbb{Z} PE, PF 与椭圆 C 的另一交点分别为 Q, R. 求证: QR 的斜率为定值.

线

21. (本小题满分 12 分)

已知函数 $f(x) = a \ln x + x^2$.

- (I) y = f(x) 在 x = 1 处的切线与 y 轴垂直,求 a 的值和 y = f(x) 的极值;
- (\parallel)求函数 f(x)在[1,e]上的最小值.
- (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.
- 22. (本小题满分 10 分)选修 4-4:坐标系与参数方程 在直角坐标系 xOy 中,直线 l 的参数方程为 $x=1+\sqrt{3}t$.

$$\begin{cases} x = 1 + \frac{\sqrt{3}}{2}t, \\ (t 为参数). 以坐标原点为极点, \\ y = \sqrt{3} + \frac{1}{2}t \end{cases}$$

- x 轴的正半轴为极轴建立极坐标系,曲线 C 的极 坐标方程为 $\rho=2\sqrt{3}\sin\theta$.
- (I)写出直线 l 的普通方程和曲线 C 的直角坐标方程;
- ($\|\cdot\|$)已知 $P(1,\sqrt{3})$,设直线 l 与曲线 C 交于 M,N 两点,求 $\frac{|MN|}{|PM|\cdot|PN|}$.

- 23. (本小题满分 10 分)选修 4-5:不等式选讲已知 f(x) = |x-1| + |ax+1|.
 - (I) 当 a=1 时,求不等式 $f(x) \ge 3$ 的解集;
 - ($\| \|$)若 $f(x) \le 3-x$ 的解集包含[-1,1],求 a 的取值范围.

教学考试

能力提升卷(二)

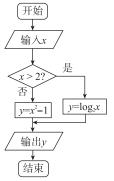
学(文科)

本试卷满分 150 分,考试时间 120 分钟.

第 【 卷(选择题 共 60 分)

- 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题 目要求的.
- 1. 复数 $z=\frac{1}{1+i}$ (i 为虚数单位)表示的点在复平面内

- A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限
- 2. $A = \{x \mid x < 5, x \in \mathbb{N}\}, B = \{x \mid -2 < x < 4, x \in \mathbb{N}\}$ \mathbb{Z} },则 $A \cap B =$
 - A. $\{0,1,2,3\}$
- B. $\{1,2,3\}$
- $C. \{-1,0,1,2,3\}$
- $D. \{2,3\}$
- 3. 执行如图所示的程序框图,若输入x=8,则输出y的值为



- B. 2
- C. 3
- **4.** 函数 $f(x) = x \ln x$ 在 x = e 处的切线斜率为(
- B. 1

- 5. 设 l,m 是两条不同的直线, α , β 是两个垂直平面, 则下列命题正确的是
 - A. 若 $l \perp_{\alpha}$, $m // \beta$, 则 $l \perp m$
 - B. 若 $l \subset \alpha, m \subset \beta, 则 m // l$
 - C. 若 $l \mid \alpha, m \mid \beta, 则 l \mid m$
 - D. 若 $l//\alpha$, $m//\beta$,则 l//m
- 6. 数列 $\{a_n\}$ 为公差不为零的等差数列,其中 $a_3=5$, 并且 a_1, a_2, a_5 成等比数列. 则数列 $\{a_n\}$ 的通项公 式为
 - A. $a_n = 2n + 1$
- B. $a_n = 2n 1$
- C. $a_n = n + 2$
- D. $a_n = 2n$

7. 设实数 x,y 满足 $\langle x+y-6 \leq 0, \text{则 } z=2x+y \text{ 的最}$

大值为

- A. 10
- B. 8 C. 4
- 8. 将函数 $y = \sin\left(2x \frac{\pi}{6}\right)$ 的图象向左平移 $\frac{\pi}{3}$ 个单位 长度,得到的图象,以下结论哪一个是正确的

A. 以 2π 为最小正周期

- B. 一条对称轴是 $x=\frac{2\pi}{2}$
- C. 一个对称中心为(0,0)
- D. 在 x=0 处,取得最大值
- 9. 现有一居民楼长 20 m 宽 10 m 高 30 m, 楼顶一角 处有一移动信号发射器. 该发射器辐射半径为 10 m,则居民楼内被辐射的部分为占总体的(
 - A. $\frac{\pi}{18}$ B. $\frac{\pi}{9}$ C. $\frac{\pi}{36}$ D. $\frac{\pi}{6}$

- 10. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$,点 $P(2,\sqrt{3})$

到双曲线的两条渐近线距离之积为 $\frac{12}{7}$,则双曲线

的离心率为

- A. $\frac{\sqrt{7}}{2}$ 或 $\frac{7\sqrt{10}}{20}$
- B. $\frac{7}{4}$ 或 $\frac{7\sqrt{10}}{10}$
- C. $\frac{7}{4}$ $\frac{7\sqrt{10}}{20}$ D. $\frac{7\sqrt{10}}{10}$
- 11. 圆 C 的方程 $(x-1)^2+(y+2)^2=9$,设直线 l 的倾

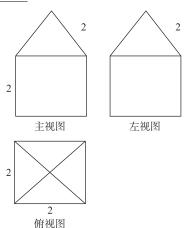
斜角为 $\frac{\pi}{4}$,且 l与 C 交于 A, B 两点,则以 AB 的

直径的圆经过原点,则 l 的方程为

- A. y=x+1
- B. v = x + 4
- C. y=x-4 或 y=x+1 D. y=x+4 或 y=x-1
- 12. 对任意的实数 t,函数 $f(x) = \frac{x^3}{3} \frac{1}{x} 2x^2 4\ln x +$ $(6-a+e^t-t)x$ 是增函数,则实数 a 的取值范围是
 - A. $(-\infty,1)$
- B. $(-\infty,1]$
- $C.(0,+\infty)$
- $D, \lceil 1, +\infty \rangle$

第 Ⅱ 卷 (非选择题 共 90 分)

- 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 把答案填在题中的横线上.
- 13. 数列 $\{a_n\}$ 中 $a_1=1$,且满足 $a_n-a_{n+1}=2a_na_{n+1}$,则 a_n 的通项公式为
- 14. 某几何体的三视图如图所示,则几何体的体积 是 .



- 15. 在边长为 2 的正方形 ABCD 中,点 P 在线段 BC 上运动,则 $\overrightarrow{DP} \cdot \overrightarrow{AB} =$.
- 16. 设函数 $f(x) = a\sin(x+\alpha) + b\sin(x+\beta)$,则条件 $p: f(\pi) = 0$ 是条件 q: f(x) 是奇函数的______. (充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)
- 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个考生都必须作答,第22,23题为选考题,考生根据要求作答.
- (一)必考题:共60分.
- 17. (本小题满分 12 分)

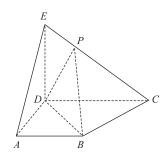
梯 形 ABCD 中,AB // CD, $\angle B = \frac{\pi}{6}$,且

$$\left(\frac{1-\sqrt{3}}{2}\right)\sin\angle BAC + \sin\angle ACB = \frac{\sqrt{2}}{2}.$$

- (I)求 $\angle BAC$ 的大小;
- (Ⅱ)若 CD=BC=2,求 AD 的长.

在四边形 ABCD 中, $AB/\!\!/ CD$,且 2AB = 2AD = CD = 2, $ED \perp \Psi$ 面 ABCD,ED = 2,已知 $3\overline{EP} = \overline{EC}$, $\angle BAD = \frac{\pi}{2}$.

- (I)求证:AE//平面 BDP;
- (Ⅱ)求点 A 到平面 CBP 的距离.



(I)求椭圆 E的方程;

已知椭圆 E 的方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的一个顶点为 $A(2\sqrt{2},0)$,且椭圆的焦距等于短轴长.

(II)过椭圆 E 的右焦点做垂直于 x 轴的直线,交椭圆 E 于 B 点. 过 A , B 两点分别做两条斜率互为相反数的直线交椭圆 E 于 N , M , 假设直线 MN 斜率存在,问直线 MN 的斜率是否为定值?若不是请说明理由,若是求出答案.

20. (本小题满分 12 分)

2019 年是人民海军成立 70 周年. 全国齐心,全面建成世界一流海军. 为让我校学子深入了解我国海防建设,关心海防知识. 特邀请海军部队官兵对我校进行了一次海军知识讲座. 我校共有男生360 名,女生 180 名学生参加讲座. 会后学校准备对高一年级 120 人进行海军知识测试,其中 60 分(含 60 分)以上即及格,表明对本次讲座有收获. 81 分以上(包括 81 分)即成绩优秀,表示对海军知识产生了浓厚的兴趣. 现学校兴趣小组以男女生形式对统计结果列表如下:

	60 分以下	61~70分	71~80分	81~90分	91~100分
女生(人数)	8	11	11	28	2
男生(人数)	2	5	3	46	4

(I)通过以上数据估计全校多少人通过讲座有收获?

(Ⅱ)根据以上统计数据填写下列 2×2 列联表.

	优秀	非优秀	合计
女			
男			
合计			

并分析数据,能否据此判断在犯错误的概率不超过 0.01 的前提下,认为海军知识成绩的优秀与性别有关?

(Ⅲ)在测试中,作为奖励,在得分91~100分的学生中选取2名学生参观海军部队,求选取的人均为男生的概率.

临界值表:

$P(K^2 \geqslant k_0)$	0.100	0.050	0.010	0.001
k_0	2.706	3.841	6.635	10.828

参考公式:
$$K^2 = \frac{n (ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}, n = a+b+c+d.$$

已知函数 $f(x) = \frac{3x^2 + m}{x}, g(x) = 3x - e^x$.

([])若 y = x + 1 是 f(x) 的一条切线,求 m 的值; ([]])设 $F(x) = f(x) - g(x), \forall x \in (-\infty,0), 求$ F(x) 在 $(-\infty,0)$ 上单调递减时,m 的取值范围. (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.

22. (本小题满分 10 分)选修 4-4:坐标系与参数方程

已知曲线
$$C:\begin{cases} x=\sqrt{3}+2\cos\theta, \\ y=1+2\sin\theta \end{cases}$$
 (θ 为参数).

(I)求 C的极坐标方程;

(॥)若曲线 C 上有 P ,Q 两点 ,且 $\angle POQ = \frac{\pi}{6}$,求 $\triangle POQ$ 面积的最大值.

- 23. (本小题满分 10 分)选修 4-5:不等式选讲已知函数 f(x) = |2x+2| |x-a|.
 - (I)当 a=2 时,求 $f(x) \le 4$ 的解集;
 - (\mathbb{I})证明: f(x)的最小值小于等于零恒成立.

数学考试

弥

能力提升卷(三)

学(文科) 数

本试卷满分 150 分,考试时间 120 分钟.

第 [卷(选择题 共 60 分)

- 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题 目要求的.
- 1. $\&A = \{x \mid y = \log_2(x-1)\}, \&A = \{x \mid |x-1\}\}$ 1 | <1 ,则 $A \cap B =$
- A. [1,2)
- B.(1,2)
- $C.(2,+\infty)$
- D. $(0, +\infty)$
- 2. 若 z=a+bi, $(a,b \in \mathbb{R})$, $zi^3 = 3+2i$, 则 z 在复平面 内对应的点位于
 - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限

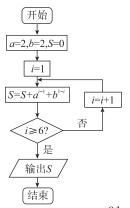
$$|a-b|=$$

- 4. 若 x, y 满足约束条件 $\begin{cases} x-y+1 \ge 0, \\ 2x+y-2 \ge 0, \text{则 } z = \frac{y}{x} \text{ } \end{cases}$

最大值为

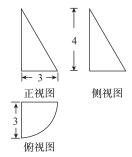
A. 4 B. $\frac{4}{3}$ C. $-\frac{4}{3}$ D. 1

- 5.《九章算术》中的"两鼠穿墙题"是我国数学的古典 名题,现根据题目设计程序框图如下,则S=



- A. 63 $\frac{31}{32}$
- B. 64 $\frac{31}{32}$
- C. 32 $\frac{15}{16}$
- D. 31 $\frac{15}{16}$

6. 某几何体的三视图如图所示,则该几何体的表面



- A. $\frac{17\pi}{2} + 12$
- C. $\frac{17\pi}{2} + 24$
- D. $\frac{15\pi}{4} + 12$
- 3. 已知 |a| = 1, |b| = 1, a 与 b 的夹角为 $\frac{2\pi}{3}$, 求 7. 已知函数 $f(x) = \begin{cases} x^2 + 2x, x \ge 0, \\ 2x x^2, x < 0, \end{cases}$ 若 $f(a^2 a) < a$

f(a+3),则 a 的取值范围是

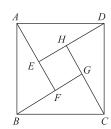
- A. $(-\infty, -1) \cup (3, +\infty)$
- B. $(-\infty, -3) \bigcup (1, +\infty)$
- C.(-1,3)
- D.(-3,1)
- 8. 将函数 $y = \sin x$ 图象上所有点的横坐标伸长为原 来的2倍(纵坐标不变),再将图象向左平移3个单 位长度,所得函数的一个对称中心为
 - A. $\left(-\frac{2\pi}{2},0\right)$
- B. $\left(-\frac{\pi}{2}, 0\right)$
- C. $\left(\frac{\pi}{3}, 0\right)$ D. $\left(\frac{2\pi}{3}, 0\right)$
- 9. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$, 离心率为
 - 2,右顶点 A 到渐近线的距离为 $\frac{\sqrt{3}}{2}$,则该双曲线的

标准方程为

A. $x^2 - \frac{y^2}{3} = 1$ B. $\frac{x^2}{3} - \frac{y^2}{9} = 1$

- C. $\frac{x^2}{2} \frac{y^2}{5} = 1$ D. $\frac{x^2}{4} \frac{y^2}{12} = 1$
- 10. 勾股定理在西方被称为毕达哥拉斯定理,相传是 古希腊数学家兼哲学家毕达哥拉斯于公元前 550 年首先发现的,其实我国古代人民对这一数学定

理的发现和应用,远比毕达哥拉斯早得多,古代 数学家不仅很早就发现并应用了勾股定理,三国 时期吴国的数学家赵爽还创造了一幅"勾股圆方 图",用数形结合的方法,给出了勾股定理的详细 证明. 这个证明极富创新意识, 他用几何图形的 截、割、拼、补来证明代数之间的恒等关系. 北京 召开的第24届国际数学家大会的会标就是根据 我国古代数学家赵爽的弦图设计的,体现了我国 古代数学的成就. 会标如图,已知实数 a,b 满足 $a = e^{b-1} + e^{1-b}$,图中 DE 的长度为函数 a 的最小 值,AE 的长度为 a 取得最小值时 b 的值.若一只 小蚂蚁在会标上爬行,则小蚂蚁停在最中间的小 正方形上的概率为



A. $\frac{2\sqrt{5}}{5}$ B. $\frac{\sqrt{5}}{5}$

C. $\frac{4}{5}$

- 11. 已知数列 $\{a_n\}$ 的通项公式为 $a_n = \frac{1}{n^2 + n}$,其前 n 项和为 S_n , $\forall n \in \mathbb{N}_+$, $\exists m \in \mathbb{Z}$, 使得 $2^m < S_n$, 则 m 的最大值为 C. -1 D. -2A. 1 B. 0
- 12. 若函数 $f(x) = \frac{1}{2}ax^2 (3a+2)x + 6\ln x + a$ 在 (1,2)内有极值,则a的取值范围是 ()

A.(1.2)

B. $(-\infty,2) \cup (4,+\infty)$

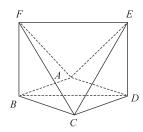
 $C.(-\infty,1) \bigcup (4,+\infty)$

D.(2,4)

第 Ⅱ 卷 (非选择题 共 90 分)

- 二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在题中的横线上.
- 13. 曲线 $f(x) = x^3 2x$,在点 A 处的切线平行于直 线 y=x+1,则 A 点坐标为
- **14.** 已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 2^n 1$, $b_n = 3 \log_2 a_n$, 则数列 $\{b_n\}$ 的前 n 项和 T_n =
- 15. 如图所示为多面体 ABCDEF,已知四边形 EF-BD 与四边形 ABCD 均为矩形,平面 EFBD 与平 面 ABCD 互相垂直,且多面体 ABCDEF 的体积 为 $\frac{8}{2}$, DE=2, 则多面体外接球的表面积的最小

值为

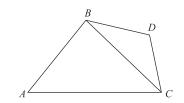


- 16. 过原点的直线 l 与圆心在原点的单位圆交于 A , B两点,与椭圆 $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 交于 M, N 两点,若 $\overrightarrow{MA} = \overrightarrow{AB} = \overrightarrow{BN}$,则直线 l 的方程为
- 三、解答题:本大题共6小题,共70分.解答应写出必 要的文字说明、证明过程或演算步骤. 第 17~ 21 题 为 必 考 题,每 个 考 生 都 必 须 作 答,第 22, 23 题为选考题,考生根据要求作答.
- (一)必考题:共60分.
- 17. (本小题满分 12 分)

如图,在四边形 ABDC 中, $\triangle ABC$ 的外接圆的直 径为 1,且 $\triangle ABC$ 的面积为 $S = \frac{1}{4}(\sin^2 B +$ $\sin^2 C - \sin^2 A$).

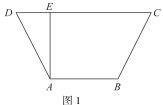
(I)求角 A 的大小;

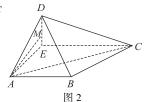
(][)若 $AB = \frac{\sqrt{2}}{2}$, AC = 1, $\angle BDC = 120^{\circ}$, 求四边 形 ABDC 面积的最大值.



如图 1,四边形 ABCD 为等腰梯形, $AE \perp CD$,且 $AB = AE = \frac{1}{2}DC = 2$,将 $\triangle AED$ 沿 AE 折起. 使 平面 AED 上平面 ABCE, 如图 2, M 为线段 DE上一点,且 DM=2ME.

- (I)求证:AM//平面 DBC;
- (Ⅱ)求四面体 B-ACD 的体积.





19. (本小题满分 12 分)

某中学为了研究周合理课时数(x),对某同学的 思政课周测成绩(y)进行了跟踪,获得如下数据:

x	3	4	5	6	7
У	87	89	89	92	93

(I)这位同学的成绩(y)与周课时数(x)是否具 有相关关系? 是否可用线性回归模型拟合 y 与 x 的关系?请用相关系数加以说明;

($\|$)建立 y关于 x 的回归直线方程,并估计周课 时为8节时,该同学的成绩.

参考公式:
$$r = \frac{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})^{2}\sum\limits_{i=1}^{n}(y_{i}-\bar{y})^{2}}}$$

$$= \frac{\sum\limits_{i=1}^{n}x_{i}y_{i}-n\bar{x}\bar{y}}{\sqrt{(\sum\limits_{i=1}^{n}x_{i}^{2}-n\bar{x}^{2})(\sum\limits_{i=1}^{n}y_{i}^{2}-n\bar{y}^{2})}},$$

$$\hat{b} = \frac{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})^{2}} = \frac{\sum\limits_{i=1}^{n}x_{i}y_{i}-n\bar{x}\bar{y}}{\sum\limits_{i=1}^{n}x_{i}^{2}-n\bar{x}^{2}},$$

$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2},$$

$$\hat{a} = \bar{y} - \hat{b} \bar{x}.$$

参考数据: $r_{0.05} = 0.754$, $r_{0.01} = 0.874$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236, \sqrt{7} \approx 2.646, \sqrt{11} \approx 3.167.$

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$,点 A, B 分别 为椭圆的上顶点和右顶点, $|\overrightarrow{OA} + \overrightarrow{OB}| = \sqrt{5}$,点 (a,c)在直线 $y = \frac{\sqrt{3}}{2}x$ 上.

- (丁)求椭圆的方程;
- (॥)直线 l: y = kx + m 与椭圆交于不同两点 M 和 N ,若 O 到 l 的距离为 $\frac{2\sqrt{5}}{5}$,求 $\triangle OMN$ 面积的最大值.

21. (本小题满分 12 分)

已知函数 $f(x) = \frac{\ln x - ax}{x+1}$,其中 a 为实数.

- (I)当 $x \ge 1$ 时,讨论 f(x)的单调性;
- (Ⅱ)若 f(x)有两个不同的零点,求 a 的取值范围.

- (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.
- 22. (本小题满分 10 分)选修 4-4:坐标系与参数方程已知曲线 C_1 的极坐标方程为 ρ^2 (4- $\cos^2\theta$)=12, 曲线 C_2 的参数方程为 $\begin{cases} x=t, \\ y=2t \end{cases}$ (t 为参数),且 P, Q

为曲线 C_1 上的两个不同点.

- (I)求曲线 C_1 的直角坐标方程和曲线 C_2 的普通方程;
- (\mathbb{I})若弦 PQ 被曲线 C_2 平分,且点 M(1,2), N(-1,-2),求四边形 NPMQ 面积的最大值.

- 23. (本小题满分 10 分)选修 4-5:不等式选讲 设函数 $f(x)=2|x-1|-3|x+1|(x \in \mathbf{R})$.
 - (I)求不等式 f(x)>1 的解集;
 - ($\| \|$)若 $\exists x \in \mathbb{R}$,使关于x的不等式 $f(x) \log_3(a^2 4a + 2) > 2$ 成立,求实数a的取值范围.

数学考试